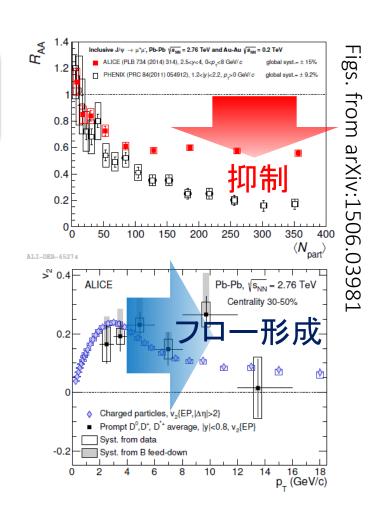
格子QCDによる、 有限温度媒質中の チャーモニウム分散関係 の解析

Masakiyo Kitazawa (Osaka U.) Ikeda, Asakawa, MK, PR**D95** (2017) 014504

Charm Quarks in HIC

Impurity of QGP

- = unique experimental probe
 - production only in first stage
 - small abundance
 - □ J/p suppression
 - transport property
 - heavy-quark potential



Charmonia above Tc

Property of charmonia at rest

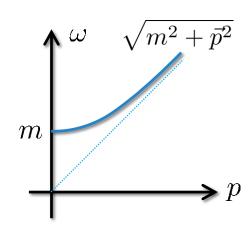
- Melting temperature
- Mass shift?

Charmonia above Tc

- Property of charmonia at rest
 - Melting temperature
 - Mass shift?

- Dispersion relation
- residue
- decay rate

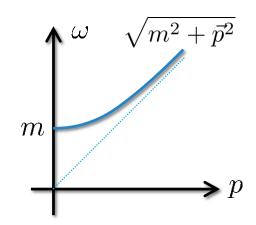
In heavy-ion collisions, charmonia are typically moving!



Charmonia above Tc

- Property of charmonia at rest
 - Melting temperature
 - Mass shift?
- Property of moving charmonia
 - Dispersion relation
 - residue
 - decay rate

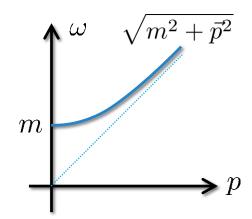
In heavy-ion collisions, charmonia are typically moving!



Nonzero-p Spectral Func.

In vacuum :Lorentz symmetry

- lacksquare Tensor structure (V) $ho_{\mu\nu}(\omega,\vec{p}) = \left(\frac{p_{\mu}p_{\nu}}{p^2} g_{\mu\nu}\right)\rho_V(p)$
- Bound-state pole $\sim Z\delta(\omega^2 E(\vec{p})^2) = \frac{Z}{2E(\vec{p})}\delta(\omega 2E(\vec{p}))$
- Dispersion relation $E(\vec{p}) = \sqrt{m^2 + \vec{p}^2}$



Nonzero-p Spectral Func.

In vacuum: Lorentz symmetry

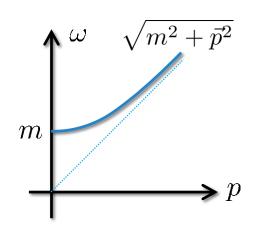
- lacksquare Tensor structure (V) $ho_{\mu\nu}(\omega,\vec{p}) = \left(\frac{p_{\mu}p_{\nu}}{p^2} g_{\mu\nu}\right)\rho_V(p)$
- Bound-state pole $\sim Z\delta(\omega^2-E(\vec{p})^2)=rac{Z}{2E(\vec{p})}\delta(\omega-2E(\vec{p}))$
- Dispersion relation $E(\vec{p}) = \sqrt{m^2 + \vec{p}^2}$

In medium

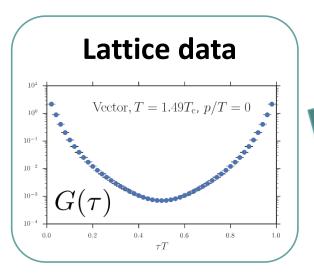
Transverse and longitudinal splitting

$$\rho_{\mu\nu}(\omega,\vec{p}) = \rho_{\rm T}(\omega,\vec{p})\Lambda_{\rm T} + \rho_{\rm L}(\omega,\vec{p})\Lambda_{\rm L}$$

- Dispersion relation can be modified
- Z no longer be a constant

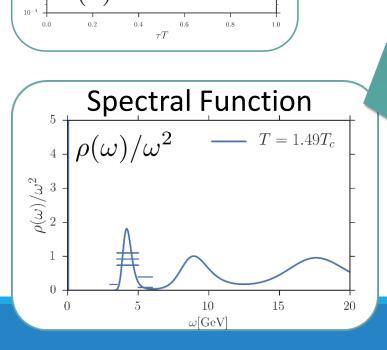


Obtaining Spectral Funciton

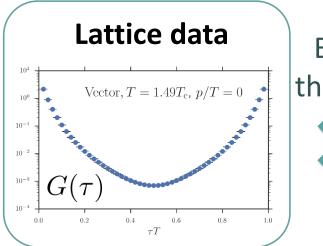


$$G(\tau) = \int_0^\infty d\omega \frac{\cosh(1/2T - \tau)\omega}{\sinh(\omega/2T)} \rho(\omega)$$

"ill-posed problem"



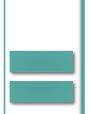
Maximum Entropy Method



Bayes theorem

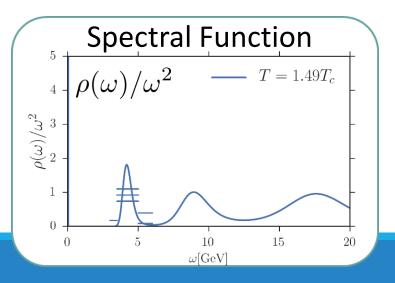
Prior probability

- Shannon-Jaynes entropy
- default model $m(\omega)$

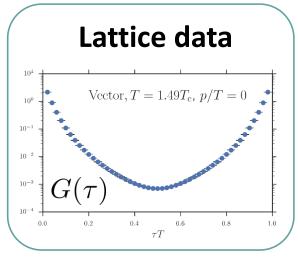


Probability

of $ho(\omega)$ $P[
ho(\omega), \alpha]$



Maximum Entropy Method



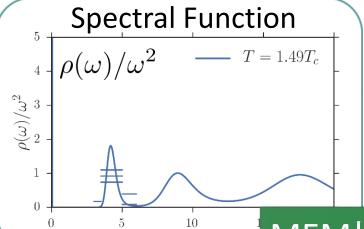
Bayes theorem

Prior probability

- Shannon-Jaynes entropy
- default model $m(\omega)$

Probability

of $ho(\omega)$ $ho(\omega), lpha]$



 $\omega [{\rm GeV}$

expectation value

$$\langle \rho(\omega) \rangle_P$$

$$\langle \mathcal{O} \rangle_P = \int d\alpha \int [d\rho] P[\rho, \alpha] \mathcal{O}$$

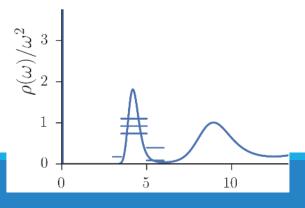
MEM出力は単なる期待値→要誤差評価

Error in MEM

MEM error = variance in $P[\rho(\omega),\alpha]$ space

$$W = \int d\omega f(\omega) \rho(\omega)$$

- \blacksquare exp. val.: $\langle W \rangle_P = \int d\omega f(\omega) \langle \rho(\omega) \rangle_P$
- \square error: $\Delta W = \sqrt{(W \langle W \rangle_P)^2}$



Frror in MEM

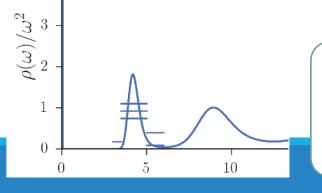
MEM error = variance in $P[\rho(\omega),\alpha]$ space

$$W = \int d\omega f(\omega) \rho(\omega)$$

- \square exp. val.: $\langle W \rangle_P = \int d\omega f(\omega) \langle \rho(\omega) \rangle_P$
- \square error: $\Delta W = \sqrt{(W \langle W \rangle_P)^2}$

$$f(\omega') = \delta(\omega' - \omega)$$

$$f(\omega') = \delta(\omega' - \omega) \qquad \qquad \rho_{\text{out}}(\omega) = \langle \rho(\omega) \rangle_P$$
$$\Delta \rho_{\text{out}}(\omega) = \sqrt{\langle (\delta \rho(\omega))^2 \rangle_P}$$



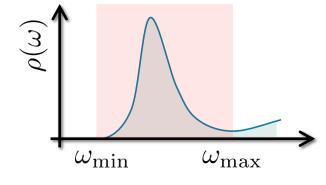
NOTE

- SPC by MEM is just an image. No robust meaning.
- MEM error is more conservative than statistical one.

Defining Peak Position

Center of weight in a range $[\omega_{\min}:\omega_{\max}]$

$$\bar{E} = \frac{\int_{\omega_{\min}}^{\omega_{\max}} d\omega \omega (\rho(\omega)/\omega^2)}{\int_{\omega_{\min}}^{\omega_{\max}} d\omega \rho(\omega)/\omega^2}$$

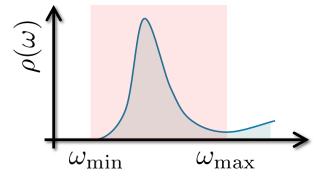


- Represent peak position for a sufficiently sharp peak
- Error analysis in MEM is possible!
- \square [ω_{\min} , ω_{\max}] dependence has to be checked

Defining Peak Position

Center of weight in a range $[\omega_{\min}:\omega_{\max}]$

$$\bar{E} = \frac{\int_{\omega_{\min}}^{\omega_{\max}} d\omega \omega (\rho(\omega)/\omega^2)}{\int_{\omega_{\min}}^{\omega_{\max}} d\omega \rho(\omega)/\omega^2}$$



- Represent peak position for a sufficiently sharp peak
- Error analysis in MEM is possible!
- \square [ω_{\min} , ω_{\max}] dependence has to be checked

Residue:
$$\bar{Z} = \int_{\omega_1}^{\omega_2} d\omega 2\omega \rho(\omega)$$

Lattice Setup

- Quenched simulation
- Wilson fermion / gauge
- \square Anisotropic lattice $(a_{\sigma}/a_{\tau}=4)$

$$eta=7.0, \; \gamma_F=3.476, \; \kappa_\sigma=0.8282$$
 $a_\sigma=0.00975 [{
m fm}], \; a_\sigma/a_\tau=4$ Asakawa, Hatsuda, 2004

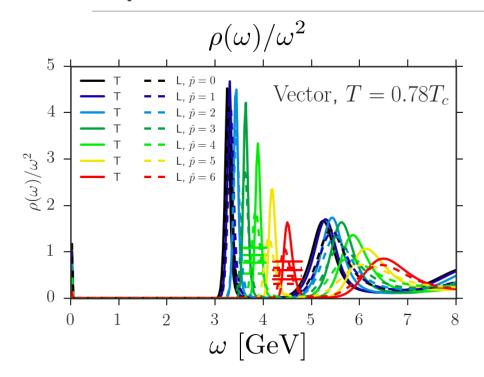
N_{τ}	T/T _c	N_{σ}	$L_{\sigma}[fm]$	$N_{\rm conf}$
40	1.86	64	2.5	500x8
46	1.62	64	2.5	500x8
50	1.49	64	2.5	500x8
96	0.78	64	2.5	500x8

BlueGene/Q@KEK fermion part: Iroiro++

8 measurements on each conf.

- □ Large spatial volume → high momentum resolution
- □ Large Nt / high statistics → high MEM precision

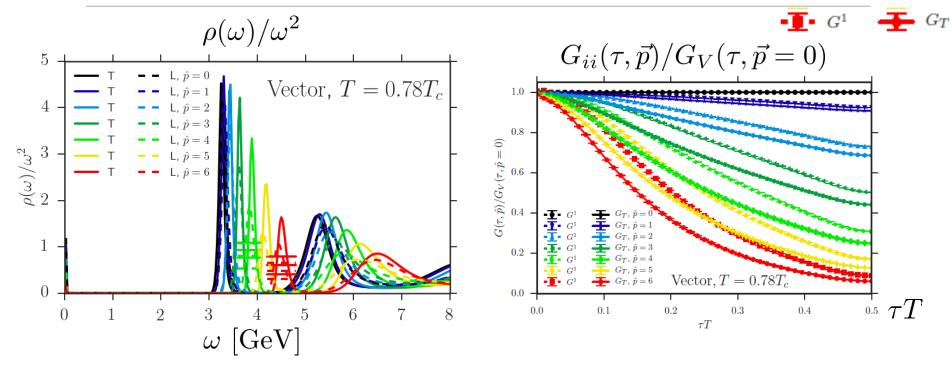
Spectral Func. @ T=0.78Tc



- \square ρ_T and ρ_L channels degenerate
- although correlators are different

$$\vec{p} = (p, 0, 0)$$
 $G_{\rm L} = \frac{\omega^2 - p^2}{\omega^2} G_{11}$
 $G_{\rm T} = G_{22} = G_{33}$

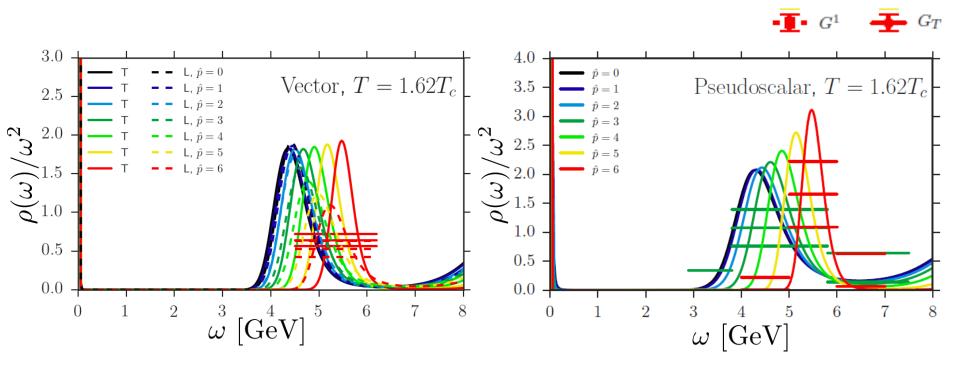
Spectral Func. @ T=0.78Tc



- \square ρ_T and ρ_I channels degenerate
- although correlators are different

$$\vec{p} = (p, 0, 0)$$
 $G_{\rm L} = \frac{\omega^2 - p^2}{\omega^2} G_{11}$
 $G_{\rm T} = G_{22} = G_{33}$

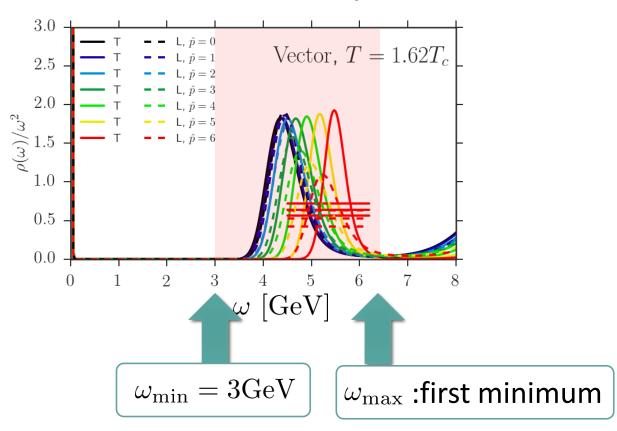
Spectral Func. @ T=1.62Tc



- \square ρ_T and ρ_I channels seem to degenerate yet.
- Peak exists for all momenta.

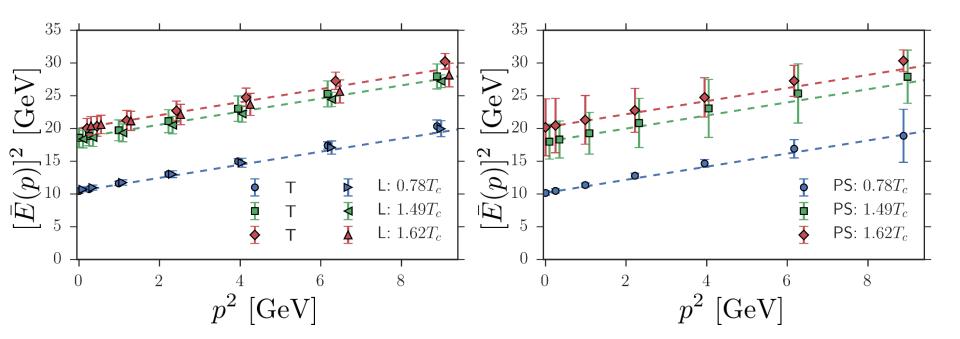
Dispersion Relation

Energy interval $[\omega_{\min}, \omega_{\max}]$ for disp. rel.



Dispersion Relation

Arr PS: $0.78T_c$ PS: $1.49T_c$ PS: $1.62T_c$



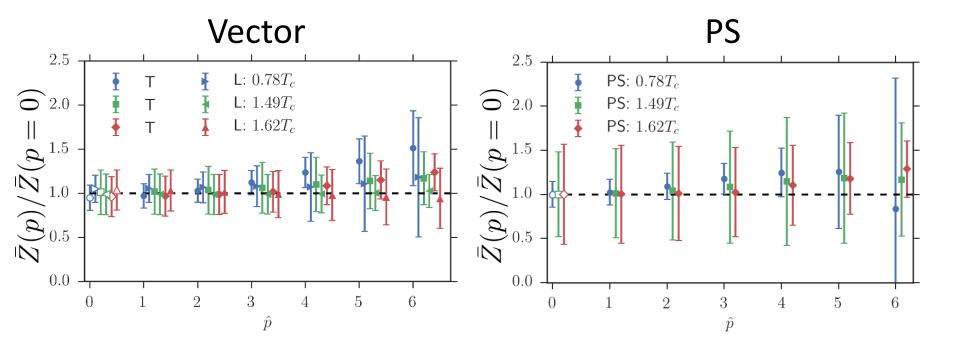
- Clear mass enhancement in medium.
- □ Dispersion relation is consistent with the Lorentz covariant form even at T=1.62Tc.

mass E(p=0)

		XI	•
$T/T_{ m c}$	0.78	1.49	1.62
J/ψ	3.24(6)	4.30(16)	4.47(16)
η_c	3.19(5)	4.24(31)	4.49(48)

[GeV]

Residue



- No p dependence of Z even at T=1.62Tc
- No T/L splitting in vector channel

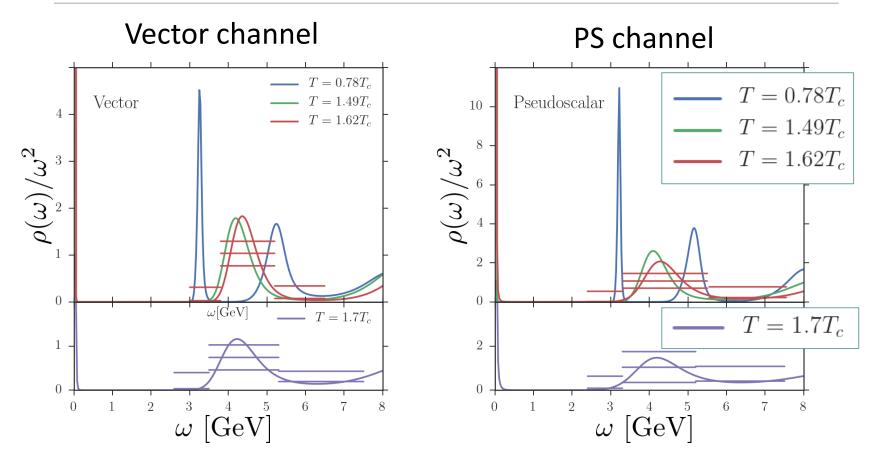
Summary

- We analyzed the **peak positions in SPC with MEM error** by **defining** them in terms of the **center of weight**.
- Charmonia have significant mass enhancement.
- □ Dispersion relations are consistent with Lorentz covariant form even at T=1.62Tc.

Future Work

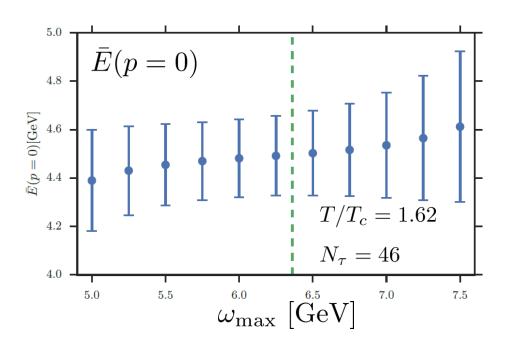
- Why Lorentz invariant Disp. Rel. in medium?
 - comparison with potential models and etc.?
- \square m_a dependence / other channels / finer p resolution

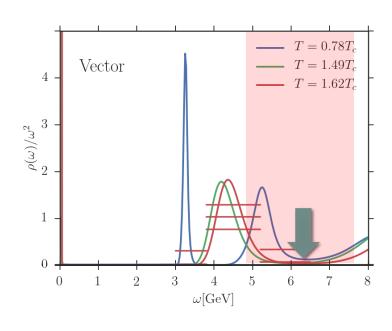
Spectral Function @ p=0, T>0



■ Bound state peaks seem to exist at T=1.62Tc.

Dependence on $[\omega_{\min}:\omega_{\max}]$





- \square ω_{max} dependence is well suppressed.
- \square No ω_{\min} dependence for ω_{\min} <3GeV.

Test: N_t Dependence

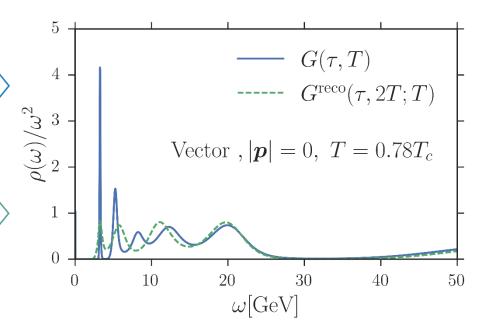
Special thanks to A. Rothkopf

correlator

$$T = 0.78T_c, N_{\tau} = 96$$

reconstructed cor.

$$T = 0.78T_c, N_{\tau} = 48$$



Peak position does not shift with the change of N_t

correlator	G(au,0,T)	$G^{ m rec}(au,0,2T;T)$
$ar{m}$	3.24(6)	3.40(90)