Exploring QCD Phase Structure in Heavy-Ion Collisions

Masakiyo Kitazawa

(Osaka U.)

J-PARC分室活動総括研究会 J-PARC、2018年2月2日

Keywords

- QCD at nonzero T/ μ
 - quark-gluon plasma
 - chiral transition
 - QCD critical point / 1st order phase transition
- Relativistic heavy-ion collisions
 - beam-energy scan
 - J-PARC heavy-ion program
 - Modelling dynamics of low-E collisions

Relativistic Heavy-ion Collisions

Accelerate heavy ions by accelerators such as,

Then, collisions take place, llike

0

And QGP is formed around here

Many particles are created like this. We study QGP from this exp. data.

Accelerator Experiments

Recent Hot Topics in HIC

- Beam-energy scan
 - search for QCD-CP / 1st transition
- chiral magnetic effect
 - isobaric collisions A=96 (₄₄Ruthenium/₄₀Zirconium)
- small systems
 - Is QGP formed in pp, pA collisions?

Beam-Energy Scan

Beam-Energy Dependence

Beam-Energy Dependence

High energy

Nuclear transparency net-baryon #: small

Low energy

Baryon stopping net-baryon #: large

Baryon Stopping

rapidity dep. of net-proton

 $\begin{array}{l} \sqrt{s_{_{NN}}}\simeq 4-6 {\rm GeV} \\ {\rm Baryons\ stop\ at\ collision\ point} \\ \sqrt{s_{_{NN}}}>10 {\rm GeV} \\ {\rm Baryons\ pass\ through} \end{array}$

Beam-Energy Scan

T, μ from particle yield

Translation to baryon density

J-PARC energy = highest baryon density

Maximum Density

Time evolution in T- ρ plane by JAM

 $E/A = 20 {
m GeV}$ $\sqrt{s_{_{NN}}} \simeq 6 {
m GeV}$

Maximum density 5~10p_o @ J-PARC energy
 Large event-by-event fluctuations?

□ Use of reliable / high-performance RCS & main ring
 □ → Reduce cost and time

J-PARC = Japan Proton Accelerator Research Complex

J-PARC-HI = J-PARC Heavy-lon Program

Beam energy: ~20GeV/A (√s~6.2GeV)
 Fixed target experiment
 High luminosity: collision rate ~10⁸Hz
 Launch: (hopefully) 2025~

White paper / Letter of Intent (2016)
 http://asrc.jaea.go.jp/soshiki/gr/hadron/jparc-hi/

Collision Rate

J-PARC-HI: High-luminosity X Fixed target \rightarrow World highest rate $\sim 10^8$ Hz

5-order higher than AGS, SPS

AGS, SPS = J-PARC-HI 1 year 5 min.

High-statistical exp.
 various event selections
 higher order correlations
 search of rare events

Observables

- Directed flow
- Fluctuations
- Elliptic flow
- Higher harmonics
- Strange abundance
- ...

Non-trivial Collision Dynamics

dv₁/dy: Signal of 1st Phase Tr.?

Negative v₁ = signal of softening ≅1st order transition??

Maximum Density Scan?

Large event-by-event fluctuations even after fixed centrality / collision energy

If we can select events, "maximum density" dependence can be studied experimentally.

average transverse energy

Search of Rare Events

Exotic Hadrons

Hypernuclei

Strangelets

High density
High luminosity
High strange yield

Rare-event Factory

hadron Interaction creation
properties
interaction

Fluctuations

Thermal Fluctuations

Observables are fluctuating even in an equilibrated medium.

Thermal Fluctuations

Observables are fluctuating even in an equilibrated medium.

Event-by-Event Fluctuations

Review: Asakawa, MK, PPNP 90 (2016)

Fluctuations can be measured by e-by-e analysis in experiments.

A Coin Game

Bet 500YEN You get head coins of

Same expectation value.

A Coin Game

Bet 500YEN You get head coins of

Same expectation value. But, different fluctuation.

lose..

Non-zero non-Gaussian cumulants have been established!

Have we measured critical fluctuations?

Fluctuations: Theory vs Experiment

discrepancy in phase spaces

Asakawa, Heinz, Muller, 2000; Jeon, Koch, 2000; Shuryak, Stephanov, 2001

Thermal Blurring

 $\mathbf{A}P(N)$

 $\mathbf{A}P(N)$

1

 Δy

Detector

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000

Distributions in ΔY and Δy are different due to "thermal blurring".

N

N

(Non-Interacting) Brownian Particle Model

(Non-Interacting) Brownian Particle Model

Higher order cumulants can behave non-monotonically.

□ Different initial conditions give rise to different characteristic $\Delta \eta$ dependence. → Study initial condition

D Non-monotonic behaviors can appear in $\Delta\eta$ dependence.

Finite volume effects: Sakaida+, PRC90 (2015)

Efficiency Correction

Efficiency correction is indispensable in experimental analyses!

Slot Machine Analogy

Slot Machine Analogy

The Binomial Model

MK, Asakawa, 2012; 2012 Bzdak, Koch, 2012

When efficiency for individual particles are **independent**

Caveat: Effects of nonvanishing correlations: Holtzman+ 2016

$$\langle n^m \rangle_{\rm c} \longleftrightarrow \langle N^m \rangle_{\rm c}$$

$$\langle N^m \rangle_{\mathbf{c}} \stackrel{\checkmark}{\blacktriangleright} \langle n^m \rangle_{\mathbf{c}}$$

$$\langle n^{2} \rangle_{\mathbf{c}} = \xi_{1}^{2} \langle N^{2} \rangle_{\mathbf{c}} + \xi_{2} \langle N \rangle,$$

$$\langle n^{2} \rangle_{\mathbf{c}} = \xi_{1}^{3} \langle N^{3} \rangle_{\mathbf{c}} + 3\xi_{1} \xi_{2} \langle N^{2} \rangle_{\mathbf{c}} + \xi_{3} \langle N \rangle,$$

$$\langle n^{3} \rangle_{\mathbf{c}} = \xi_{1}^{4} \langle N^{4} \rangle_{\mathbf{c}} + 6\xi_{1}^{2} \xi_{2} \langle N^{3} \rangle_{\mathbf{c}} + (3\xi_{2}^{2} + 4\xi_{1}\xi_{3}) \langle N^{2} \rangle_{\mathbf{c}} + \xi_{4} \langle N \rangle$$

$$\langle n^{m} \rangle_{c} \swarrow \langle N^{m} \rangle_{c}$$

$$\langle N^{2} \rangle_{c} = \xi_{1}^{-1} \langle n \rangle,$$

$$\langle N^{2} \rangle_{c} = \xi_{1}^{-2} \langle n^{2} \rangle_{c} - \xi_{2} \xi_{1}^{-3} \langle n \rangle,$$

$$\langle N^{3} \rangle_{c} = \xi_{1}^{-3} \langle n^{3} \rangle_{c} - 3\xi_{2} \xi_{1}^{-4} \langle n^{2} \rangle_{c} + (3\xi_{2}^{2}\xi_{1}^{-5} - \xi_{3}\xi_{1}^{-4}) \langle n \rangle,$$

$$\langle N^{4} \rangle_{c} = \xi_{1}^{-4} \langle n^{4} \rangle_{c} - 6\xi_{2} \xi_{1}^{-5} \langle n^{3} \rangle_{c} + (15\xi_{2}^{2}\xi_{1}^{-6} - 4\xi_{3}\xi_{1}^{-5}) \langle n^{2} \rangle_{c}$$

$$- (15\xi_{2}^{3}\xi_{1}^{-7} - 10\xi_{2}\xi_{3}\xi_{1}^{-6} + \xi_{4}\xi_{1}^{-5}) \langle n \rangle,$$

Another formula using factorial moments: Bzdak, Koch, 2012

Multi-efficiency Problem

□ efficiency for proton ≠ anti-proton
□ efficiency has p_T dependence

STAR, net proton

$$\begin{cases} p_T < 0.8 \text{GeV} \\ \text{TPC } \epsilon \sim 80\% \\ p_T > 0.8 \text{GeV} \\ \text{TPC+TOF } \epsilon \sim 50\% \end{cases}$$

Multi-variable efficiency correction

New Formula for Efficiency Correction

$$\begin{split} \langle Q \rangle_{\rm c} = \langle \langle q_{(1)} \rangle \rangle_{\rm c}, \\ \langle Q^2 \rangle_{\rm c} = \langle \langle q_{(1)}^2 \rangle \rangle_{\rm c} - \langle \langle q_{(2)} \rangle \rangle_{\rm c}, \\ \langle Q^3 \rangle_{\rm c} = \langle \langle q_{(1)}^3 \rangle \rangle_{\rm c} - 3 \langle \langle q_{(2)} q_{(1)} \rangle \rangle_{\rm c} + \langle \langle 3 q_{(2,1|2)} - q_{(3)} \rangle \rangle_{\rm c}, \\ \langle Q^4 \rangle_{\rm c} = \langle \langle q_{(1)}^4 \rangle \rangle_{\rm c} - 6 \langle \langle q_{(2)} q_{(1)}^2 \rangle \rangle_{\rm c} + 12 \langle \langle q_{(2,1|2)} q_{(1)} \rangle \rangle_{\rm c} \\ &+ 6 \langle \langle q_{(1,1|2)} q_{(2)} \rangle \rangle_{\rm c} - 4 \langle \langle q_{(3)} q_{(1)} \rangle \rangle_{\rm c} - 3 \langle \langle q_{(2)}^2 \rangle \rangle_{\rm c} \\ &+ \langle -18 q_{(2,1,1|2,2)} + 6 q_{(2,1,1|3)} + 4 q_{(3,1|2)} \\ &+ 3 q_{(2,2|2)} - q_{(4)} \rangle \rangle_{\rm c}, \end{split}$$

$$Q = \sum_{i=1}^{M} a_i N_i$$

linear combination of original particle numbers $q_{(...)} = \sum_{i=1}^{M} c_{(...)}^{(i)} n_i$ linear combination of observed particle numbers

Numerical CostFor *n*th order and *M* variables \square F-moment method $\bigcirc \mathcal{O}(M^n)$ \square Our method $\sim \mathcal{O}(M)$

Drastic reduction of numerical cost : private communication with T. Nonaka

検出効率補正への応用

- 最初の提案 MK, Asakawa ('12), Bzdak, Koch ('12)
- **ロ** Fモーメントを使った方法 Bzdak, Koch ('15), Luo ('15)
- ロキュムラント展開を使った方法 MK ('16)

ロ 新しい提案: Fキュムラントを使った方法

T. Nonaka, MK, Esumi, 1702.07106

🔷 手計算シンプル、かつ低数値コスト

一博十

大阪大学公式キャラクタ-

More Efficient Formulas

Nonaka, Esumi, MK, 2017

4th Order Cumulant: History

Proton v.s. Baryon Number Cumulants

MK, Asakawa, 2012; 2012

□ The difference would be large.

\square Reconstruction of $\langle N_B^n \rangle_c$ is possible using the binomial model.

□ The use of binomial model is justified by "isospin randomization."

Baryons in Hadronic Phase

time

Constructing Dynamical Model for Low-E Collisions

Theoretical Challenges

Thermalization

Hydrodynamics

Cascade

RHIC / LHC

hydro. for QGP
early thermalization
(boost invariance)

Low-E Collisions

Initial condition?
 Thresholod of QGP formation
 "Integrated" approach

 Hydro x Cascade

Theoretical Challenges

Cascade

RHIC/LHC

hydro. for QGP
early thermalization
(boost invariance)

Low-E Collisions

Initial condition?
 Thresholod of QGP formation
 "Integrated" approach

 Hydro x Cascade

オーバーラップ時間の影響

Slide from T. Hirano, 2017/9/10, informal meeting

How to Create Initial Condition

Last collision point of hadrons (without BM/MM interaction)

A dynamical initialization Shen, Shenke, 1711.10544

Modelling Low-E Collisions

Controlling EOS by changing interaction in cascade JAM/ Nara, Ohnishi, Stoecker, 2016-

cascade + hydro + cascade
 UrQMD/ Petersen; Steinheimer
 Karpenko+, 2016 3-fluid dynamics

THESEUS/ Blaschke, Ivanov, +, 2016

PHSD + chiral restoration Cassing+, 2016; Palmese+, 2016

Dynamical Initialization Shen, Shenke, Monnai, Heinz, 2017-

Chiral fluid Dumitru+; Nahrgang+, 2014-; Song+, 2016-

Project for An Integrated Model

JAM+hydro(Nagoya) + realistic EoS(QCD-CP??)

discussion by Akamatsu, Asakawa, Hirano, Kitazawa, Morita, Nara, Nonaka, Ohnishi from 2016 Summer

今年度の活動

- 2017/9/10
 - インフォーマルミーティング「動的模型開発」「J-PARC-HI」@KEK東海キャンパス
- 2017/9/11
 - ・研究会「J-PARCエネルギー領域重イオン衝突実験の ダイナミクス」@KEK東海キャンパス
- 2017/12/15
 - J-PARC-HIインフォーマルミーティング@茨城量子 ビーム研究セ

Summary

- BES is one of the hot topics in HIC.
- J-PARC-HI will play an important role in exploring QCD phase structure.
- Searches for QCD-CP / 1st tr. are ongoing.
- Fluctuations are important observables.
- Description of low-E collisions is a theoreticallychallenging subject.

Lepton & Photon: Hierarchical Observation

photons

Time scale: 10⁻¹s

di-lepton yield

