Dispersion Relation of Charmonia above T_c

Masakiyo Kitazawa (Osaka U.)

Ikeda, Asakawa, MK, PR**D95** (2017) 014504

LATTICE2017, Granada, Spain, June 20, 2017

Charm Quarks in HIC

Impurity of QGP = unique experimental probe

- production only in first stagesmall abundance
- J/p suppression
 transport property
 heavy-quark potential

Charmonia above Tc

Property of charmonia at rest

Melting temperatureMass shift?

Charmonia above Tc

- Property of charmonia at rest
 - Melting temperatureMass shift?

Property of moving charmonia

- Dispersion relation
- residue
- decay rate

In heavy-ion collisions, charmonia are typically moving!

Charmonia above Tc

Property of charmonia at rest		
Melting temperature		
Mass shift?	Let's study	
Property of moving charmonia	on the lattice	
Dispersion relationresidue	$ \ \ \bigwedge^{\omega} \sqrt{m^2 + \vec{p}^2} $	
decay rate		
In heavy-ion collisions, charmonia are typically moving!	p	

1-1

Nonzero-p Spectral Func.

In vacuum :Lorentz symmetry

- **Tensor structure (V)** $\rho_{\mu\nu}(\omega, \vec{p}) = \left(\frac{p_{\mu}p_{\nu}}{p^2} g_{\mu\nu}\right)\rho_V(p)$
- **D** Bound-state pole $\sim Z\delta(\omega^2 E(\vec{p})^2) = \frac{Z}{2E(\vec{p})}\delta(\omega 2E(\vec{p}))$
- **Dispersion relation** $E(\vec{p}) = \sqrt{m^2 + \vec{p}^2}$

Nonzero-p Spectral Func.

In vacuum :Lorentz symmetry

- **Tensor structure (V)** $\rho_{\mu\nu}(\omega, \vec{p}) = \left(\frac{p_{\mu}p_{\nu}}{p^2} g_{\mu\nu}\right)\rho_V(p)$
- **D** Bound-state pole $\sim Z\delta(\omega^2 E(\vec{p})^2) = \frac{Z}{2E(\vec{p})}\delta(\omega 2E(\vec{p}))$
- **Dispersion relation** $E(\vec{p}) = \sqrt{m^2 + \vec{p}^2}$

In medium

■ Transverse and longitudinal splitting $\rho_{\mu\nu}(\omega, \vec{p}) = \rho_{T}(\omega, \vec{p})\Lambda_{T} + \rho_{L}(\omega, \vec{p})\Lambda_{L}$ ■ Dispersion relation can be modified ■ Z no longer be a constant

Maximum Entropy Method

Maximum Entropy Method

Maximum Entropy Method

Error in MEM

MEM error = variance in $P[\rho(\omega), \alpha]$ space

$$W = \int d\omega f(\omega) \rho(\omega)$$

] exp. val.:
$$\langle W \rangle_P = \int d\omega f(\omega) \langle \rho(\omega) \rangle_P$$

] error: $\Delta W = \sqrt{(W - \langle W \rangle_P)^2}$

Error in MEM

MEM error = variance in $P[\rho(\omega), \alpha]$ space

$$\square \text{ exp. val.: } \langle W \rangle_P = \int d\omega f(\omega) \langle \rho(\omega) \rangle_P$$
$$\square \text{ error: } \Delta W = \sqrt{(W - \langle W \rangle_P)^2}$$

Error in MEM

MEM error = variance in $P[\rho(\omega), \alpha]$ space

$$\square \text{ exp. val.: } \langle W \rangle_P = \int d\omega f(\omega) \langle \rho(\omega) \rangle_P$$
$$\square \text{ error: } \Delta W = \sqrt{(W - \langle W \rangle_P)^2}$$

NOTE SPC obtained by MEM is just an image. No robust meaning. MEM error is more conservative than statistical one.

Defining Peak Position

Represent peak position for a sufficiently sharp peak
 Error analysis in MEM is possible!
 [ω_{min}, ω_{max}] dependence has to be checked

Defining Peak Position

Represent peak position for a sufficiently sharp peak
 Error analysis in MEM is possible!
 [ω_{min}, ω_{max}] dependence has to be checked

e2017 **Constant** Residue:
$$\bar{Z} = \int_{\omega_1}^{\omega_2} d\omega 2\omega \rho(\omega)$$

Lattice Setup

quenched simulation
 Wilson fermion / gauge
 anisotropic lattice (a_σ/a_τ=4)

$$eta=7.0, \ \gamma_F=3.476, \ \kappa_\sigma=0.8282$$

 $a_\sigma=0.00975 [{
m fm}], \ a_\sigma/a_ au=4$ Asakawa, Hatsuda, 2004

T/T _c	Nσ	L _σ [fm]	N _{conf}
1.86	64	2.5	500x8
1.62	64	2.5	500x8
1.49	64	2.5	500x8
0.78	64	2.5	500x8
	T/Tc 1.86 1.62 1.49 0.78	T/Tc N₀ 1.86 64 1.62 64 1.49 64 0.78 64	T/Tc N₀ L₀[fm] 1.86 644 2.5 1.62 644 2.5 1.49 644 2.5 0.78 644 2.5

BlueGene/Q@KEK fermion part: Iroiro++ 8 measurements on each conf.

□ Large spatial volume → high momentum resolution
□ Large Nt / high statistics → high MEM precision

Spectral Func. @ T=0.78T

ρ_T and ρ_L channels degenerate
 although correlators are different

 $\vec{p} = (p, 0, 0)$ $G_{\rm L} = \frac{\omega^2 - p^2}{\omega^2} G_{11}$ $G_{\rm T} = G_{22} = G_{33}$

Spectral Func. @ T=0.78T

ρ_T and ρ_L channels degenerate
 although correlators are different

Lattice 2017

 $\vec{p} = (p, 0, 0)$ $G_{\rm L} = \frac{\omega^2 - p^2}{\omega^2} G_{11}$

 $G_{\rm T} = G_{22} = G_{33}$

Spectral Function @ p=0

Hice2017

Bound state peaks seem to exist at T=1.62Tc.

Spectral Func. @ T=1.62T

ρ_T and ρ_L channels seem to degenerate.
 Peak exists for all momentum.

Dispersion Relation

Energy interval [ω_{min} , ω_{max}] for disp. rel.

Dispersion Relation

Clear mass enhancement in medium.

tice2017

Dispersion relation is consistent with the Lorentz covariant form even at T=1.62Tc. mass E(p=0)

T/T_{c}	0.78	1.49	1.62
J/ψ	3.24(6)	4.30(16)	4.47(16)
η_c	3.19(5)	4.24(31)	4.49(48)
			[GeV]

Dependence on $[\omega_{\min} : \omega_{\max}]$

□ ω_{max} dependence is well suppressed. □ No ω_{min} dependence for ω_{min} <3GeV.

Lattice 2017

Test: N_t Dependence

Special thanks to A. Rothkopf

Peak position does not shift with the change of N_t Lattice 2017

correlator	G(au,0,T)	$G^{ m rec}(au,0,2T;T)$
$ar{m}$	3.24(6)	3.40(90)

Res due

No p dependence of Z even for T=1.62Tc
 No T/L splitting in vector channel

Summary

We analyzed the peak positions in SPC with MEM error by defining them in terms of the center of weight.

Charmonia have significant mass enhancement.
 Dispersion relations are consistent with Lorentz covariant form even at T=1.62Tc.

Future Work

much finer p resolution

- 🗖 m_q dependence
- comparison with potential models and etc.

