Pioneering session in KPS meeting, Changwon, Korea, Oct. 25, 2018

QCD Phase Diagram and Future Heavy-Ion Programs

Masakiyo Kitazawa

(Osaka U.)

QCD Phase Diagram

Beam-Energy Scan Program in Heavy-Ion Collisions

Beam-Energy Dependence

Beam-Energy Dependence

High energy

Nuclear transparency net-baryon #: small

Low energy

Baryon stopping net-baryon #: large

Beam-Energy Scan

T, μ from particle yield

Translation to baryon density

J-PARC energy = highest baryon density

Maximum Density

Time evolution in T- ρ plane by JAM

 $E/A = 20 {
m GeV}$ $\sqrt{s_{_{NN}}} \simeq 6 {
m GeV}$

Maximum density 5~10p_o @ J-PARC energy
 Large event-by-event fluctuations?

10GeV		$10^2 { m GeV}$	m / 1 TeV	$\sqrt{s_{_{NN}}}$		
AGS -1996	SPS 1994-2000		RHIC 2000-	LHC 2010-		
	RHIC-BES 2010-		creat	creation of quark-gluon plasma		
BES-II 2019-			st	strongly-interacting QGP		
NICA 2019-		~2010 History of HIC = increasing energy				
FAIR 2025-?	FAIR 2025-?		energy scan nergy exp.	Heavy-Ion Col	lisions	
J-PARC-H 2025~? 2-6.2 GeV						

□ Use of reliable / high-performance RCS & main ring
 □ → Reduce cost and time

Collision Rate

J-PARC-HI: High-luminosity X Fixed target \rightarrow World highest rate $\sim 10^8$ Hz

5-order higher than AGS, SPS

AGS, SPS = J-PARC-HI 1 year 5 min.

High-statistical exp.
 various event selections
 higher order correlations
 search of rare events

Searh for QCD Phase Structure with Fluctuation Observables

Thermal Fluctuations

□ Phase transition → Large fluctuation
 □ Non-Gaussian fluctuations: good observables of QCD-CP

Stephanov, PRL (2009); Asakawa, Ejiri, MK, PRL (2009)

Review: Asakawa, MK, PPNP90 ('16)

Event-by-Event Fluctuations

Review: Asakawa, MK, PPNP 90 (2016)

Fluctuations can be measured by e-by-e analysis in experiments.

Fluctuation and QCD Critical Point

Stephanov, 2009

Enhancement & Suppression of non-Gaussian cumulants has been observed!

Have we measured critical fluctuations?

Rapdity-Window Dep. of Non-Gaussianity

□ Non-Gaussian Cumulants have been observed as a function of rapidity window $\Delta \eta$.

 \square Some results have non-monotonic $\Delta\eta$ dependence.

Diffusion of Fluctuations

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000 Shuryak, Stephanov, 2001

Distributions in $\Delta \eta$ at the final state and early stage are different due to diffusion.

Non-Interacting Brownian Particle System

Non-Interacting Brownian Particle System

Higher order cumulants can behave non-monotonically.

□ Different initial conditions give rise to different characteristic Δη dependence. → Study initial condition

 $\hfill\square$ Non-monotonic behaviors can appear in $\Delta\eta$ dependence.

Finite volume effects: Sakaida+, PRC90 (2015)

Efficiency Correction

Efficiency correction is indispensable in experimental analyses!

Slot Machine Analogy

Slot Machine Analogy

The Binomial Model

MK, Asakawa, 2012; 2012 Bzdak, Koch, 2012

When efficiency for individual particles are **independent**

Caveat: Effects of nonvanishing correlations: Holtzman+ 2016

Multi-efficiency Bin Problem

□ efficiency for proton ≠ anti-proton
 □ efficiency has p_T dependence

STAR, net proton

$$\begin{cases} p_T < 0.8 \text{GeV} \\ \text{TPC ϵ~80\%} \\ p_T > 0.8 \text{GeV} \\ \text{TPC+TOF ϵ~50\%} \end{cases}$$

Multi-variable efficiency correction

Efficient Formulas for Efficiency Correction

Cumulant expansion method мк,2016

$$\begin{split} \langle Q \rangle_{\rm c} &= \langle \! \langle q_{(1)} \rangle \! \rangle_{\rm c}, \\ \langle Q^2 \rangle_{\rm c} &= \langle \! \langle q_{(1)}^2 \rangle \! \rangle_{\rm c} - \langle \! \langle q_{(2)} \rangle \! \rangle_{\rm c}, \\ \langle Q^3 \rangle_{\rm c} &= \langle \! \langle q_{(1)}^3 \rangle \! \rangle_{\rm c} - 3 \langle \! \langle q_{(2)} q_{(1)} \rangle \! \rangle_{\rm c} + \langle \! \langle 3 q_{(2,1|2)} - q_{(3)} \rangle \! \rangle_{\rm c}, \\ \langle Q^4 \rangle_{\rm c} &= \langle \! \langle q_{(1)}^4 \rangle \! \rangle_{\rm c} - 6 \langle \! \langle q_{(2)} q_{(1)}^2 \rangle \! \rangle_{\rm c} + 12 \langle \! \langle q_{(2,1|2)} q_{(1)} \rangle \! \rangle_{\rm c} \\ &+ 6 \langle \! \langle q_{(1,1|2)} q_{(2)} \rangle \! \rangle_{\rm c} - 4 \langle \! \langle q_{(3)} q_{(1)} \rangle \! \rangle_{\rm c} - 3 \langle \! \langle q_{(2)}^2 \rangle \! \rangle_{\rm c} \\ &+ \langle \! \langle - 18 q_{(2,1,1|2,2)} + 6 q_{(2,1,1|3)} + 4 q_{(3,1|2)} \\ &+ 3 q_{(2,2|2)} - q_{(4)} \rangle \! \rangle_{\rm c}, \end{split}$$

Number of terms is drastically reduced!

Substantial reduction of numerical cost

Factorial cumulant method Nonaka, MK, Esumi, 2017

Violation of Binomial Model

General procedure for efficiency correction

Nonaka, MK, Esumi, 2018

$$P_{\rm obs}(\vec{n}) = \sum_{N} R(\vec{n}; \vec{N}) P_{\rm true}(\vec{N})$$

- Efficiency correction for any response matrix R(n,N)
- We must understand the property of the detector

Summary

- Exploring dense medium in relativistic heavy-ion collisions is one of the hottest topics in this field. Many facilities including J-PARC-HI will start future experiments soon!
- Fluctuations are promising observables for the search for the phase structure of QCD. However, further detailed studies are needed.
- High-intensity beam at J-PARC-HI will play a crucial role for the search for the QCD phase diagram in the future.

Impact of Negative Third Moments

Asakawa, Ejiri, MK, 2009

• {•No dependence on any specific models. •Just the sign! No normalization (such as by N_{ch}).

Baryons in Hadronic Phase

