MIAPP, Interface of EFT and Lattice Gauge Theory, Munich, Oct. 30, 2018

SU(3) Thermodynamics and some other topics **Masakiyo Kitazawa** (Osaka University)

FlowQCD Collab.: Asakawa, Hatsuda, Iritani, Suzuki, Yanagihara PRD94,114512(2016); PRD96,111502(2017); arXiv:1803.05656 WHOT-QCD Collab.: Ejiri, Kanaya, Suzuki, Taniguchi, Umeda, ... PRD96,014509(2017); arXiv:1710.10015; arXiv:1711.02262 Iritani, MK, Suzuki, Takaura, in preparation MK, Mogliacci, Kolbe, Horowitz, in preparation

Energy-Momentum Tensor

All components are important physical observables!

$\mathcal{T}_{\mu\nu} : \text{nontrivial observable} \\ \text{on the lattice}$

Definition of the operator is nontrivial because of the explicit breaking of Lorentz symmetry

ex:
$$T_{\mu\nu} = F_{\mu\rho}F_{\nu\rho} - \frac{1}{4}\delta_{\mu\nu}FF$$
$$F_{\mu\nu} =$$

2 Its measurement is extremely noisy due to high dimensionality and etc.

Main Results of This Talk

Contents

Yang-Mills Gradient Flow

□ diffusion equation in 4-dim space
 □ diffusion distance d ~ √8t
 □ "continuous" cooling/smearing
 □ No UV divergence at t>0

Yang-Mills Gradient Flow

 $\partial_t A_{\mu} = D_{\nu} G_{\mu\nu} = \partial_{\nu} \partial_{\nu} A_{\mu} + \cdots$

Applications

scale setting / topological charge / running coupling noise reduction / defining operators / ...

Small Flow-Time Expansion

Luescher, Weisz, 2011 Suzuki, 2013

 $\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i \to 0} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$

an operator at t>0

*****t

 $\tilde{\mathcal{O}}(t,x)$

t→0 limit

remormalized operators of original theory

Constructing EMT 1 Suzuki, 2013 $\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$ $\mathcal{\tilde{O}}(t,x)$ Gauge-invariant dimension 4 operators $\begin{cases} U_{\mu\nu}(t,x) = G_{\mu\rho}(t,x)G_{\nu\rho}(t,x) - \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x) \\ E(t,x) = \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x) \end{cases} \end{cases}$

Constructing EMT 2 Suzuki, 2013

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T^R_{\mu\nu}(x) - \frac{1}{4} \delta_{\mu\nu} T^R_{\rho\rho}(x) \right] + \mathcal{O}(t)$$
$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T^R_{\rho\rho}(x) + \mathcal{O}(t)$$
vacuum subtr.

Remormalized EMT

 $T^{R}_{\mu\nu}(x) = \lim_{t \to 0} \left[c_1(t) U_{\mu\nu}(t, x) + \delta_{\mu\nu} c_2(t) E(t, x)_{\text{subt.}} \right]$

Perturbative Coefficients

Suzuki, PTEP 2013, 083B03 Harlander+, 1808.09837 Iritani, MK, Suzuki, Takaura, in prep.

Choice of the scale of g²

 $c_1(t) = c_1\left(g^2(\mu(t))\right)$

Previous: $\mu_d(t) = 1/\sqrt{8t}$ Improved: $\mu_0(t) = 1/\sqrt{2e^{\gamma_E}t}$

Harlander+ (2018)

Perturbative Coefficients

Choice of the scale of g²

 $c_1(t) = c_1\left(g^2(\mu(t))\right)$

Previous: $\mu_d(t) = 1/\sqrt{8t}$ Improved: $\mu_0(t) = 1/\sqrt{2e^{\gamma_E}t}$

Harlander+ (2018)

Contents

Constructing EMT on the lattice

Thermodynamicsdirect measurement of
expectation values $\langle T_{00} \rangle, \langle T_{ii} \rangle$

Thermodynamics

Fluctuations and Correlations

viscosity, specific heat, ...
$$\begin{split} \eta &= \int_0^\infty dt \langle T_{12}; T_{12} \rangle \\ c_V &\sim \langle \delta T_{00}^2 \rangle \end{split}$$

EMT Correlation Function

Hadron Structure

- flux tube / hadrons
- stress distribution

Stress distribution in $\overline{q}q$ system

Thermodynamics of SU(3) YM

Integral method

 Most conventional / established
 Use themodynamic relations Boyd+ 1995; Borsanyi, 2012

$$p = \frac{T}{V} \ln Z$$
$$T \frac{\partial (p/T^4)}{\partial T} = \frac{\varepsilon - 3p}{T^4}$$

 Gradient-flow method
 Take expectation values of EMT FlowQCD, 2014, 2016

$$\begin{cases}
\varepsilon = \langle T_{00} \rangle \\
p = \langle T_{11} \rangle
\end{cases}$$

 Moving-frame method Giusti, Pepe, 2014~
 Non-equilibrium method
 Use Jarzynski's equality Caselle+, 2016;2018
 Differential method Shirogane+(WHOT-QCD), 2016~

t, a Dependence

••••••
 Budapest-Wuppertal

 Bielefeld

$$\beta = 6.719, 64^3 \times 12$$
 $\beta = 6.941, 96^3 \times 16$
 $\beta = 7.117, 128^3 \times 20$

 $T_{\mu\nu}(t) = c_1(t)U_{\mu\nu}(t) + \delta_{\mu\nu}c_2(t)E(t)$

FlowQCD2016 (c1: 1-loop / c2: 2-loop)

 $\left(egin{array}{c} \sqrt{8t} < a \end{array} : {
m strong} {
m discretization} \ \sqrt{8t} > 1/(2T) : {
m over} {
m smeared} \end{array}
ight.$

 $a < \sqrt{8t} < 1/(2T)$ Stable t dependence

Double Extrapolation $t \rightarrow 0, a \rightarrow 0$

$$\langle T_{\mu\nu}(t) \rangle_{\text{latt}} = \langle T_{\mu\nu}(t) \rangle_{\text{phys}} + \begin{bmatrix} C_{\mu\nu}t \\ C_{\mu\nu}t \end{bmatrix} + \begin{bmatrix} D_{\mu\nu}(t)\frac{a^2}{t} \end{bmatrix}$$

O(t) terms in SFTE lattice discretization

Continuum extrapolation $\langle T_{\mu\nu}(t) \rangle_{\text{cont}} = \langle T_{\mu\nu}(t) \rangle_{\text{lat}} + C(t)a^2$

Small t extrapolation $\langle T_{\mu\nu} \rangle = \langle T_{\mu\nu}(t) \rangle + C't$

Double Extrapolation

Black line: continuum extrapolated

Double Extrapolation

Black line: continuum extrapolated

■ Fitting ranges: ■ range-1: $0.01 < tT^2 < 0.015$ ■ range-2: $0.005 < tT^2 < 0.015$ ■ range-3: $0.01 < tT^2 < 0.02$

Systematic error from the choice of fitting range ≈ statistical error

Temperature Dependence

Error includes

- statistical error
- \succ choice of t range for t $\rightarrow 0$ limit
- \blacktriangleright uncertainty in a $\Lambda_{\rm MS}$

total error <1.5% for T>1.1T_c

 Excellent agreement with integral method
 High accuracy only with ~2000 confs.

Iritani, MK, Suzuki, Takaura, in prep.

t dependence becomes milder with higher order coeff.
1-loop -> 2-loop : about 2% increase

Systematic analysis: μ_0 or μ_d , uncertainty of Λ , fit range Extrapolation func: linear, higher order term in $c_1 (\sim g^6)$

Iritani, MK, Suzuki, Takaura, in prep.

No difference b/w 2- & 3-loops: 2-loop is already good!

Systematic analysis: μ_0 or μ_d , uncertainty of Λ , fit range Extrapolation func: linear, higher order term in c_2 (~g⁸)

Effect of Higher-Order Coeffs.

Systematic error: μ_0 or μ_d , Λ , t $\rightarrow 0$ function, fit range

Effect of higher order $c_1 \& c_2$ (pure gauge) $\begin{cases} \Box e-3p: negligible (<0.5\%) \\ \Box e+p: ~2\% increase \end{cases}$

Gradient Flow for Fermions

$$\partial_t \psi(t, x) = D_\mu D_\mu \psi(t, x)$$
$$\partial_t \bar{\psi}(t, x) = \psi(t, x) \overleftarrow{D}_\mu \overleftarrow{D}_\mu$$
$$D_\mu = \partial_\mu + A_\mu(t, x)$$

Luscher, 2013 Makino, Suzuki, 2014 Taniguchi+ (WHOT) 2016; 2017

Not "gradient" flow but a "diffusion" equation.

Energy-momentum tensor from SFTE Makino, Suzuki, 2014

EMT in QCD

$$T_{\mu\nu}(t,x) = c_1(t)U_{\mu\nu}(t,x) + c_2(t)\delta_{\mu\nu} \left(E(t,x) - \langle E \rangle_0 \right) + c_3(t) \left(O_{3\mu\nu}(t,x) - 2O_{4\mu\nu}(t,x) - \text{VEV} \right) + c_4(t) \left(O_{4\mu\nu}(t,x) - \text{VEV} \right) + c_5(t) \left(O_{5\mu\nu}(t,x) - \text{VEV} \right)$$

$$T_{\mu\nu}(x) = \lim_{t \to 0} T_{\mu\mu}(t, x)$$

$$\begin{split} \tilde{\mathcal{O}}_{3\mu\nu}^{f}(t,x) &\equiv \varphi_{f}(t)\bar{\chi}_{f}(t,x)\left(\gamma_{\mu}\overleftarrow{D}_{\nu}+\gamma_{\nu}\overleftarrow{D}_{\mu}\right)\chi_{f}(t,x),\\ \tilde{\mathcal{O}}_{4\mu\nu}^{f}(t,x) &\equiv \varphi_{f}(t)\delta_{\mu\nu}\bar{\chi}_{f}(t,x)\overleftarrow{\mathcal{D}}\chi_{f}(t,x),\\ \tilde{\mathcal{O}}_{5\mu\nu}^{f}(t,x) &\equiv \varphi_{f}(t)\delta_{\mu\nu}\bar{\chi}_{f}(t,x)\chi_{f}(t,x), \end{split}$$

$$\varphi_f(t) \equiv \frac{-6}{(4\pi)^2 t^2 \left\langle \bar{\chi}_f(t,x) \overleftarrow{D} \chi_f(t,x) \right\rangle_0}$$

$$\begin{aligned} c_1(t) &= \frac{1}{\bar{g}(1/\sqrt{8t})^2} - \frac{1}{(4\pi)^2} \left[9(\gamma - 2\ln 2) + \frac{19}{4} \right], \\ c_2(t) &= \frac{1}{(4\pi)^2} \frac{33}{16}, \\ c_3(t) &= \frac{1}{4} \left\{ 1 + \frac{\bar{g}(1/\sqrt{8t})^2}{(4\pi)^2} \left[2 + \frac{4}{3} \ln(432) \right] \right\}, \\ c_4(t) &= \frac{1}{(4\pi)^2} \bar{g}(1/\sqrt{8t})^2, \\ c_5^f(t) &= -\bar{m}_f(1/\sqrt{8t}) \left\{ 1 + \frac{\bar{g}(1/\sqrt{8t})^2}{(4\pi)^2} \left[4(\gamma - 2\ln 2) + \frac{14}{3} + \frac{4}{3} \ln(432) \right] \right\}. \end{aligned}$$

2+1 QCD EoS from Gradient Flow

Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017)

m_{PS}/m_V ≈0.63

Agreement with integral method except for N_t=4, 6
 N_t=4, 6: No stable extrapolation is possible
 Statistical error is substantially suppressed!

Physical mass: Kanaya+ (WHOT-QCD), 1710.10015

Pressure anisotropy in finite system

Casimir effect

Finite system at nonzero T

MK, Mogliacci, Kolbe, Horowitz, in preparation

 $V = L_x \times L_y \times L_z$ $L_x \ll L_y = L_z$

pressure anisotropy $T_{11} \neq T_{22} = T_{33}$

Two Special Cases with PBC $1/T \ll L_x = L_y = L_z$ $1/T = L_x, \ L_y = L_z$ $\frac{1}{T}$ L_y, L_z $\overline{L}_y, \overline{L}_z$ L_x $T_{11} = T_{22} = T_{33}$ $T_{44} = T_{11}, \ T_{22} = T_{33}$ In conformal ($\Sigma_{\mu}T_{\mu\mu}=0$) $\underline{p_1}$ - 1 $\frac{p_1}{-} = -1$ p_2 p_2

Pressure Anisotropy

MK, Mogliacci, Kolbe, Horowitz, in prep. **Free scalar field**

□ $L_2 = L_3 = \infty$ Mogliacci+, 1807.07871

Pressure Anisotropy

MK, Mogliacci, Kolbe, Horowitz, in prep. **Free scalar field** $\Box L_2 = L_3 = \infty$ Mogliacci+, 1807.07871 **Lattice result**

Periodic BC $N_s^2 x N_x x N_t = 72^2 x N_x x 12$ $N_x = 12, 14, 16, 18$ Only t $\rightarrow 0$ limit (fixed a)

Medium near T_c is remarkably insensitive to finite size! How do we understand??

Contents

Constructing EMT on the lattice

Thermodynamics direct measurement of expectation values $\langle T_{00} \rangle, \langle T_{ii} \rangle$

Thermodynamics

Fluctuations and Correlations

viscosity, specific heat, ...
$$\begin{split} \eta &= \int_0^\infty dt \langle T_{12}; T_{12} \rangle \\ c_V &\sim \langle \delta T_{00}^2 \rangle \end{split}$$

EMT Correlation Function

Hadron Structure

- flux tube / hadrons
- stress distribution

Stress distribution in $\overline{q}q$ system

EMT Correlator: Motivation

□ Transport Coefficient Kubo formula → viscosity $\eta = \int_0^\infty dt \int_0^{1/T} d\tau \int d^3x \langle T_{12}(x, -i\tau)T_{12}(0, t) \rangle$

Karsch, Wyld, 1987 Nakamura, Sakai, 2005 Meyer; 2007, 2008

Borsanyi+, 2018 Astrakhantsev+, 2018

Energy/Momentum Conservation $\langle \bar{T}_{0\mu}(\tau) \bar{T}_{\rho\sigma}(0) \rangle$: τ-independent constant

■ Fluctuation-Response Relations $c_V = \frac{\langle \delta E^2 \rangle}{VT^2}$ $E + p = \frac{\langle \bar{T}_{01}^2 \rangle}{VT} = \frac{\langle \bar{T}_{11} \bar{T}_{00} \rangle}{VT}$

□ τ-independent plateau in all channels → conservation law
 □ Confirmation of fluctuation-response relations
 □ New method to measure c_V
 □ Similar result for (41;41) channel: Borsanyi+, 2018

Perturbative analysis: Eller, Moore, 2018

Fluctuation-Response Relations

 $\langle T_{44}(\tau)T_{44}(0)\rangle$

$$\langle T_{41}(\tau)T_{41}(0) \rangle$$

New measurement of c_v

c_V/T^3							
$T/T_{\rm c}$	$C_{44;44}(\tau_m)$	Ref.[19]	Ref.[11]	ideal gas			
1.68	$17.7(8)(^{+2.1}_{-0.4})$	$22.8(7)^*$	17.7	21.06			
2.24	$17.5(0.8)(^{+0}_{-0.1})$	$17.9(7)^{**}$	18.2	21.06			

Confirmation of FRR $E + p = \frac{\langle \bar{T}_{01}^2 \rangle}{VT} = \frac{\langle \bar{T}_{11} \bar{T}_{00} \rangle}{VT}$

2+1 QCD: Taniguchi+ (WHOT-QCD), 1711.02262

Contents

Constructing EMT on the lattice

Thermodynamics direct measurement of expectation values $\langle T_{00} \rangle, \langle T_{ii} \rangle$

Thermodynamics

Fluctuations and Correlations

viscosity, specific heat, ... $\eta = \int_0^\infty dt \langle T_{12}; T_{12} \rangle$ $c_V \sim \langle \delta T_{00}^2 \rangle$

EMT Correlation Function

Hadron Structure

flux tube / hadrons

Stress distribution in $\overline{q}q$ system

Stress = Force per Unit Area

Stress = Force per Unit Area

Pressure

 $\vec{P} = P\vec{n}$

Stress = Force per Unit Area

Pressure

Generally, F and n are not parallel

Force

Local interaction

Faraday 1839

Maxwell Stress

(in Maxwell Theory)

$$\sigma_{ij} = \varepsilon_0 E_i E_j + \frac{1}{\mu_0} B_i B_j - \frac{1}{2} \delta_{ij} \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)$$

$$\vec{E} = (E, 0, 0)$$
$$T_{ij} = \begin{pmatrix} -E^2 & 0 & 0 \\ 0 & E^2 & 0 \\ 0 & 0 & E^2 \end{pmatrix}$$

Parallel to field: Pulling
 Vertical to field: Pushing

Maxwell

pushing

hDulli

Ε

(in Maxwell Theory)

Definite physical meaning

Distortion of field, line of the field

Propagation of the force as local interaction

Quark-Anti-quark system

Formation of the flux tube \rightarrow confinement

Previous Studies on Flux Tube

 Potential
 Action density
 Color-electric field so many studies...

Cardoso+ (2013)

Stress Tensor in $Q\overline{Q}$ System

Yanagihara+, 1803.05656 PLB, in press Lattice simulation SU(3) Yang-Mills a=0.029 fm R=0.69 fm t/a²=2.0

pushing

pulling

Definite physical meaning
Distortion of field, line of the field
Propagation of the force as local interaction
Manifestly gauge invariant

SU(3) YM vs Maxwell

SU(3) Yang-Mills (quantum)

Maxwell (classical)

Propagation of the force is clearly different in YM and Maxwell theories!

Lattice Setup

- SU(3) Yang-Mills (Quenched)
 Wilson gauge action
 Clover operator
- APE smearing / multi-hit
- fine lattices (a=0.029-0.06 fm)
 continuum extrapolation

■ Simulation: bluegene/Q@KEK

Yanagihara+, 1803.05656

β	$a [\mathrm{fm}]$	$N_{ m size}^4$	$N_{\rm conf}$		R/a	
6.304	0.058	48^{4}	140	8	12	16
6.465	0.046	48^{4}	440	10	—	20
6.513	0.043	48^{4}	600	_	16	_
6.600	0.038	48^{4}	1,500	12	18	24
6.819	0.029	64^{4}	$1,\!000$	16	24	32
		R	[fm]	0.46	0.69	0.92

Continuum Extrapolation at mid-point

 \Box a \rightarrow 0 extrapolation with fixed t

t→0 Extrapolation at mid-point

□ $a \rightarrow 0$ extrapolation with fixed t □ Then, t $\rightarrow 0$ with three ranges

Stress Distribution on Mid-Plane

From rotational symm. & parity

EMT is diagonalized in Cylindrical Coordinates

$$T_{cc'}(r) = \begin{pmatrix} T_{rr} \\ T_{\theta\theta} \\ T_{zz} \\ T_{44} \end{pmatrix}$$

 $T_{rr} = \vec{e}_r^T T \vec{e}_r$ $T_{\theta\theta} = \vec{e}_{\theta}^T T \vec{e}_{\theta}$

Degeneracy in Maxwell theory

 $\vec{e_r}$

'Q,

 $T_{rr} = T_{\theta\theta} = -T_{zz} = -T_{44}$

Mid-Plane

Degeneracy: $T_{44} \simeq T_{zz}, \quad T_{rr} \simeq T_{\theta\theta}$ Separation: $T_{zz} \neq T_{rr}$ Nonzero trace anomaly $\sum T_{cc} \neq 0$

Mid-Plane

Degeneracy: $T_{44} \simeq T_{zz}, \quad T_{rr} \simeq T_{\theta\theta}$ Separation: $T_{zz} \neq T_{rr}$ Nonzero trace anomaly $\sum T_{cc} \neq 0$

Force from Stress

 $F_{\rm stress} = \int_{\rm mid.} d^2 x T_{zz}(x)$

Newton 1687

Faraday 1839

Abelian-Higgs Model

Yanagihara, Iritani, MK, in prep.

Abelian-Higgs Model

 $\mathcal{L}_{AH} = -\frac{1}{4} \overline{F_{\mu\nu}^2 + |(\partial_\mu + igA_\mu)\phi|^2 - \lambda(\phi^2 - v^2)^2}$

GL parameter: $\kappa = \sqrt{\lambda}/g$ $\begin{cases}
\Box \text{ type-I: } \kappa < 1/\sqrt{2} \\
\Box \text{ type-II: } \kappa > 1/\sqrt{2} \\
\Box \text{ Bogomol'nyi bound:} \\
\kappa = 1/\sqrt{2}
\end{cases}$

Infinitely long tube degeneracy $T_{zz}(r) = T_{44}(r)$ Luscher, 1981 momentum conservation $\frac{d}{dr}(rT_{rr}) = T_{\theta\theta}$

Stress Tensor in AH Model infinitely-long flux tube

Bogomol'nyi bound : $\kappa = 1/\sqrt{2}$

 $T_{rr} = T_{\theta\theta} = 0$

de Vega, Schaposnik, PR**D14**, 1100 (1976).

Stress Tensor in AH Model infinitely-long flux tube

No degeneracy bw T_{rr} & T_{θθ}
 T_{θθ} changes sign

conservation law $\frac{d}{dr}(rT_{rr}) = T_{\theta\theta}$

Stress Tensor in AH Model infinitely-long flux tube

No degeneracy bw T_{rr} & T_{θθ}
 T_{θθ} changes sign

Inconsistent with lattice result $T_{rr} \simeq T_{ heta heta}$

Left: $T_{zz}(o)$, $T_{rr}(o)$ reproduce lattice result **Right:** A parameter satisfying $T_{rr} \approx T_{\theta\theta}$

> No parameter can reproduce lattice data at R=0.92fm.

Summary

The analysis of energy-momentum tensor on the lattice is now available, and various stuides are ongoing!
 gradient flow method
 higher-order perturbative coefficients

Summary

The analysis of energy-momentum tensor on the lattice is now available, and various stuides are ongoing!
 gradient flow method
 higher-order perturbative coefficients

 $\begin{tabular}{|c|c|c|c|c|} \hline So many future studies \\ \hline So many future studies \\ \hline Flux tube at nonzero temperature \\ \hline fux tube / hadrons \\ \hline fux tube / h$

EMT on the Lattice: Conventional

 $\begin{aligned} & \text{Lattice EMT Operator}_{\text{Caracciolo+, 1990}} \\ & T_{\mu\nu} = Z_6 T_{\mu\nu}^{[6]} + Z_3 T_{\mu\nu}^{[3]} + Z_1 \left(T_{\mu\nu}^{[1]} - \left\langle T_{\mu\nu}^{[1]} \right\rangle \right) \\ & T_{\mu\nu}^{[6]} = (1 - \delta_{\mu\nu}) F_{\mu\rho}^a F_{\nu\rho}^a, \ T_{\mu\nu}^{[3]} = \delta_{\mu\nu} \left(F_{\mu\rho}^a F_{\nu\rho}^a - \frac{1}{4} F_{\rho\sigma}^a F_{\rho\sigma}^a \right), \ T_{\mu\nu}^{[1]} = \delta_{\mu\nu} F_{\rho\sigma}^a F_{\rho\sigma}^a \end{aligned}$

\Box Fit to thermodynamics: Z_3, Z_1

Shifted-boundary method: Z₆, Z₃ Giusti, Meyer, 2011; 2013; Giusti, Pepe, 2014~; Borsanyi+, 2018

Multi-level algorithm

effective in reducing statistical error of correlator

Meyer, 2007; Borsanyi, 2018; Astrakhantsev+, 2018

Gradient Flow Method

Take Extrapolation (t,a) \rightarrow (0,0) $\langle T_{\mu\nu}(t) \rangle_{\text{latt}} = \langle T_{\mu\nu}(t) \rangle_{\text{phys}} + \begin{bmatrix} C_{\mu\nu}t \\ D_{\mu\nu}t \\ t \end{bmatrix} + \begin{bmatrix} 0 \\ t \end{bmatrix} + \cdots$ O(t) terms in SFTE lattice discretization

Numerical Simulation

FlowQCD, PR**D94**, 114512 (2016)

- Expectation values of T_{µv}
 SU(3) YM theory
 Wilson gauge action
 Parameters:
 - N_t = 12, 16, 20-24
 - aspect ratio 5.3<N_s/N_t<8
 - 1500~2000 configurations

■ Scale from gradient flow $\rightarrow aT_c \text{ and } a\Lambda_{MS}$ <u>FlowQCD, 1503.06516</u>

T/T_c	β	N _s	N_{τ}	Configurations
0.93	6.287	64	12	2125
	6.495	96	16	1645
	6.800	128	24	2040
1.02	6.349	64	12	2000
	6.559	96	16	1600
	6.800	128	22	2290
1.12	6.418	64	12	1875
	6.631	96	16	1580
	6.800	128	20	2000
1.40	6.582	64	12	2080
	6.800	128	16	900
	7.117	128	24	2000
1.68	6.719	64	12	2000
	6.941	96	16	1680
	7.117	128	20	2000
2.10	6.891	64	12	2250
	7.117	128	16	840
	7.296	128	20	2040
2.31	7.200	96	16	1490
	7.376	128	20	2020
	7.519	128	24	1970
2.69	7.086	64	12	2000
	7.317	96	16	1560
	7.500	128	20	2040

Fermion Propagator

$$S(t, x; s, y) = \langle \chi(t, x) \overline{\chi}(s, y) \rangle$$
$$= \sum_{v, w} K(t, x; 0, v) S(v, w) K(s, y; 0, w)^{\dagger}$$

$$\left(\partial_t - D_\mu D_\mu\right) K(t, x) = 0$$

- propagator of flow equation
- Inverse propagator is needed

N_f=2+1 QCD Thermodynamics

Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017)

- N_f=2+1 QCD, Iwasaki gauge + NP-clover
- m_{PS}/m_V ≈0.63 / almost physical s quark mass
- T=o: CP-PACS+JLQCD (ß=2.05, 28³x56, a≈o.o7fm)
- T>0: 32³xN_t, N_t = 4, 6, ..., 14, 16):
- T≈174-697MeV
- $t \rightarrow o$ extrapolation only (No continuum limit)

Preparing Static $Q\overline{Q}$

$$V(R) = -\lim_{T \to \infty} \log \langle W(R,T) \rangle$$
$$\langle O(x) \rangle_{Q\bar{Q}} = \lim_{T \to \infty} \frac{\langle \delta O(x) \delta W(R,T) \rangle}{\langle W(R,T) \rangle}$$

APE smearing for spatial links
 Multi-hit for temporal links
 No gradient flow for W(R,T)

Ground State Saturation

β=6.819 (a=0.029 fm), R=0.46 fm

Appearance of plateau for t/a²<4, T/a>15

Grand state saturation under control

Ground State Saturation

β=6.819 (a=0.029 fm), R=0.46 fm

Appearance of plateau for t/a²<4, T/a>15

Grand state saturation under control

Abelian-Higgs Model

Abelian-Higgs Model

$$\mathcal{L}_{AH} = -\frac{1}{4}F_{\mu\nu}^2 + |(\partial_{\mu} + igA_{\mu})\phi|^2 - \lambda(\phi^2 - v^2)^2$$

GL parameter: $\kappa=\sqrt{\lambda}/g$

 $\begin{cases} \Box \text{ type-I}: \quad \kappa < 1/\sqrt{2} \\ \Box \text{ type-II}: \quad \kappa > 1/\sqrt{2} \\ \Box \text{ Bogomol'nyi bound}: \\ \kappa = 1/\sqrt{2} \end{cases}$

Infinitely long tube \Box degeneracy $T_{zz}(r) = T_{44}(r)$ Luscher, 1981 \Box conservation law $\frac{d}{dr}(rT_{rr}) = T_{\theta\theta}$