Evolution of Critical Fluctuations / Non-binomial Efficiency correction

Masakiyo Kitazawa (Osaka U.)

GSI Workshop Constraining the Phase Boundary with Data from HIC GSI, Darmstadt, 12/Feb./2018

Contents

- 1. Diffusion
- 2. Evolution of Critical Fluctuations: 2nd order
- 3. Evolution of Critical Fluctuations: 3rd order
- 4. Non-binomial Efficiency Correction
 - Previous methods
 - > New general method

General Review: Asakawa, MK, PPNP (2016)

Non-zero non-Gaussian cumulants have been established!

Have we measured critical fluctuations?

Contents

1. Diffusion

- 2. Evolution of Critical Fluctuations: 2nd order
- 3. Evolution of Critical Fluctuations: 3rd order
- 4. Non-binomial Efficiency Correction
 - Previous methods
 - New general method

MK, Asakawa, Ono, PLB 728, 386 (2014) Sakaida, Asakawa, MK, PRL90, 064911 (2014) MK, NPA942, 65 (2015)

(Non-Interacting) Brownian Particle Model

(Non-Interacting) Brownian Particle Model

4th Order Cumulant

MK+ (2014) MK (2015)

4th Order Cumulant

MK+ (2014) MK (2015)

□ Cumulant at small $\Delta \eta$ is modified toward a Poisson value. **□** Non-monotonic behavior can appear.

Time Evolution of Fluctuations

Is non-monotonic Δη dependence already observed?
 Different initial conditions give rise to different characteristic Δη dependence. → Study initial condition

Finite volume effects: Sakaida+, PRC90 (2015)

Contents

- 1. Diffusion
- 2. Evolution of Critical Fluctuations: 2nd order
- 3. Evolution of Critical Fluctuations: 3rd order
- 4. Non-binomial Efficiency Correction
 - Previous methods
 - New general method

Sakaida, Asakawa, Fujii, MK, PRC95,064905(2017)

Effect of Dynamical Evolution

Hac

Growth of the critical fluctuation is limited by the critical slowing down.

Decay by diffusion

Fluctuations developed at CP are modified by the time evolution in later stage before observation.

μ

Dynamical Evolution of Critical Fluctuations

$\ensuremath{\square}$ Evolution of spatially uniform " σ " mode

See also, Kapusta, Torres-Rincon (2012); Herold, Nahrgang, ... (2015)

Soft Mode of QCD-CP = Conserved Mode

Fujii 2003; Fujii, Ohtani, 2004; Son, Stephanov, 2004

Evolution of baryon number density **Stochastic Diffusion Equation**

$$\partial_t n = D(t) \partial_x^2 n + \partial_x \xi$$

$$\langle \xi(x_1, t_1)\xi(x_2, t_2) \rangle = \chi_2(t) \delta^{(2)}(1-2)$$

 $D(t), \ \chi_2(t)$:parameters characterizing criticality

We study the 2nd order cumulant as well as correlation function.

Parametrizing $D(\tau)$ and $\chi(\tau)$

Critical behavior

- 3D Ising (r,H)
- model H

Berdnikov, Rajagopal (2000) Stephanov (2011); Mukherjee+(2015)

□Temperature dep.

Contents

- 1. Diffusion
- 2. Evolution of Critical Fluctuations: 2nd order
- 3. Evolution of Critical Fluctuations: 3rd order
- 4. Non-binomial Efficiency Correction
 - Previous methods
 - New general method

Murata, MK, in preparation

Analysis of 3rd-order Cumulant Murata, MK in preparation SDE: Higher order cumulants vanish in equi. Include a non-linear effect into SDE $\lambda_3 = \frac{\chi_3}{\chi_2^3}$ $\partial_t n = D(t)\partial_x^2 \frac{\delta\Omega[n]}{\delta n(x)} + \partial_x \xi$ $\Omega[n] = \int dx (\lambda_2 n(x)^2 + \lambda_3 n(x)^3)$ $\begin{aligned} \lambda_3 &= 0\\ \mathsf{SDE} \end{aligned}$ See, Nahrgang, QM2017 Analytic solution at the leading order in λ_3 for $\langle N^3 \rangle_c, \ \langle \delta n(x_1) n(x_2) n(x_3) \rangle$

Time Evolution: Near CP

Murata, MK in preparation

Time Evolution: Near CP

Murata, MK in preparation

Time Evolution: Near CP

Murata, MK in preparation

Contents

- 1. Diffusion
- 2. Evolution of Critical Fluctuations: 2nd order
- 3. Evolution of Critical Fluctuations: 3rd order
- 4. Non-binomial Efficiency Correction
 - Previous methods
 - New general method

Nonaka, Esumi, MK, to appear soon

Efficiency / Efficiency Correction

Experimental detectors have miscounting & misidentification...

Efficiency Correction

Binomial model

Independence of efficiency loss for individual particles

 $\mathbf{P} \mathcal{R}(n;N)$:Binomial distribution func.

Cumulants of n can be represented by those of N

Bialas, Peschanski (1986); MK, Asakawa (2012); Bzdak, Koch (2012)

□ Unfolding

- Construct true distribution func.
- Numerically demanding

Binomial Model

An efficient algorithm for multi-variable system Nonaka, MK, Esumi, PRC2017

By truncating the Taylor exp. at *m*th order, "true" moments up to *m*th order are obtained.

Comments

 $\square \ \langle n^m \rangle_R = \sum_n n^m \mathcal{R}(n;N)$ can be obtained from R(n;N)

- □ The truncation has to be well justified.
- □ Some distributions are automatically truncated.
 - Correct efficiency correction is possible.
 - binomial, hyper-geometric, beta-binomial, ..., binomial with fluctuating probability He, Luo, last Friday
- Compared to unfolding method,
 - numerically cheaper and would be more stable
 - origin of error is more apparent

Extension to multi-variable case is straightforward.

Proton v.s. Baryon Number Cumulants

MK, Asakawa, 2012; 2012

□ The difference would be large.

\square Reconstruction of $\langle N_B^n \rangle_c$ is possible using the binomial model.

- □ The use of binomial model is justified by "isospin randomization."
- And the loss due to momentum cut...

Summary

□ Understanding dynamical aspects of fluctuations is important!
 □ Plenty information in ∆y dependence of cumulants:

- □ Higher order cumulants can behave non-monotonically.
- $\Box \rightarrow$ can be used for constraining parameters.
- Non-monotonicity in 2nd order cumulant is an experimental signal for the existence of the QCD-CP.
- A general algorithm for the efficiency correction:
 Correct reconstruction for non-binomial response.
 Smaller numerical cost than unfolding methods.
- Reonstructing baryon # cumulants is important!
- Let's continue the search for the QCD-CP!

Baryons in Hadronic Phase

time

4th order : w/ Critical Fluctuation

Translating Languages

Brownian particle model

From Bzdak's talk

condition

$$\langle n^m \bar{n}^{\bar{m}} \rangle_{\rm fc} = \kappa_{m\bar{m}} \Delta y F_{m+\bar{m}} (\Delta y/d)$$

$$\begin{split} c_{m\bar{m}}^{0} &= \frac{1}{2} \frac{\partial^{2}}{\partial \Delta y^{2}} \langle n^{m} \bar{n}^{\bar{m}} \rangle_{\rm fc} \Big|_{\Delta y \to 0} = \kappa_{m\bar{m}} \frac{\partial}{\partial \Delta y} F_{m+\bar{m}} (\Delta y/d) \Big|_{\Delta y \to 0} \\ &= \frac{\kappa_{m\bar{m}}}{d} \frac{1}{\sqrt{(m+\bar{m})(2\pi)^{m+\bar{m}-1}}} \\ &\kappa_{m\bar{m}}: \ {\rm F \ cumulants \ at \ initial} \\ d: \ {\rm diffusion \ distance} \end{split}$$