Transport of Fluctuations

Masakiyo Kitazawa (Osaka U.)

INT Workshop 16-3 Exploring the QCD Phase Diagram through Energy Scan INT, Seattle, 6/Oct./2016

J-PARC Heavy-Ion Program (J-PARC-HI)

J-PARC-HI Program

Recent Activities

June 2016White Paper uploadedJuly 2016Submission of LOIAug. 2016International WorkshopSep. 2016Symposium @ JPS meeting

Future Plan

- 2020 Funding request to MEXT
- 2021 Earliest approval of funding
- 2021-2022 Construction of HI Injector
- 2021-2023 Construction of HI injection system in RCS
- 2023-2024 Construction of HI spectrometer
- 2025 First collision

Fluctuations

Contents

1. Transport of fluctuations

MK, Asakawa, Ono, PLB (2014); MK, NPA (2015)

- 2. Thermal blurring by rapidity conversion Ohnishi, MK, Asakawa, PRC (2016)
- 3. Transport near QCD critical point

Sakaida, Asakawa, Fujii, MK, in prep.

Review: Asakawa, MK, PPNP (2016)

gular Poisson gnal

Off-equilibrium effects make the separation of two contributions impossible. (diffusion, experimental cuts, efficiency, ...)

Fragile Higher Orders

Fragile Higher Orders

Higher orders are more seriously affected by efficiency loss.

Transport of Fluctuations

How to Describe Transport of Fluctuations?

A candidate

Non-Interacting Brownian Particle System

Non-Interacting Brownian Particle System

Rapidity Window Dependence

Cumulants are dependent on rapidity window.

Baryons in Hadronic Phase

time

Rapidity Window Dependence

MK+, PLB(2014)

- \Box Cumulants at finite Δy is different from initial value.
- **4**th cumulant can have a sign change.
- **4**th cumulant can have non-monotonic behavior.
- Poisson / non-Poisson : Not separable!

$\Delta\eta$ Dependence: 4th order

MK, NPA(2015)

Characteristic $\Delta \eta$ dependences!

4th order : w/ Critical Fluctuation

$\Delta\eta$ Dependence @ STAR

MK+ (2014) MK (2015)

□ Approach initial value as $\Delta y \rightarrow$ large Ling, Stephanov (2016) □ No power law ~(Δy)⁴ behavior at small Δy

finite volume effect: Sakaida+, PRC064911(2014)

Non-Interacting Brownian Particle System

Themal Blurring

Ohnishi, MK, Asakawa, PRC, in press

Fluctuations: Theory vs Experiment

discrepancy in phase spaces

Asakawa, Heinz, Muller, 2000; Jeon, Koch, 2000; Shuryak, Stephanov, 2001

Connecting Phase Spaces

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000

Under Bjorken picture,

of individual particles

Thermal distribution in y space

distribution in rapidity space

• flat freezeout surface

Thermal distribution in y space

Rapidity distribution can be well approximated by Gaussian.

- blast wave
- flat freezeout surface

$\Delta\eta$ Dependence

Initial condition (before blurring) no e-v-e fluctuations

Cumulants after blurring can take nonzero values

With $\Delta y=1$, the effect is **not** well suppressed

$$w = \frac{m}{T}$$

$$\int \bullet \text{ pions } w \simeq 1.5$$

$$\bullet \text{ nucleons } w \simeq 9$$

Diffusion + Thermal Blurring

Thermal blurring can be regarded as a part of diffusion

Total diffusion:
$$P(x - x'') = \int dx' P_1(x - x') P_2(x' - x'')$$

Centrality Dependence

Is the centrality dependence understood solely by the thermal blurring at kinetic f.o.?

Centrality Dependence @ ALICE

Assumptions:

- Centrality independent cumulant at kinetic f.o.
- Thermal blurring at kinetic f.o.

Centrality dep. of fluctuation can be described by a simple thermal blurring picture.

Time Evolution of Fluctuation near QCD Critical Point

Sakaida, Asakawa, Fujii, MK, in preparation

Dynamical Evolution of Critical Fluctuations

Kapusta, Torres-Rincon (2012)

Critical Mode = Diffusive Mode

Fujii (2004) Fujii, Ohtani (2005) Son, Stephanov (2005)

$$\partial_t n = D(t) \partial_x^2 n + \partial_x \xi$$

 $\langle \xi(x_1, t_1) \xi(x_2, t_2) \rangle = \chi_2(t) \delta^{(2)}(1-2)$
 $D(t), \ \chi_2(t)$:parameters characterizing criticality

Parametrization of $D \& \chi_2$

D model-H (3d-Ising) **D** $\chi \sim \xi^{1.96}, D \sim \xi^{-1.044}$

The mapping to (T,µ) / time evolution $\begin{array}{c}
h \\
 & 1D Bjorken expansion \\
 & r \\
 & t
\end{array}$

 $\Box \chi^{\eta}_{\text{QGP}} / \chi^{\eta}_{\text{hadron}} = 0.5$ $\Box \text{ QCD CP at T=160MeV}$ $\Box \text{ kinetic f.o. at T=100MeV}$

Berdnikov, Rajagopal (2000) Stephanov (2011) Mukherjee, Venugopalan, Yin (2015)

Time Evolution 1: No CP

2: Critical Point

□ Non-monotonic Δy dependence manifests itself. Robust experimental evidence of the existence of a peak in $\chi(T)$

3: Critical Point (Narrower Critical Region)

non-monotonic behavior

Peak in

 χ_2 ('_

Net-Electric Charge

No non-monotonic dependence in net-electric charge fluc.How about net-proton number fluctuation??

Fragile Higher Orders

• Interpret experimental results carefully.

Plenty of information in $\Delta\eta$ dependences

- Cumulants at chemical freezeout
- Diffusion coefficients / thermal blurring
- Signal of QCD-CP as a non-monotonic behavior in 2nd order

Future

- Δy dependence of $\langle \delta N_p^2 \rangle$
- Evolution of higher orders near CP with diffusive nature

Higher Order Cumulants??

Relaxation of cumulants is slower for higher order.

- Longer survival?Slower enhancement?
- \Box Non-monotonic Δy dependence can appear only by diffusion \rightarrow It's not the experimental evidence of peak in (higher order) susceptibility.
- Non-linear equation has to be solved.