Energy-momentum tensor and thermodynamics (of SU(3) gauge theory) from gradient flow

MASAKIYO KITAZAWA

FOR FLOWQCD COLLABORATION / WHOT-QCD COLLABORATION

Japanese-German Seminar 2016, Niigata, 26-28 Sep, 2016

$T = \frac{1}{\mu\nu} Energy-momentum tensor (EMT)$

One of the most fundamental quantities in physics

Contain various thermal properties 1-point expectation value $\langle T_{00} \rangle = \varepsilon \quad \langle T_{11} \rangle = p$ 2-point correlator (fluctuations) $\frac{\langle (\delta \bar{T}_{00})^2 \rangle}{VT^2} = c_V \quad \frac{\langle (\delta \bar{T}_{01})^2 \rangle}{VT^2} = \frac{\varepsilon + p}{T^4}$

 \square Non-perturbative determination of Z₆, Z₃, Z₁

- shifted boundary condition
- accurate nonperturbative Z₆ available

Giusti, Meyer, 2011-13 Giusti, Pepe, 2014-

Gradient Flow

Gradient Flow

$$\partial_t A_\mu = D_\nu G_{\mu\nu} = \partial_\nu \partial_\nu A_\mu + \cdots$$

Diffusion-like equation
 smearing radius $\sqrt{8t}$

Lüscher(2009–)

Narayanan, Neuberger(2006)

Gradient Flow

Gradient Flow

$$\partial_t A_\mu = D_\nu G_{\mu\nu} = \partial_\nu \partial_\nu A_\mu + \cdots$$

Diffusion-like equation
 smearing radius $\sqrt{8t}$

Lüscher(2009–)

Narayanan, Neuberger(2006)

□ Small Flow-time expansion

$$\tilde{\mathcal{O}}(t,x) \longrightarrow \sum_{i} c_i(t) \mathcal{O}_i^R(x)$$

Lüscher, Weisz (2011)

EMT from Gradient Flow

Suzuki, 2013

$$U_{\mu\nu}(t,x) = G_{\mu\rho}(t,x)G_{\nu\rho}(t,x) - \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x)$$
$$E(t,x) = \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x)$$

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T^R_{\mu\nu}(x) - \frac{1}{4} \delta_{\mu\nu} T^R_{\rho\rho}(x) \right] + \mathcal{O}(t)$$
$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T^R_{\rho\rho}(x) + \mathcal{O}(t)$$

 $\alpha_U, \ \alpha_E$: perturbative formula by Suzuki, 2013

Correctly Renormalized EMT

$$T^R_{\mu\nu}(x) = \lim_{t \to 0} \left[\frac{1}{\alpha_U(t)} U_{\mu\nu}(t,x) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t,x)_{\text{subt.}} \right] + O(t)$$

Thermodynamics

FlowQCD, PRD90 (2014)

$$\varepsilon = \langle T_{00} \rangle \quad p = \langle T_{11} \rangle$$

- SU(3) Wilson gauge
- ➢ 32³xN_t
- ➢ N_t=6,8,10
- ➤ ~300 confs.
- continuum extrapolated

Good agreement with integral method result

Statistical error well suppressed

Applications

1. Thermodynamics

FlowQCD (2014); in preparation

2. Latent heat at 1st order phase transition

Shirogane+, PRD (2016); WHOT-QCD, in preparation

3. Correlation functions

FlowQCD, in preparation

Application to full QCD: WHOT-QCD, 1609.01471 (Next talk by Kanaya)

New Result on Thermodynamics

FlowQCD, in preparation

Numerical Simulation

- SU(3) YM theory
 Wilson gauge action
 Parameters:
 - N_t = 12, 16, 20-24
 - aspect ratio 5.3<N_s/N_t<8
 - 1500~2000 configurations

Scale setting from gradient flow $\rightarrow aT_c$ and $a\Lambda_{\rm MS}$

FlowQCD 1503.06516

 $\begin{cases} \sqrt{8t} < a &: \text{strong discretization effect} \\ \sqrt{8t} > 1/(2T) : \text{oversmeared} \end{cases}$

 $a < \sqrt{8t} < 1/(2T)$: Linear t dependence

Continuum extrapolation

 $\langle T_{\mu\nu}(t) \rangle_{\text{cont}} = \langle T_{\mu\nu}(t) \rangle_{\text{lat}} + C(t)a^2$

Note: FlowQCD, 2014: continuum extrapolation only WHOT-QCD, 2016: small t limit only

Continuum extrapolation $\langle T_{\mu\nu}(t) \rangle_{\text{cont}} = \langle T_{\mu\nu}(t) \rangle_{\text{lat}} + C(t)a^2$

Small t extrapolation

$$\langle T_{\mu\nu} \rangle = \langle T_{\mu\nu}(t) \rangle + C'(t)t$$

Note: FlowQCD, 2014: continuum extrapolation only WHOT-QCD, 2016: small t limit only

Black band: continuum extrapolated

 $0.005 < tT^{2} < 0.015$ $\square \text{ range of t for fitting:} \quad 0.01 < tT^{2} < 0.015$ $0.01 < tT^{2} < 0.02$

T Dependence

Error includes

- statistical error
- \succ choice of t range for t \rightarrow 0 limit
- \succ uncertainty in a $\Lambda_{\rm MS}$

total error <1.5% for T>1.1T_c

 Excellent agreement with integral method
 High accuracy only with ~2000 confs.

Latent Heat at 1st order transition

WHOT-QCD Collaboration Shirogane+, PRD (2016); in preparation (see, poster by Shirogane)

1st Order Transition

SU(3) gauge theory has a 1st order phase transition

➤ Latent heat Δε A universal constant

 \blacktriangleright Pressure gap Δ p=0

□ $\Delta \epsilon$: Universal dimension-full quantity □ Δp : check of the measurement □ technics for 1st tr. → future study for μ >0??

Phase Coexistence at T_c

Shirogane+, PRD (2016)

histogram in plaquette - Polyakov loop plane at T=T_c

48³x8
multi-point reweighting

Classification of configuration into low/high phases is possible

Result in Differential Method

Shirogane+, PRD (2016)

Nt=4, 6, 8, 12
 nonperturbatively c

- nonperturbatively determined Karsch coefficients
- continuum extrapolation
- no pressure gap within statistics

Gradient Flow Method

- Latent heats in two methods agree with each other.
- □ Statistical error is drastically reduced by GF method.
- \square Nonzero pressure gap exists, but it becomes smaller for larger N_t.

Correlation Functions

FlowQCD, in preparation

Zero-momentum correlator

$$\bar{T}_{\mu\nu}(\tau) = \int d^3x \left(T_{\mu\nu}(x,\tau) - \langle T_{\mu\nu} \rangle \right)$$

Conservation Law

Linear Response Relations

$$c_V = \frac{d}{dT} \langle E \rangle = \frac{\langle \bar{T}_{00}^2 \rangle}{VT^2}$$

Specific heat

$$s = \frac{d}{dT}P = \frac{\langle \bar{T}_{11}\bar{T}_{00}\rangle}{VT^2}$$

 $\varepsilon + p = \frac{\langle T_{01}^2 \rangle}{VT}$

entropy density

Giusti, Meyer, 2011

enthalpy density

Numerical Simulation

- Wilson gauge action
- clover operator
- aspect ratio $N_s/N_t=4$
- 200,000 configurations

β	T=1.67T _c	T=2.22T _c
48 ³ x12	6.719	6.943
64 ³ x16	6.941	7.170
96 ³ x24	7.265	7.500

Numerical analysis: Bluegene/Q @KEK

Energy-energy correlator

Nt=24 T=2.22Tc

- \Box Existence of a plateau \rightarrow energy conservation
- \Box Larger flow time $\leftarrow \rightarrow$ smaller error
- \square Oversmearing for $\tau < 2\sqrt{8t}$

Correlation Functions

The value of constant is consistent with (e+p)/T⁴.
 Oversmearing effect is much stroner.

Constraint from Rot. Symm.

$$\langle \bar{T}_{ij}\bar{T}_{kl} \rangle = A\delta_{ij}\delta_{kl} + B(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})$$

$$i, j, k, l = 1, 2, 3$$

$$\langle \bar{T}_{11}\bar{T}_{11} \rangle - \langle \bar{T}_{11}\bar{T}_{22} \rangle - 2\langle \bar{T}_{12}\bar{T}_{12} \rangle = 0$$

$$\sum_{i=2,27c}^{20} \sum_{i=1,27c}^{10} \sum_{j=24}^{10} \sum_{j=24}^{$$

--

0.5

Summary

- We measured EMT expectation value and correlation function of SU(3) gauge theory by using the operator constructed from gradient flow.
- Expectation values of EMT agrees well with the previous results on thermodynamics.
- Behaviors of the correlation functions are consistent with the conservation law and linear response relations.

 \Box Our method can be applied to full QCD \rightarrow Next talk

Shear and Bulk Channels

No plateau behavior in non-conserved channels