Observing Critical Fluctuations in the Dynamics of Heavy Ion Collisions

Masakiyo Kitazawa

(Osaka U., Osaka / KEK)

with

Marlene Nahrgang

(SUBATECH, Nantes)

TYL/FJPPL, FKPPL workshop, Nara, May. 9, 2018

QCD Phase Diagram

Beam-Energy Scan Program in Heavy-Ion Collisions

Beam-Energy Dependence

Beam-Energy Dependence

High energy

Nuclear transparency net-baryon #: small

Low energy

Baryon stopping net-baryon #: large

Baryon Stopping

rapidity dep. of net-proton

 $\begin{array}{l} \sqrt{s_{_{NN}}}\simeq 4-6 {\rm GeV} \\ {\rm Baryons\ stop\ at\ collision\ point} \\ \sqrt{s_{_{NN}}}>10 {\rm GeV} \\ {\rm Baryons\ pass\ through} \end{array}$

$10 { m GeV}$			$10^2 { m GeV}$			1TeV	$\sqrt{s_{_{NN}}}$
AGS -1996	S 1994	PS -2000		RHIC 2000-		LH 2010	C
RHI 2		IC-BES 2010-	5	creation of quark-gluon plasma, strongly-interacting QGP			
	BES-II 2019-						
NICA 2020-? FAIR 2023-?		~2010 History of HIC = increasing energy					
		2010~ Beam-energy scan Low-energy exp.			Hea	vy-lon	Collisions
J-PARC-I 2025~? 2-6.2 GeV	HI /						

Searh for QCD Phase Structure with Fluctuation Observables

Thermal Fluctuations

□ Phase transition → Large fluctuation
 □ Non-Gaussian fluctuations: good observables of QCD-CP

Stephanov, PRL (2009); Asakawa, Ejiri, MK, PRL (2009)

Review: Asakawa, MK, PPNP90 ('16)

Event-by-Event Fluctuations

Review: Asakawa, MK, PPNP 90 (2016)

Fluctuations can be measured by e-by-e analysis in experiments.

Enhanement in non-Gaussian cumulants has been observed!

Have we measured critical fluctuations?

Time Evolution of Fluctuations

P(N)

Asakawa, Heinz, Muller (2000) Jeon, Koch (2000) Shuryak, Stephanov (2001)

Particle-number fluctuations in a phase space continue to change during the time evolution.

N

 Δy

Detector

Effect of Dynamical Evolution

So far, these problems have not been studied seriously...

Two Groups Working Actively on Dynamics

Nantes

Masakiyo Kitazawa (Osaka University/KEK)

Diffusion in Brownian model 2014~ Thermal blurring effects 2016 Stochastic diffusion model 2017

Marlene Nahrgang (SUBATECH)

Chiral fluid dynamics: model building 2011~ chiral fluid dynamics: applications 2014~ diffusion of non-Gaussianity 2018

Stochastic Diffusion Equation

D Diffusion equation

Sakaida, MK, et al. PR**D95**, 064905 (2017)

$$\partial_{\tau} n = D \partial_{\eta}^2 n$$

Describe a relaxation of a conserved density *n* toward uniform state without fluctuation

□ Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$
$$\langle \xi(\eta_1) \xi(\eta_2) \rangle \sim \chi \delta(\eta_1 - \eta_2)$$

Describe a relaxation toward fluctuating uniform state
 Only Gaussian fluctuations

Review: Asakawa, MK, PPNP 90 (2016)

Evolution of Fluctuation

Sakaida, MK, et al. PR**D95**, 064905 (2017)

Solve the time evolution **analytically** for Gaussian fluctuations

Realistic description of fluctuation dynamics
 New methodology to search for phases of QCD

Summary

Beam-energy scan: world-wide exciting topics!
 Fluctuations: important observables for the search for QCD phase structure

- Proper description of dynamics of fluctuations is necessary, but has not been studied well.
- Osaka-Nantes bilateral collaboration will play a crucial role in resolving these problems!!

Osaka Group

Masakiyo Kitazawa

Yukinao Akamatsu

Nantes Group

Marlene Nahrgang

lurii Karpenko

Marcus Bluhm

and young students...