### QCD Thermodynamics from Gradient Flow

#### Masakiyo Kitazawa

for FlowQCD Collaboration (Asakawa, Hatsuda, Iritani, Itou, MK, Suzuki)

XQCD2015, 2015/Sep./22, Wuhan, China

# Yang-Mills Gradient Flow $\partial_t A_\mu = D_\nu G_{\mu\nu}$

A new flow in lattice community (2010~)

#### **Applications of Gradient Flow**

- 1. Lattice spacing / reference scales
- 2. Energy-momentum tensor
  - thermodynamics
  - correlation functions
- 3. Topology
- 4. Running coupling
- 5. and etc...

topics coverted by this talk

# Yang-Mills Gradient Flow $\partial_{\ell} A_{\mu} = D_{\nu} G_{\mu\nu}$

#### **Gradient Flow and Jogging**





#### **Gradient Flow and Jogging**



#### **Gradient Flow and Jogging**













#### **YM Gradient Flow**

 $\partial_t A_\mu = D_\nu G_{\mu\nu}$ 

= Continuous smoothing transformation of gauge field

• smearing length 
$$r = \sqrt{8t}$$

#### Remarks:

- All observables are UV finite at t>0. Luscher, Weiss, 2011
- Smoothed field is no longer the original gauge field!

#### **Applications of Gradient Flow**

1. Lattice spacing / reference scales

- 2. Energy-momentum tensor
  - > thermodynamics
  - correlation functions
- 3. Topology
- 4. Running coupling
- 5. and etc...

#### **Observables at Nonzero Flow Time**



The *t* dep. can be used for the **scale setting** of the lattice.

#### **Observables at Nonzero Flow Time**



#### Behavior of t<sup>2</sup><E>



Behavior of t<sup>2</sup><E>



Behavior of t<sup>2</sup><E>



#### Lattice Spacing of SU(3) Wilson Action



#### our parametrization for a

$$\log\left(\frac{w_{0.4}}{a}\right)(\beta) = \frac{4\pi^2}{33}\beta - 8.6853 + \frac{37.422}{\beta} - \frac{143.84}{\beta^2}$$
  
stat. err. < 0.4% / sys. err. < 0.7%

#### **Numerical Setting**

SU(3) YM theory
 Wilson gauge action
 w<sub>0.4</sub> / w<sub>0.2</sub> scaling



| b   | size            | $N_{conf}$ | b   | size             | N <sub>conf</sub> |  |
|-----|-----------------|------------|-----|------------------|-------------------|--|
| 6.3 | 64 <sup>4</sup> | 30         | 6.9 | 64 <sup>4</sup>  | 30                |  |
| 6.4 | 64 <sup>4</sup> | 100        | 7.0 | 96 <sup>4</sup>  | 60                |  |
| 6.5 | 64 <sup>4</sup> | 49         | 7.2 | 96 <sup>4</sup>  | 53                |  |
| 6.6 | 64 <sup>4</sup> | 100        | 7.4 | 128 <sup>4</sup> | 40                |  |
| 6.7 | 64 <sup>4</sup> | 30         | 7.5 | 128 <sup>4</sup> | 60                |  |
| 6.8 | 64 <sup>4</sup> | 100        |     |                  |                   |  |

Each configuration is separated by 1000 updates (HB+OR<sup>5</sup>) BlueGene/Q @ KEK

#### Parametrization with w<sub>0.4</sub>



\_\_\_\_\_

#### **Finite Volume Effects**



No finite volume effects within statistics

#### **Comparison with Previous Studies**



- Agreements in available ranges.
- Need the analysis of the topological freezing effect.

#### **Applications of Gradient Flow**

- 1. Lattice spacing / reference scales
- 2. Energy-momentum tensor
  - thermodynamics
  - correlation functions
- 3. Topology
- 4. Running coupling
- 5. and etc...

## $T_{\mu u}$ : nontrivial observable on the lattice

### Definition of the operator is nontrivial because of the explicit breaking of Lorentz symmetry



ex: 
$$T_{\mu\nu} = F_{\mu\rho}F_{\nu\rho} - \frac{1}{4}\delta_{\mu\nu}FF$$
$$F_{\mu\nu} =$$











#### Small Flow-time Expansion

Luescher, Weisz, 2011 Suzuki, 2013



#### SFTE of Energy-Momentum Tensor

Suzuki, 2013

**D** gauge-invariant dimension 4 operators

$$U_{\mu\nu}(t,x) = G_{\mu\rho}(t,x)G_{\nu\rho}(t,x) - \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x)$$
$$E(t,x) = \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x)$$



#### SFTE of Energy-Momentum Tensor

Suzuki, 2013



#### SFTE of Energy-Momentum Tensor

Suzuki, 2013





#### SU(3) Thermodynamics with Nt=6, 8, 10

FlowQCD, PRD90,011501 (2014)



#### An Erratum: Error in Suzuki Coefficients



#### Simulation on Fine Lattices: Nt = 12 - 32

Simulation for T=1.66Tc

for  $(e-3p)/T^4$ 

for  $(e+p)/T^4$ 

| Nt | beta  | N <sub>conf</sub> (T>0/vac) |
|----|-------|-----------------------------|
| 12 | 6.719 | 2000/700                    |
| 16 | 6.941 | 1680/830                    |
| 20 | 7.117 | 2000/1020                   |

- 5.33<Ns/Nt<6.4
- need vacuum simulation

| Nt | Ns/Nt | beta  | Nconf |
|----|-------|-------|-------|
| 12 | 5.33  | 6.719 | 2k    |
| 16 | 16    | 6.941 | 20k   |
| 20 | 9.6   | 7.117 | 22k   |
| 24 | 8     | 7.265 | 20k   |
| 32 | 6     | 7.500 | 18k   |

no vacuum simulation required

FlowQCD, in prep.

#### New Results: Thermodynamics (e-3p)

$$\tilde{T}_{\mu\nu}(t) = \frac{1}{\alpha_U(t)} U_{\mu\nu}(t) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t)_{\text{subt.}}$$

FlowQCD, in prep.



BW12:Budapest-Wuppertal, 2012

#### v.s. Conventional Methods (e-3p, 1.66Tc)

Differential method (beta func.: FlowQCD, 2015) Gradient flow method



- A consistent result for two methods
- Smaller error in gradient flow method

#### New Results: Thermodynamics (e+p)

Nt=32

$$\tilde{T}_{\mu\nu}(t) = \frac{1}{\alpha_U(t)} U_{\mu\nu}(t) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t)_{\text{subt.}}$$

e + p

T4

5.3

5.2

5.1

5

4.9

(e+p)/T<sup>4</sup>

**BW12** 

FlowQCD, in prep.

$$T^R_{\mu\nu} = \tilde{T}_{\mu\nu}(t) + O(t)$$







#### New Results: Thermodynamics (e+p)

$$\tilde{T}_{\mu\nu}(t) = \frac{1}{\alpha_U(t)} U_{\mu\nu}(t) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t)_{\text{subt.}}$$

FlowQCD, in prep.

$$T^R_{\mu\nu} = \tilde{T}_{\mu\nu}(t) + O(t)$$



Double limit
 (a→0, t→0) has
 to be taken.



BW12:Budapest-Wuppertal, 2012

#### v.s. Differential Method (e+p)

Differential method (Karsch coeffs.: Karsch+, 2000) Gradient flow method



- A consistent result for two methods
  - deviation may be attributed to  $c_{\sigma}$
- Smaller error in gradient flow method
  - the advantage become more prominent on finer lattices



#### **EMT** Correlator

 $\Box$  Kubo Formula: T<sub>12</sub> correlator  $\leftarrow \rightarrow$  shear viscosity

$$\eta = \int_0^\infty dt \int_0^{1/T} d\tau \int d^3x \langle T_{12}(x, -i\tau) T_{12}(0, t) \rangle$$

 $\succ$  Hydrodynamics describes long range behavior of T<sub>uv</sub>

#### $\Box$ Energy fluctuation $\leftarrow \rightarrow$ specific heat

$$c_V = \frac{\langle \delta E^2 \rangle}{VT^2}$$

#### EMT Correlator : Extremely Noisy...

#### With naïve EMT operators



Nakamura, Sakai, PRL,2005  $N_t=8$ improved action ~10<sup>6</sup> configurations



#### standard action 50k configurations

... no signal

#### **Correlation Functions**

 $\langle \delta T_{00}(\tau) \delta T_{00}(0) \rangle / T^5$ 



#### **Correlation Functions**

 $\langle \delta T_{00}(\tau) \delta T_{00}(0) \rangle / T^5$ 



#### **Correlation Functions**



#### **Energy Correlation Function**

T=1.66Tc 96<sup>3</sup>x24 50k confs



 $\langle \delta T_{00}(\tau) \delta T_{00}(0) \rangle / T^5$ 

#### **Energy Correlation Function**

T=1.66Tc  $96^{3}x24$ 50k confs



 $\Box \tau$  independent const.  $\rightarrow$  energy conservation

 $c_V = \frac{\langle \delta E^2 \rangle}{VT^2}$ 

 $\rightarrow$  Novel approach to measure specific heat!

Gavai, Gupta, Mukherjee, 2005  $c_V/T^3 = 15(1)$   $T/T_c = 2$  $= 18(2) \quad T/T_c = 3$ differential method / cont lim.

#### Gradient Flow for Full QCD

- 1. Lattice spacing / reference scales
- 2. Energy-momentum tensor
  - thermodynamics
  - correlation functions
- 3. Topology
- 4. Running coupling

#### Gradient Flow for Full QCD

only with gradient flow for gauge field

- 1. Lattice spacing / reference scales (BMW,2012)
- 2. Energy-momentum tensor
  - > thermodynamics
  - correlation functions
- 3. Topology Possible
- 4. Running coupling possible



only with gradient flow for gauge field

- 1. Lattice spacing / reference scales (BMW,2012)
- 2. Energy-momentum tensor
  - thermodynamics
  - correlation functions
- 3. Topology Possible
- 4. Running coupling Possible

Gradient flow for **fermion field** is needed as well as SFTE

#### **Gradient Flow for Fermion Field**

A choice 
$$\begin{cases} \partial_t \psi(t) = D_\mu D_\mu \psi(t) \\ \partial_t \bar{\psi}(t) = \bar{\psi}(t) \overleftarrow{D}_\mu \overleftarrow{D}_\mu \end{cases}$$

Luscher, 2013

#### **Gradient Flow for Fermion Field**

A choice 
$$\begin{cases} \partial_t \psi(t) = D_\mu D_\mu \psi(t) \\ \partial_t \bar{\psi}(t) = \bar{\psi}(t) \overleftarrow{D}_\mu \overleftarrow{D}_\mu \end{cases}$$

Luscher, 2013

Fermion propagator  $\langle \psi(t_1, x) \overline{\psi}(t_2, y) \rangle = \int dx' dy' K(t_1, x; 0, x') S(x', y') K(0, y'; t_2, y)$  $\begin{cases} \bullet \quad \text{K: "fundamental solution"} (\partial_t - D_\mu D_\mu) K = 0 \\ \bullet \quad \text{S: propagator at t=0} \end{cases}$ 

- Study of chiral condensate Luscher, 2013
- Application to QCD thermodynamics: just started by FlowQCD + WHOT QCD = FloWHOT Collaboration

#### Summary

YM Gradient Flow 
$$\partial_t A_\mu = D_
u G_{\mu
u}$$

> A smoothing transformation of gauge field

Many applications: scale setting, thermodynamics, ...

#### Many future studies

- $\succ$  EMT correlation functions  $\rightarrow$  transport coefficients, etc.
- > Topological property of gauge theory
- $\succ$  Flow for fermion field  $\rightarrow$  Full QCD thermodynamics

#### Backup

#### Various Reference Scales



| $\sqrt{t_{0.4}}/w_{0.4}$ | $\sqrt{t_{0.3}}/w_{0.4}$ | $\sqrt{t_{0.2}}/w_{0.4}$ | $w_{0.3}/w_{0.4}$ | $w_{0.2}/w_{0.4}$ | $r_{c}/w_{0.4}$ | $r_0/w_{0.4}$ | $\sqrt{\sigma}w_{0.4}$ | $T_{c}w_{0.4}$ | $w_{0.4}\Lambda_{\overline{\mathrm{MS}}}$ |
|--------------------------|--------------------------|--------------------------|-------------------|-------------------|-----------------|---------------|------------------------|----------------|-------------------------------------------|
| 1.0164(32)(3)            | 0.8785(24)(0)            | 0.6952(18)(2)            | 0.8968(3)(2)      | 0.7665(6)(2)      | 1.328(21)(7)    | 2.587(45)     | 0.455(8)               | 0.285(5)       | 0.233(19)                                 |