Understanding Experimentally-Observed Fluctuations

Masakiyo Kitazawa (Osaka U.)

MK, Asakawa, Ono, Phys. Lett. B728, 386-392 (2014)
Sakaida, Asakawa, MK, PRC90, 064911 (2014)
MK, Nucl. Phys. A942, 65 (2015)
MK, Phys. Rev. C93, 044911 (2016)
Ohnishi, MK, Asakawa, to appear soon.

CPOD2016, Wroclaw, Poland, 2/Jun./2016

J-PARC Heavy-Ion Program

fixed target HI experiment
 E_{lab}<20GeV/A (Vs_{NN}<6.2 GeV)
 Exploit Main Ring for p accel.
 High luminosity beam

Earliest possible schedule

- Jun 2016 White paper completed
- Jun 2016 Submission of LOI
- 2016-2019 Discussions in J-PARC, KEK, Japanese Nuclear Physics Committee, Science Council of Japan
- 2020 Funding request to MEXT
- 2021 Approval of funding
- 2021-2022 Construction of HI Injector
- 2021-2023 Construction of HI injection system in RCS
- 2023-2024 Construction of HI spectrometer
- 2025 First collision

J-PARC Heavy-Ion Program

Fluctuations

Thermal Fluctuations

Observables are fluctuating even in an equilibrated medium.

Thermal Fluctuations

Observables are fluctuating even in an equilibrated medium.

Event-by-Event Analysis @ HIC

Fluctuations can be measured by e-by-e analysis in experiments.

Event-by-Event Analysis @ HIC

Fluctuations can be measured by e-by-e analysis in experiments.

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

PPNP, in press,

arXiv:1512.05038v2

Review

Fluctuations of conserved charges in relativistic heavy ion collisions: An introduction

Masayuki Asakawa, Masakiyo Kitazawa*

Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

- What are cumulants?
- Why Sσ/(Skellam) and κσ²?
 what are the "baselines"?
- Why conserved charges?
- What are event-by-event fluctuations?
 - their relation with theoretical analyses?

Two Problems

in connecting experiments with theories

1. Thermal blurring and diffusion of fluctuations

MK, Asakawa, Ono, PL**B328**, 386 (2014); Sakaida, Asakawa, MK, PR**C90**, 064911 (2014); MK, NP**A942**, 65 (2015); Ohnishi, MK, Asakawa, to appear soon.

2. Efficiency correction of cumulants

MK, PR**C93**, 044911 (2016).

Fluctuations: Theory vs Experiment

discrepancy in phase spaces

Asakawa, Heinz, Muller, 2000; Jeon, Koch, 2000; Shuryak, Stephanov, 2001

Connecting Phase Spaces

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000

Under Bjorken picture,

of individual particles

Thermal Blurring

 $\mathbf{A}P(N)$

 $\mathbf{A}P(N)$

1

 Δy

Detector

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000

Distributions in ΔY and Δy are different due to "thermal blurring".

N

N

distribution in rapidity space

• flat freezeout surface

Thermal distribution in y space

Y. Ohnishi+ to appear soon

Rapidity distribution can be well approximated by Gaussian.

- blast wave
- flat freezeout surface

Initial Condition

$$\begin{split} &\langle \bar{Q}^2 \rangle_c, \ \langle \bar{Q}^3 \rangle_c, \ \langle \bar{Q}^4 \rangle_c \\ &\langle \bar{Q}^2 Q_{(\text{tot})} \rangle_c \\ &\langle Q^2_{(\text{tot})} \rangle_c, \langle Q_{(\text{net})} Q_{(\text{tot})} \rangle_c \end{split}$$
We need 6 parameters to specify the initial fluctuation

$\Delta\eta$ Dependence

Initial condition (before blurring) no e-v-e fluctuations

Cumulants after blurring can take nonzero values

With $\Delta y=1$, the effect is **not** well suppressed

Centrality Dependence

Is the centrality dependence understood solely by the thermal blurring at kinetic f.o.?

Centrality Dependence @ ALICE

Assumptions:

- Centrality independent cumulant at kinetic f.o.
- Thermal blurring at kinetic f.o.

Centrality dep. of fluctuation can be described by a simple thermal blurring picture.

Diffusion Before Kinetic F.O.

Diffusion Before Kinetic F.O.

Characteristic $\Delta \eta$ dependences!

$\Delta\eta$ Dependence @ STAR

X. Luo, CPOD2014

Non-monotonic dependence on Δy ?

Very Low Energy Collisions

Large contribution of global charge conservationViolation of Bjorken scaling

Fluctuations at low Vs should be interpreted carefully!

Summary of 1st Part

\Box Effect of thermal blurring provoked by rapidity conversion is not negligible with $\Delta y=1.0$.

- \square Higher order cumulants can behave characteristically as functions of Δy .
- □ This behavior can be used to constrain
 - the magnitude of thermal blurring, and
 - fluctuations in the early stage.
- □ The study of centrality dependence is also interesting.

Two Problems

in connecting experiments with theories

1. Thermal blurring and diffusion of fluctuations

MK, Asakawa, Ono, PL**B328**, 386 (2014); Sakaida, Asakawa, MK, PR**C90**, 064911 (2014); MK, NP**A942**, 65 (2015); Ohnishi, MK, Asakawa, to appear soon.

2. Efficiency correction of cumulants

MK, PR**C93**, 044911 (2016).

Efficiency

Efficiency correction is essential for all observables in experiments.

The Binomial Model

MK, Asakawa, 2012; 2012 Bzdak, Koch, 2012

When efficiency for individual particles are **independent**

Caveat: Effects of nonvanishing correlations: Holtzman+ 2016

$$\langle n^m \rangle_{\rm c} \longleftrightarrow \langle N^m \rangle_{\rm c}$$

$$\langle N^m \rangle_{\mathbf{c}} \stackrel{\frown}{\blacktriangleright} \langle n^m \rangle_{\mathbf{c}}$$

$$\langle n^2 \rangle_{\mathbf{c}} = \xi_1^2 \langle N^2 \rangle_{\mathbf{c}} + \xi_2 \langle N \rangle,$$

$$\langle n^2 \rangle_{\mathbf{c}} = \xi_1^2 \langle N^2 \rangle_{\mathbf{c}} + \xi_2 \langle N^2 \rangle,$$

$$\langle n^3 \rangle_{\mathbf{c}} = \xi_1^3 \langle N^3 \rangle_{\mathbf{c}} + 3\xi_1 \xi_2 \langle N^2 \rangle_{\mathbf{c}} + \xi_3 \langle N \rangle,$$

$$\langle n^4 \rangle_{\mathbf{c}} = \xi_1^4 \langle N^4 \rangle_{\mathbf{c}} + 6\xi_1^2 \xi_2 \langle N^3 \rangle_{\mathbf{c}} + (3\xi_2^2 + 4\xi_1 \xi_3) \langle N^2 \rangle_{\mathbf{c}} + \xi_4 \langle N \rangle,$$

$$\langle n^{m} \rangle_{\mathbf{c}} \checkmark \langle N^{m} \rangle_{\mathbf{c}} \rangle \langle N^{m} \rangle_{\mathbf{c}} \rangle \langle N^{2} \rangle_{\mathbf{c}} = \xi_{1}^{-2} \langle n^{2} \rangle_{\mathbf{c}} - \xi_{2} \xi_{1}^{-3} \langle n \rangle, \\ \langle N^{2} \rangle_{\mathbf{c}} = \xi_{1}^{-2} \langle n^{2} \rangle_{\mathbf{c}} - \xi_{2} \xi_{1}^{-3} \langle n \rangle, \\ \langle N^{3} \rangle_{\mathbf{c}} = \xi_{1}^{-3} \langle n^{3} \rangle_{\mathbf{c}} - 3\xi_{2} \xi_{1}^{-4} \langle n^{2} \rangle_{\mathbf{c}} + (3\xi_{2}^{2}\xi_{1}^{-5} - \xi_{3}\xi_{1}^{-4}) \langle n \rangle, \\ \langle N^{4} \rangle_{\mathbf{c}} = \xi_{1}^{-4} \langle n^{4} \rangle_{\mathbf{c}} - 6\xi_{2} \xi_{1}^{-5} \langle n^{3} \rangle_{\mathbf{c}} + (15\xi_{2}^{2}\xi_{1}^{-6} - 4\xi_{3}\xi_{1}^{-5}) \langle n^{2} \rangle_{\mathbf{c}} \\ - (15\xi_{2}^{3}\xi_{1}^{-7} - 10\xi_{2}\xi_{3}\xi_{1}^{-6} + \xi_{4}\xi_{1}^{-5}) \langle n \rangle,$$

Formulas using factorial moments: Bzdak, Koch, 2012

Summing up Multiple Variables

□ Net-particle number

 $N_{p,\text{net}} = N_p - N_{\bar{p}}$

MK, Asakawa, 2012; Bzdak, Koch, 2012

□ Multi-particle species

- net-electric charge
- p_T dependent efficiency

Bzdak, Koch, 2015; Luo, 2014

average (common) efficiency for p and p̄ cf, Nonaka+, 1604.06212

STAR, net proton $p_T < 0.8 \text{GeV}$ TPC $\epsilon \sim 80\%$ $p_T > 0.8 \text{GeV}$ $p_T > 0.8 \text{GeV}$ TPC+TOF $\epsilon \sim 50\%$

Efficiency Correction with Factorial Moments

Bzdak, Koch, 2015; Luo, 2014

Simple relations b/w **factorial** moments

$$\langle n_i^m \rangle_{\rm f} = \epsilon_i^m \langle N_i^m \rangle_{\rm f}, \langle n_i^m n_j^l \rangle_{\rm f} = \epsilon_i^m \epsilon_j^l \langle N_i^m N_j^l \rangle_{\rm f}, \dots$$

 n_i : observed particle # N_i : original particle # ε_i : efficiency

① Calculate all factorial moments of n_i

② Translate it into original moments N_i

3 Construct the cumulant N_i

– Problem

Number of f-moments for $\binom{M+n}{n}$ -1 \rightarrow M^n Require huge numerical power

New Formulas for Efficiency Correction

$$\begin{split} \langle Q \rangle_{\rm c} &= \langle \langle q_{(1)} \rangle \rangle_{\rm c}, \\ \langle Q^2 \rangle_{\rm c} &= \langle \langle q_{(1)}^2 \rangle \rangle_{\rm c} - \langle \langle q_{(2)} \rangle \rangle_{\rm c}, \\ \langle Q^3 \rangle_{\rm c} &= \langle \langle q_{(1)}^3 \rangle \rangle_{\rm c} - 3 \langle \langle q_{(2)} q_{(1)} \rangle \rangle_{\rm c} + \langle \langle 3 q_{(2,1|2)} - q_{(3)} \rangle \rangle_{\rm c}, \\ \langle Q^4 \rangle_{\rm c} &= \langle \langle q_{(1)}^4 \rangle \rangle_{\rm c} - 6 \langle \langle q_{(2)} q_{(1)}^2 \rangle \rangle_{\rm c} + 12 \langle \langle q_{(2,1|2)} q_{(1)} \rangle \rangle_{\rm c} \\ &+ 6 \langle \langle q_{(1,1|2)} q_{(2)} \rangle \rangle_{\rm c} - 4 \langle \langle q_{(3)} q_{(1)} \rangle \rangle_{\rm c} - 3 \langle \langle q_{(2)}^2 \rangle \rangle_{\rm c} \\ &+ \langle \langle -18 q_{(2,1,1|2,2)} + 6 q_{(2,1,1|3)} + 4 q_{(3,1|2)} \\ &+ 3 q_{(2,2|2)} - q_{(4)} \rangle \rangle_{\rm c}, \end{split}$$

$$Q = \sum_{i=1}^{M} a_i N_i$$

linear comk original par $q_{(\dots)} = \sum_{i=1}^{M} c_{(\dots)}^{(i)} i$ linear comk observed p MK, PRC,2016 [1602.01234]

Numerical CostFor *n*th order and *M* variables
$$\square$$
 F-moment method $\bigcirc \mathcal{O}(M^n)$ \square Our method $\sim \mathcal{O}(M)$

Derivation

(1) Cumulant expansion

$$\ln\langle e^N\rangle = \sum_{m=1}^{\infty} \frac{1}{m!} \langle N^m\rangle_{\rm c}$$

(2) "Linearity" of binomial distribution $\langle n^m \rangle_{c,\text{binomial}} = \xi_n(p)N \quad \text{for} \quad B_{p,N}(n)$ $\tilde{K}(\theta) = \ln \langle e^{k_{\text{binomial}}(\theta)N} \rangle = \sum_m \frac{1}{m!} \langle (k_{\text{binomial}}(\theta)N)^m \rangle_c$

(3) Treating multi-variable dist. func.

Proton v.s. Baryon Number Cumulants

MK, Asakawa, 2012; 2012

□ The difference would be large.

\square Reconstruction of $\langle N_B^n \rangle_c$ is possible using the binomial model.

□ The use of binomial model is justified by "isospin randomization."

Summary of 2nd Part

- Efficiency correction of fluctuations is a nontrivial subject. The binomial model is a solution.
- The new formulas will drastically reduce the numerical cost required for the efficiency corrections.
- Efficiency correction with realistic p_T-dependent efficiency can be carried out with the new formulas.

Summary

Critical Point

Still many many things to do for the search of the QCD CP using fluctuations.

A lot of careful, steady and honest researches are needed.

But, after hard efforts, the gift from God will be delivered!

A Coin Game

Bet 50 PLN You get head coins of

Same expectation value.

A Coin Game

Bet 50 PLN You get head coins of

Same expectation value, but different fluctuation

Baryons in Hadronic Phase

time

Slot Machine Analogy

Extreme Examples

Time Evolution of Fluctuations

Time Evolution of Fluctuations

Particle # in $\Delta\eta$

- continues to change until kinetic freezeout due to diffusion.
- ② changes due to a conversion y → η at kinetic freezeout
 - "Thermal Blurring"

Future Studies

D Experimental side:

- rapidity window dependences
- baryon number cumulants
- BES for SPS- to LHC-energies

□ Theoretical side:

- rapidity window dependences in dynamical models
- description of non-equilibrium non-Gaussianity
- accurate measurements on the lattice

DBoth sides:

- Compare theory and experiment carefully
- Let's accelerate our understanding on fluctuations!

