Non-Gaussian Fluctuations in Relativistic Heavy Ion Collisions

Masakiyo Kitazawa (Osaka U.)

Asakawa, MK, arXiv:1512.05038 [Review]

MK, Asakawa, Ono, Phys. Lett. B728, 386-392 (2014) Sakaida, Asakawa, MK, PRC90, 064911 (2014) MK, Nucl. Phys. A942, 65 (2015)

CiRfSE Workshop, Tsukuba U.,19/Jan./2016

Beam-Energy Scan

Fluctuations

Fluctuations

In "haiku", a Japanese short style poem, a poet wrote ...

Even on one blade of grass the cool wind lives

Issa Kobayashi 1814

ー本の草も涼風宿りけり 小林一茶

Physicists can feel hot early Universe 13 800 000 000 years ago in tiny fluctuations of cosmic microwave

Physicists can feel the existence of microscopic atoms behind random fluctuations of Brownian pollens

A. Einstein 1905

Feel hot quark wind behind fluctuations in relativistic heavy ion collisions

2010-

Non-Gaussian Fluctuations in Heavy-Ion Collisions

Non-Gaussianity in Exp.

X. Luo+, STAR Collab. 2010~

Fluctuations and Elemental Charge

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000 Ejiri, Karsch, Redlich, 2005

$$\langle \delta N_q^n \rangle_c = \langle N_q \rangle$$
$$\Longrightarrow \langle \delta N_B^n \rangle_c = \frac{1}{3^{n-1}} \langle N_B \rangle$$

$$3N_B = N_q$$

$$\langle \delta N_B^n \rangle_c = \langle N_B \rangle$$

Free Boltzmann \rightarrow Poisson $\langle \delta N^n \rangle_c = \langle N \rangle$

Fluctuations and Elemental Charge

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000 Ejiri, Karsch, Redlich, 2005

$$\langle \delta N_q^n \rangle_c = \langle N_q \rangle$$

$$\Rightarrow \langle \delta N_B^n \rangle_c = \frac{1}{3^{n-1}} \langle N_B \rangle$$

$$3N_B = N_q$$

Fluctuations and Elemental Charge

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000 Ejiri, Karsch, Redlich, 2005

$$3N_B = N_q$$

Shot Noise

Total charge Q:

$$Q = e \langle N \rangle$$

 $\langle \delta Q^2 \rangle = e^2 \langle \delta N^2 \rangle = e^2 \langle N \rangle = eQ$
 (δQ^2)
 (δQ^2)

Shot Noise

$$S_{
m shot} \sim \langle \delta I^2
angle$$

 $S_{
m shot} = 2e^* \langle I
angle$
charge of quasi-particles

Higher order cumulants:

3rd order: ex. Beenakker+, PRL90,176802(2003) up to 5th order: Gustavsson+, Surf.Sci.Rep.**64**,191(2009)

Fluctuation and QCD Critical Point

Stephanov, 2009

Impact of Negative Third Moments

• {•No dependence on any specific models. •Just the sign! No normalization (such as by N_{ch}).

Clear suppression! ex. Asakawa, Ejiri, MK, 2009

Rapidity Window Dependences of Gaussian Fluctuations

ALICE PRL 2013

$$D \sim \frac{\langle \delta N_{\rm Q} \rangle^2}{\Delta \eta}$$

has to be a constant in equil. medium

Fluctuation of N_Q at ALICE is not the equilibrated one.

 $\Delta\eta$ dependences of fluctuation observables encode history of the hot medium!

Time Evolution of Fluctuations

Time Evolution of Fluctuations

Thermal Blurring

Under Bjorken picture,

coordinate-space rapidity of medium

momentum-space rapidity of individual particles

distribution in rapidity space

• flat freezeout surface

Thermal distribution in η space

Y. Ohnishi+ in preparation

Rapidity distribution is not far away from Gaussian.

- blast wave
- flat freezeout surface

Formalism

Particles arrive at the detector with some probability.
 Sum all of them up. Make the distribution.

Take the continuum limit.

$\Delta\eta$ Dependence

Cumulants after blurring

w=1.5

1.5

2

2.5

Centrality Dependence

Is the centrality dependence understood solely by the thermal blurring at kinetic f.o.?

Centrality Dependence

Assumptions:

• Centrality independent cumulant at kinetic f.o.

Centrality dep. (

qualitatively des

• Thermal blurring at kinetic f.o.

Rapidity Window Dependences of Non-Gaussian Fluctuations

 $<\delta N_{\rm B}^2$ > and $<\delta N_{\rm p}^2$ > @ LHC ?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$

should have different $\Delta\eta$ dependence.

Baryon # cumulants are experimentally observable! MK, Asakawa, 2012

 $<\delta N_{0}^{4} > @ LHC ?$

 $<\delta N_{0}^{4} > @ LHC ?$

Hydrodynamic Fluctuations

Landau, Lifshitz, Statistical Mechaniqs II Kapusta, Muller, Stephanov, 2012

Stochastic diffusion equation

Diffusion Master Equation

MK, Asakawa, Ono, 2014 MK, 2015

Diffusion Master Equation

MK, Asakawa, Ono, 2014 MK, 2015

Solve the DME **exactly**, and take $a \rightarrow 0$ limit

No approx., ex. van Kampen's system size expansion

A Brownian Particle's Model

Hadronization (specific initial condition)

Initial distribution + motion of each particle \rightarrow cumulants of particle # in $\Delta \eta$

A Brownian Particle's Model

Hadronization (specific initial condition)

Initial distribution + motion of each particle \rightarrow cumulants of particle # in $\Delta \eta$

Diffusion + Thermal Blurring

Total diffusion:
$$P(x - x'') = \int dx' P_1(x - x') P_2(x' - x'')$$

□ Diffusion + thermal blurring = described by a single P(x)□ Both are consistent with Gaussian → Single Gaussian

Baryons in Hadronic Phase

Time Evolution in Hadronic Phase

Hadronization (initial condition)

Boost invariance / infinitely long system
 Local equilibration / local correlation

Time Evolution in Hadronic Phase

Hadronization (initial condition)

Detector

Diffusion + Blurring

$\Delta\eta$ Dependence: 4th order

MK, NPA (2015)

new normalization

Characteristic $\Delta \eta$ dependences!

4th order : Large Initial Fluc.

MK, NPA (2015)

Initial Condition $D_4 = \frac{\langle Q_{(\text{net})}^4 \rangle_c}{\langle Q_{(\text{tot})} \rangle} = 4$ $b = \frac{\langle Q_{(\text{net})}^2 Q_{(\text{tot})} \rangle_c}{\langle Q_{(\text{net})} \rangle}$ $c = \frac{\langle Q_{(\text{tot})}^2 \rangle_c}{\langle Q_{(\text{tot})} \rangle}$ $D_2 = \frac{\langle Q_{(\text{net})}^2 \rangle_c}{\langle Q_{(\text{tot})} \rangle} = 1$

 $D \sim M^{-1}$

$\Delta\eta$ Dependence @ STAR

Non-monotonic dependence on Δy ?

Effect of Global Charge Conservation (Finite Volume Effect)

Sakaida, Asakawa, MK, PRC, 2014

Global Charge Conservation

Conserved charges in the total system do no fluctuate!

Global Charge Conservation

Conserved charges in the total system do no fluctuate!

Jeon, Koch, PRL2000; Bleicher, Jeon, Koch (2000)

Diffusion in Finite Volume

Solve the diffusion master equation in finite volume

Diffusion in Finite Volume

Solve the diffusion master equation in finite volume

Physical Interpretation

 $d(\tau)$: Averaged Diffusion Distance $D(\tau)$: Diffusion Coefficient η_{tot} : Total Length of Matter

Effects of the GCC appear only near the boundaries.

Comparison with ALICE Result

 $d(\tau)$

 $\eta_{\rm tot}$

T

- No GCC effect in ALICE experiments!
- Same conclusion for higher order cumulants

Summary

Plenty of information in $\Delta\eta$ dependences of various cumulants

 $\langle N_Q^2 \rangle_c, \ \langle N_Q^3 \rangle_c, \ \langle N_Q^4 \rangle_c, \ \langle N_B^2 \rangle_c, \ \langle N_B^3 \rangle_c, \ \langle N_B^4 \rangle_c, \ \langle N_S^2 \rangle_c, \ \cdots$

and those of non-conserved charges, mixed cumulants...

With ∆η dep. we can explore
> primordial thermodynamics
> non-thermal and transport property
> effect of thermal blurring

Future Studies

D Experimental side:

- rapidity window dependences
- baryon number cumulants
- BES for SPS- to LHC-energies

□ Theoretical side:

- > rapidity window dependences in dynamical models
- description of non-equilibrium non-Gaussianity
- accurate measurements on the lattice

■Both sides:

Compare theory and experiment carefully

Let's accelerate our understanding on fluctuations!