Non-Gaussian Fluctuations in Relativistic Heavy-Ion Collisions

Masakiyo Kitazawa (Osaka U.)

Asakawa, MK, Prog. Part. Nucl. Phys. 90, 299 (2016) Sakaida, Asakawa, Fujii, MK, to appear in PRC MK, Nucl. Phys. A942, 65 (2015) Sakaida, Asakawa, MK, PRC90, 064911 (2014) MK, Asakawa, Ono, Phys. Lett. B728, 386-392 (2014)

Nagoya Seminar, Nagoya U., 31/May/2017

Beam-Energy Scan

Beam-Energy Scan

Active experimental researches/plans for the beam-energy scan

Fluctuations

Thermal Fluctuations

Observables are fluctuating even in an equilibrated medium.

Thermal Fluctuations

Observables are fluctuating even in an equilibrated medium.

The noise is the signal.

R. Landauer 1998

Bet 250 JPY You get head coins of

Same expectation value.

Bet 250 JPY You get head coins of

Same expectation valu But, different fluctuation

Event-by-Event Fluctuations

Review: Asakawa, MK, PPNP 90 (2016)

Fluctuations can be measured by e-by-e analysis in experiments.

Event-by-Event Analysis @ HIC

Fluctuations can be measured by e-by-e analysis in experiments.

lose..

Non-zero non-Gaussian cumulants have been established!

Have we measured critical fluctuations?

Fluctuations and Elemental Charge

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000 Ejiri, Karsch, Redlich, 2005

$$\langle \delta N_q^n \rangle_c = \langle N_q \rangle$$
$$\Longrightarrow \langle \delta N_B^n \rangle_c = \frac{1}{3^{n-1}} \langle N_B \rangle$$

$$3N_B = N_q$$

$$\langle \delta N_B^n \rangle_c = \langle N_B \rangle$$

Free Boltzmann \rightarrow Poisson $\langle \delta N^n \rangle_c = \langle N \rangle$

Fluctuations and Elemental Charge

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000 Ejiri, Karsch, Redlich, 2005

$$\langle \delta N_q^n \rangle_c = \langle N_q \rangle$$

$$\Rightarrow \langle \delta N_B^n \rangle_c = \frac{1}{3^{n-1}} \langle N_B \rangle$$

$$3N_B = N_q$$

Fluctuations and Elemental Charge

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000 Ejiri, Karsch, Redlich, 2005

$$3N_B = N_q$$

Shot Noise

Total charge Q:

$$Q = e \langle N \rangle$$

 $\langle \delta Q^2 \rangle = e^2 \langle \delta N^2 \rangle = e^2 \langle N \rangle = eQ$
 (δQ^2)
 (δQ^2)

Shot Noise

$$S_{
m shot} \sim \langle \delta I^2
angle$$

 $S_{
m shot} = 2e^* \langle I
angle$
charge of quasi-particles

Higher order cumulants:

3rd order: ex. Beenakker+, PRL90,176802(2003) up to 5th order: Gustavsson+, Surf.Sci.Rep.**64**,191(2009)

Fluctuation and QCD Critical Point

Stephanov, 2009

Impact of Negative Third Cumulants

• {•No dependence on any specific models. •Just the sign! No normalization (such as by N_{ch}). In "haiku", Japanese short-style poem, a poet wrote...

Even on one blade of grass the cool wind lives

Issa Kobayashi 1814

ー本の草も涼風宿りけり 小林一茶

Physicists can feel hot early Universe 13 800 000 000 years ago in tiny fluctuations of cosmic microwave

Physicists can feel the existence of microscopic atoms behind random fluctuations of Brownian pollens

A. Einstein 1905

Zwicky 1933

Virial theorem 2K = -U

Physicists can feel dark matter behind fluctuations of galaxies billion light years away

Feel hot quark wind behind fluctuations in relativistic heavy ion collisions

2010-

Clear suppression! ex. Asakawa, Ejiri, MK, 2009

Rapidity Window Dependences of Fluctuations

Remarks on Critical Fluctuation

Experiments cannot observe critical fluctuation in equilibrium directly.

μ

Time Evolution of Fluctuations

$\Delta\eta$ Dependence @ ALICE

ALICE PRL 2013

$\Delta\eta$ Dependence @ ALICE

$$D \sim \frac{\langle \delta N_{\rm Q} \rangle^2}{\Delta \eta}$$

has to be a constant in equil. medium

Fluctuation of N_Q at ALICE is not the equilibrated one.

achieved only through diffusion.

the slower diffusion

 $<\delta N_{0}^{4} > @ LHC ?$

 $<\delta N_{0}^{4} > @ LHC ?$

Stochastic Diffusion Equation (SDE)

D Diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n$$

 Describe a relaxation of a conserved density *n* toward uniform state without fluctuation

D Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$
$$\langle \xi(\eta_1)\xi(\eta_2) \rangle \sim \chi \delta(\eta_1 - \eta_2)$$

- Describe a relaxation toward fluctuating uniform state
- χ : susceptibility (fluctuation in equil.)

Review: Asakawa, MK, PPNP 90 (2016)

Hydrodynamic Fluctuations

Landau, Lifshitz, Statistical Mechaniqs II Kapusta, Muller, Stephanov, 2012

Stochastic diffusion equation

Baryons in Hadronic Phase

Non-Interacting Brownian Particle System

Non-Interacting Brownian Particle System

Diffusion Master Equation

MK, Asakawa, Ono, 2014 MK, 2015

Diffusion Master Equation

MK, Asakawa, Ono, 2014 MK, 2015

Solve the DME **exactly**, and take $a \rightarrow 0$ limit

No approx., ex. van Kampen's system size expansion

Rapidity Window Dependence

MK+, PLB(2014)

□ Cumulants at finite Δy is different from initial value. □ 4th cumulant can have a sign change. □ 4th cumulant can have a sign change.

□ 4th cumulant can have non-monotonic behavior.

$\Delta\eta$ Dependence: 4th order

MK, NPA(2015)

Characteristic $\Delta \eta$ dependences!

4th order : w/ Critical Fluctuation

$\Delta\eta$ Dependence @ STAR

MK+ (2014) MK (2015)

X. Luo, CPOD2014

- □ Non monotonic behavior of cumulants.
- **D** Approach initial value as $\Delta y \rightarrow$ large

finite volume effect: Sakaida+, PRC064911(2014) More sophisticated analysis with **factorial cumulants**, MK, Luo (2017)

Non-Interacting Brownian Particle System

$\Delta\eta$ Dependence: 3rd order

Non-Gaussian fluctuations are one of the most interesting topics in relativistic heavy ion collisions.

□Using fluctuation observables, we can explore early thermodynamics and QCD phase structure.

Rapidity window dependences of higher-order cumulants encode various information on fluctuation.

More information in future experiments. More theoretical studies are required!

Search for QCD Critical Point

Sakaida, Asakawa, Fujii, MK, to appear in PRC arXiv:1703.08008

Remarks on Critical Fluctuation 1

Experiments cannot observe critical fluctuation in equilibrium directly.

Remarks on Critical Fluctuation 2

Critical fluctuation is a conserved mode!

Fujii 2003; Fujii, Ohtani, 2004; Son, Stephanov, 2004

Dynamical Evolution of Critical Fluctuations

Correlation functions

Kapusta, Torres-Rincon (2012)

Aim of This Study

Describe **conserved nature** of critical fluctuation.

We want to study experimental observables.
focus on a conserved charge (baryon number)
study evolution of conserved-charge fluctuation

- Concentrate on 2nd order fluctuation. (not higher)
- We study
 - **Tapidity window denepdence** of the cumulant
 - **D** 2-particle **correlation function**

Cumulants and Correlation Function

Stochastic Diffusion Equation (SDE)

D Diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n$$

 Describe a relaxation of a conserved density *n* toward uniform state without fluctuation

D Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$
$$\langle \xi(\eta_1)\xi(\eta_2) \rangle \sim \chi \delta(\eta_1 - \eta_2)$$

- Describe a relaxation toward fluctuating uniform state
- χ : susceptibility (fluctuation in equil.)

Review: Asakawa, MK, PPNP 90 (2016)

Soft Mode of QCD Critical Point

Fujii 2003; Fujii, Ohtani, 2004; Son, Stephanov, 2004

Effective potential

 $F(\sigma, n) = A\sigma^2 + B\sigma n + Cn^2$

□ Time dependent Ginzburg-Landau

$$\begin{pmatrix} \dot{\sigma} \\ \dot{n} \end{pmatrix} = \begin{pmatrix} \Gamma_{\sigma\sigma} & \Gamma_{\sigma n} \\ \Gamma_{n\sigma} & \Gamma_{nn} \end{pmatrix} \begin{pmatrix} \sigma \\ n \end{pmatrix}$$
$$\sim k^2$$

For slow and

singularities in $D(\tau)$ and $\chi(\tau)$

Parametrizing $D(\tau)$ and $\chi(\tau)$

□Critical behavior

- 3D Ising (r,H)
- model H

Temperature dep.

SSOVer

r > 0 r = (critical point)

 $\cdot \cdot T_{\rm c} = 160 \; [{\rm MeV}]$

•• $T_{\rm f} = 100 \, [{\rm MeV}]$

STAR(2014)

>μ_Β

 $\cdots \cdots T_0 = 220 \; [\mathrm{MeV}]$

$\Delta\eta$ Dependence @ ALICE

ALICE PRL 2013

Criticap Point / Correlation Func.

Weaker Critical Enhancement

D Non-monotonicity in $K(\Delta y)$ disappears.

But C(y) is still non-monotonic.

Away from the CP

Signal of the critical enhancement can be clearer on a path away from the CP.

Away from the CP \rightarrow Weaker critical slowing down

Summary

• Soft mode of the QCD critical point is a conserved mode. Its time evolution depends on the size defining the charge.

Time evolution of conserved charges (especially baryon number) is well described by the stochastic diffusion equation.

A non-monotonic behavior of cumulant or correlation function is the signal of the critical enhancement!

Suggestion to experimentalists

\Box To find the CP, measure $\begin{cases} \bullet & \Delta y \text{ dep. of } 2^{nd} \text{ order cumulant} \\ \bullet & y \text{ dep. of correlation function} \end{cases}$

Study lower-order fluctuation in more detail

Future Studies

D Experimental side:

- rapidity window dependences
- baryon number cumulants
- BES for SPS- to LHC-energies

□ Theoretical side:

- rapidity window dependences in dynamical models
- description of non-equilibrium non-Gaussianity
- accurate measurements on the lattice

DBoth sides:

- Compare theory and experiment carefully
- Let's accelerate our understanding on fluctuations!

Themal Blurring

Ohnishi, MK, Asakawa, PRC, in press

Fluctuations: Theory vs Experiment

discrepancy in phase spaces

Asakawa, Heinz, Muller, 2000; Jeon, Koch, 2000; Shuryak, Stephanov, 2001

Connecting Phase Spaces

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000

Under Bjorken picture,

of individual particles

Thermal distribution in y space

distribution in rapidity space

• flat freezeout surface
Thermal distribution in y space

Rapidity distribution can be well approximated by Gaussian.

- blast wave
- flat freezeout surface

$\Delta\eta$ Dependence

Initial condition (before blurring) no e-v-e fluctuations

Cumulants after blurring can take nonzero values

With $\Delta y=1$, the effect is **not** well suppressed

$$w = \frac{m}{T}$$

$$e \text{ pions } w \simeq 1.5$$

$$e \text{ nucleons } w \simeq 9$$

Diffusion + Thermal Blurring

Thermal blurring can be regarded as a part of diffusion

Total diffusion:
$$P(x - x'') = \int dx' P_1(x - x') P_2(x' - x'')$$

Centrality Dependence

Is the centrality dependence understood solely by the thermal blurring at kinetic f.o.?

Centrality Dependence @ ALICE

Assumptions:

- Centrality independent cumulant at kinetic f.o.
- Thermal blurring at kinetic f.o.

Centrality dep. of by a simple thern