Search for QCD Critical Point at J-PARC Heavy-Ion Program

Masakiyo Kitazawa (Osaka U.)

REIMEI Workshop, J-PARC, Tokai, Dec. 13, 2017

Search for QCD Critical Point at J-PARC Heavy-Ion Program

Masakiyo Kitazawa (Osaka U.)

Two topics covered in this talk
J-PARC Heavy-Ion Program
Exp. Search for QCD-CP with fluctuations

REIMEI Workshop, J-PARC, Tokai, Dec. 13, 2017

Beam-Energy Scan

J-PARC Heavy-Ion Program (J-PARC-HI)

J-PARC = Japan Proton Accelerator Research Complex

J-PARC-HI = J-PARC Heavy-lon Program

Beam energy: ~20GeV/A (√s~6.2GeV)
 Fixed target experiment
 High luminosity: collision rate ~10⁸Hz
 Launch: (hopefully) 2025~

White paper / Letter of Intent (2016)
 http://asrc.jaea.go.jp/soshiki/gr/hadron/jparc-hi/

HI Acceleration @ J-PARC J-PARC Heavy Ion New₅HI Injector[™] HI (und Spectrometer high intensity stripping Figures: No **HILINAC** HI booster MR 3→30 GeV (p) Stripping injection $U^{35+}\rightarrow U^{66+}$ RCS MLF 20 → 67 AMeV Sp S N V lain Ring 0.4 → 3 GeV stripping stable U⁸⁶⁺→U⁹²⁺ H-0.727 AGeV ell established 186+ H⁻ Linac: 0.4 GeV 192+ 61.8 → 735.4 AMeV 0.727 → 11.15 AGeV

□ Use of reliable / high-performance RCS & main ring
 □ → Reduce cost and time for construction

Collision Rate

J-PARC-HI: High-luminosity x Fixed target →World highest rate~10⁸Hz

5-order higher than AGS, SPS

AGS, SPS = J-PARC-HI 1 year 5 min.

High-statistical exp.
 higher order correlations
 various event selections
 search of rare events

Beam-Energy Scan

T, μ from particle yield

Translation to baryon density

J-PARC energy = highest baryon density

Maximum Density

Time evolution in T- ρ plane by JAM

 $E/A = 20 {
m GeV}$ $\sqrt{s_{_{NN}}} \simeq 6 {
m GeV}$

Maximum density 5~10p_o @ J-PARC energy
 Large event-by-event fluctuations?

Maximum Density Scan?

Large event-by-event fluctuations even after fixed centrality / collision energy

If we can select events, "maximum density" dependence can be studied experimentally.

average transverse energy

Search of Rare Events

Exotic Hadrons

Hypernuclei

Strangelets

High density
High luminosity
High strange yield

Rare-event Factory

hadron Interaction creation
properties
interaction

Future Plan

Recent activities:

White Paper uploaded
Submission of LOI
International Workshop
Symposium @ JPS meeting

http://asrc.jaea.go.jp/soshiki/gr/hadron/jparc-hi/

Future plan:

2020Funding request to MEXT2021Earliest approval of funding2021-2022Construction of HI Injector2021-2023Construction of HI injection system in RCS2023-2024Construction of HI spectrometer2025First collision

Search for QCD Critical Point with Fluctuations

Sakaida, Asakawa, Fujii, MK, Phys. Rev. C95, 064509 (2017) **Asakawa, MK, Prog. Part. Nucl. Phys. 90, 299 (2016)** Ohnishi, MK, Asakawa, Phys. Rev. C94, 044905 (2016) MK, Nucl. Phys. A942, 65 (2015) MK, Asakawa, Ohno, Phys. Lett. B728, 386 (2014)

Event-by-Event Fluctuations

Review: Asakawa, MK, PPNP 90 (2016)

Fluctuations can be measured by e-by-e analysis in experiments.

A Coin Game

Bet 500YEN You get head coins of

Same expectation value.

A Coin Game

Bet 500YEN You get head coins of

Same expectation value. But, different fluctuation.

Non-zero non-Gaussian cumulants have been established!

Have we measured critical fluctuations?

Remarks on Fluctuations in HIC

Experiments cannot observe critical fluctuation in equilibrium directly.

Time Evolution of Fluctuations

Diffusion in Hadronic Stage

(Non-Interacting) Brownian Particle Model

(Non-Interacting) Brownian Particle Model

Baryons in Hadronic Phase

- **D** Different initial conditions give rise to different characteristic $\Delta \eta$ dependence.
- \square Non-monotonic behaviors can appear in $\Delta\eta$ dependence.

Finite volume effects: Sakaida+, PRC90 (2015)

- $\hfill\square$ Different initial conditions give rise to different characteristic $\Delta\eta$ dependence.
- \square Non-monotonic behaviors can appear in $\Delta\eta$ dependence.

Finite volume effects: Sakaida+, PRC90 (2015)

Dynamical Evolution near QCD Critical Point

Growth and Decay of Critical Fluc.

\blacksquare Previous studies: uniform σ mode

Berdnikov, Rajagopal (2000) Asakawa, Nonaka (2002) Mukherjee+ (2015)

Recent Developments:

Kapusta, Torres-Rincon (2012) Nahrgang, Herold+ (2014~) Song+ (2016~)

D Problems:

The soft mode of QCD-CP is a conserved mode Fujii (2003)
 Sigma mode is not directly observable Son, Stephanov (2004)

Describe **conserved nature** of critical fluctuation.

- We want to study experimental observables.
 focus on a conserved charge (baryon number)
 study evolution of conserved-charge fluctuation
- Concentrate on 2nd order fluctuation. (not higher)
- □ We study
 - rapidity window denepdence of the cumulant
 2-particle correlation function in rapidity space

Our Main Conclusion

Non-monotonicity in 2nd-order cumulants or correlation func.

Stochastic Diffusion Equation (SDE)

D Diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n$$

 Describe a relaxation of a conserved density *n* toward uniform state without fluctuation

□ Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$
$$\langle \xi(\eta_1)\xi(\eta_2) \rangle \sim \chi \delta(\eta_1 - \eta_2)$$

- Describe a relaxation toward fluctuating uniform state
- χ : susceptibility (fluctuation in equil.)

Review: Asakawa, MK, PPNP 90 (2016)

Parametrizing $D(\tau)$ and $\chi(\tau)$

Sakaida+, 2017

DCritical behavior

- 3D Ising (r,H)
- model H

□Temperature dep.

 $T(\tau)$

Summary

□ Fluctuations observed in HIC are not in equilibrium.
 □ Non-equil. property can be understood from ∆y dependence of cumulants.

- □ A simple diffusion model leads to non-monotonic ∆y dependence of higher order cumulant.
- □ Non-monotnic ∆y dependence of 2nd order cumulant is a signal of QCD critical point.
- □ Detailed understanding on fluctuations can be obtained from ∆y dependences of various cumulants!
 □ Future experiments will give us many useful information on QCD phase structure!

Cumulants and Correlation Function

Weaker Critical Enhancement

D Non-monotonicity in $K(\Delta y)$ disappears.

D But C(y) is still non-monotonic.

Away from the CP

Signal of the critical enhancement can be clearer on a path away from the CP.

Away from the CP \rightarrow Weaker critical slowing down

Fluctuations: Theory vs Experiment

discrepancy in phase spaces

Asakawa, Heinz, Muller, 2000; Jeon, Koch, 2000; Shuryak, Stephanov, 2001

Thermal Blurring

Ohnishi, MK, Asakawa, PRC94, 044905 (2016)

Under Bjorken picture,

coordinate-space rapidity Y || momentum-space rapidity y of medium |2 momentum-space rapidity y of individual particles

Diffusion Master Equation

MK, Asakawa, Ono, 2014 MK, 2015

Diffusion Master Equation

MK, Asakawa, Ono, 2014 MK, 2015

Solve the DME **exactly**, and take $a \rightarrow 0$ limit

No approx., ex. van Kampen's system size expansion

Baryon Stopping

Soft Mode of QCD Critical Point

Fujii 2003; Fujii, Ohtani, 2004; Son, Stephanov, 2004

Effective potential

$$F(\sigma, n) = A\sigma^2 + B\sigma n + Cn^2$$

□ Time dependent Ginzburg-Landau

$$\begin{pmatrix} \dot{\sigma} \\ \dot{n} \end{pmatrix} = \begin{pmatrix} \Gamma_{\sigma\sigma} & \Gamma_{\sigma n} \\ \Gamma_{n\sigma} & \Gamma_{nn} \end{pmatrix} \begin{pmatrix} \sigma \\ n \end{pmatrix}$$
$$\sim k^2$$

σ: fast damping

For slow and long wavelength,

SDE
$$\partial_{ au} n = D(au) \partial_{\eta}^2 n + \partial_{\eta} \xi$$

singularities in $D(\tau)$ and $\chi(\tau)$

achieved only through diffusion. the slow

the slower diffusion

$\Delta\eta$ Dependence @ ALICE

ALICE PRL 2013

$\Delta\eta$ Dependence @ ALICE

$$D \sim \frac{\langle \delta N_{\rm Q} \rangle^2}{\Delta \eta}$$

has to be a constant in equil. medium

Fluctuation of N_Q at ALICE is not the equilibrated one.