For the J-PARC Heavy-Ion Collisions

Masakiyo Kitazawa

Remarks!

- No solid results in this talk. Just delusional ideas.
- I am waiting for your opinions / discussions (throughout this meeting)!
- I welcome your criticisms.

What Physics are Suitable for J-PARC HIC?

Characteristics of J-PARC HIC

- > High density
 - QCD phase transitions
 - Neutron stars / NS-NS merger

> High luminosity

- Various event selections
 - Rare probes
 - Event-by-event analyses

Take advantages of these properties!

 $\sqrt{s_{_{\rm NN}}} = 1 \sim 6 {
m ~GeV}$

What Physics are Suitable for J-PARC HIC?

Characteristics of J-PARC HIC

High Density

Special thanks to C. Matsumura

Search of dense medium / QCD phase transitions

How Dense? : Freezeout

Chemical Freezeout

Randrup, Cleymans, 2006

The most dense system at CFO with $\rho \sim 0.7 \rho_0$ is realized at

$$\int \sqrt{s_{_{\rm NN}}} \simeq 4 \,\,{
m GeV}$$

 $E_{
m lab.} \simeq 30 \,\,{
m GeV}$

How Dense? : Highest

 $ho > 10
ho_0$ would be realized!

On the other hand, JAM can reproduce dv_1/dy and p_T spectra for J-PARC energy.

Nara-san's talk, yesterday

Why?

I.C. Arsene+, PRC 75, 034902 (2007)

What Physics are Suitable for J-PARC HIC?

Characteristics of J-PARC HIC

- > High density
 - QCD phase transitions
 - Neutron stars / NS-NS merger

High luminosity

- Various event selections
- Event-by-event analyses
 - Rare Probes

 $s_{\rm NN} = 1 \sim 6 {
m GeV}$

Large E-v-E Fluctuation?

Baryon stopping seems to have strong e-v-e fluctuation.

Origin of e-v-e fluctuation 1: Stopping \rightarrow Penetrate Transition

Structural Transition stopping → penetrate

Origin of e-v-e fluctuation 2: **Softening** of EoS

E-v-E Fluctuation of Density How to **Observe** Them?

We need observables sensitive to baryon stopping

 p_L

Ex.
$$\langle p_L^2
angle$$

E-v-E Fluctuation of Density: How to **Use** Them?

BDS (Baryon Density Scan)

average transverse energy

BDS (Baryon Density Scan) average transverse energy Hadronic Phase $\langle dE_{T}/d\eta \rangle / \langle dN_{ch}/d\eta \rangle$ (GeV) PHENIX PHENIX scale error **ALICE** STAR **NA49** E_T WA98 E802 + FOPI P Baryon-rich events 0.5 B $\langle B \rangle$ 0 10³ 10² 10 1 s_{NN}

Softening of EoS by 1st transition

O Quark-Gluon O O Plasma

Compact Stars

B

 μ_{B}

Event-by-event Fluctuations: Compared with high energy

STAR Collaboration, 2015

Thermal fluctuations are concerned @ high \sqrt{s} .

Measurement of thermal fluc. justified only under **Bjorken picture**

Asakawa, MK, arXiv:1512.05038

Pictorial view for low √s

detector

Other Ideas

 \succ Event-by-event dv₁/dy, raial flow, ...

➤ Correlation b/w baryon stopping and
 ➤ v₁, strangeness, dE_T/dy, ...

What Physics are Suitable for J-PARC HIC?

Characteristics of J-PARC HIC

- > High density
 - QCD phase transitions
 - Neutron stars / NS-NS merger

➢ High luminosity

- Various event selections
 - Event-by-event analyses

Rare Probes

 $\sqrt{s_{_{\rm NN}}} = 1 \sim 6 {
m ~GeV}$

Rare Probes

- Exotic hadrons
- Strangelet
- Strangeness
- Anti-protons

Stochastic Description for anti-p and s transports?

And, of course, Other Many Important Topics

Liquid-Gas Phase Transition of Nuclear Medium

Any possibility to perform a similar analysis in HIC...?

Summary

Characteristics of J-PARC HIC High density / High luminosity

We should be able to have more ideas to take these advantages of low-energy collisions! event selections / e-b-e analyses / rare probes

Important to accelerate J-PARC/FAIR/NICA programs!

 $\sqrt{s_{_{\rm NN}}}=1\sim 6~{\rm GeV}$