

Force

Action-at-a-distance

1687

Newton
$$F = -G \frac{m_1 m_2}{r^2}$$
 $F = -\frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$

Local interaction

Faraday 1839

Stress = Force per Unit Area

Stress = Force per Unit Area

Pressure

$$\vec{P} = P\vec{n}$$

Stress = Force per Unit Area

Pressure

$$\vec{P} = P\vec{n}$$

In thermal medium

$$T_{ij} = P\delta_{ij}$$

Generally, F and n are not parallel

$$\frac{F_i}{S} = \sigma_{ij} n_j$$

Stress Tensor

$$\sigma_{ij} = -T_{ij}$$

Landau Lifshitz

Maxwell Stress

(in Maxwell Theory)

$$\sigma_{ij} = \varepsilon_0 E_i E_j + \frac{1}{\mu_0} B_i B_j - \frac{1}{2} \delta_{ij} \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)$$

Maxwell

$$\vec{E} = (E, 0, 0)$$

$$T_{ij} = \left(egin{array}{cccc} -E^2 & 0 & 0 \ 0 & E^2 & 0 \ 0 & 0 & E^2 \end{array}
ight)$$

Parallel to field: PullingVertical to field: Pushing

Maxwell Stress

(in Maxwell Theory)

$$T_{ij}v_j^{(k)} = \lambda_k v_i^{(k)}$$
$$(k = 1, 2, 3)$$

length: $\sqrt{|\lambda_k|}$

Definite physical meaning

- Distortion of field, line of the field
- Propagation of the force as local interaction

Quark-Anti-quark system

Formation of the flux tube -> confinement

Previous Studies on Flux Tube

- □ Potential
- ☐ Action density
- ☐ Color-electric field

so many studies...

Cea+ (2012)

Cardoso+ (2013)

Stress Tensor in QQ System

Yanagihara+, 1803.05656 PLB, in press

Lattice simulation SU(3) Yang-Mills

a=0.029 fm

R=0.69 fm

 $t/a^2 = 2.0$

Definite physical meaning

- Distortion of field, line of the field
- Propagation of the force as local interaction
- Manifestly gauge invariant

SU(3) YM vs Maxwell

Maxwell (classical)

Propagation of the force is clearly different in YM and Maxwell theories!

Energy-Momentum Tensor

All components are important physical observables!

$T_{\mu \nu}$: nontrivial observable on the lattice

Definition of the operator is nontrivial because of the explicit breaking of Lorentz symmetry

2 Its measurement is extremely noisy due to high dimensionality and etc.

Thermodynamics

direct measurement of expectation values

 $\langle T_{00} \rangle, \langle T_{ii} \rangle$

If we have

Fluctuations and Correlations

viscosity, specific heat, ...

$$c_V \sim \langle \delta T_{00}^2 \rangle$$

$$\eta = \langle T_{12}; T_{12} \rangle$$

- > flux tube / hadrons
- EM form factors

Hadron Structure

- > vacuum configuration
- > mixed state on 1st transition

Vacuum Structure

Contents

Constructing EMT on the lattice with gradient flow

Thermodynamics

direct measurement of expectation values $\langle T_{00}
angle, \langle T_{ii}
angle$

Thermodynamics

Fluctuations and Correlations

viscosity, specific heat, ... $\eta = \int_0^\infty dt \langle T_{12}; T_{12} \rangle$ $c_V \sim \langle \delta T_{00}^2 \rangle$

EMT Correlation Function

Hadron Structure

- · flux tube / hadrons
- · stress distribution

Stress distribution in $\overline{q}q$ system

Yang-Mills Gradient Flow

$$\frac{\partial}{\partial t} A_{\mu}(t, x) = -\frac{\partial S_{\text{YM}}}{\partial A_{\mu}}$$

Luscher 2010 Narayanan, Neuberger, 2006 Luscher, Weiss, 2011

$$A_{\mu}(0,x) = A_{\mu}(x)$$

t: "flow time" dim:[length²]

$$\partial_t A_{\mu} = D_{\nu} G_{\mu\nu} = \partial_{\nu} \partial_{\nu} A_{\mu} + \cdots$$

- ☐ diffusion equation in 4-dim space
- $lue{}$ diffusion distance $d \sim \sqrt{8t}$
- "continuous" cooling/smearing
- No UV divergence at t>0

Yang-Mills Gradient Flow

$$\frac{\partial}{\partial t} A_{\mu}(t, x) = -\frac{\partial S_{\text{YM}}}{\partial A_{\mu}}$$

Luscher 2010 Narayanan, Neuberger, 2006 Luscher, Weiss, 2011

$$A_{\mu}(0,x) = A_{\mu}(x)$$

t: "flow time" dim:[length²]

$$\partial_t A_{\mu} = D_{\nu} G_{\mu\nu} = \partial_{\nu} \partial_{\nu} A_{\mu} + \cdots$$

Applications

scale setting / topological charge / running coupling noise reduction / defining operators / ...

Small Flow-Time Expansion

Luescher, Weisz, 2011 Suzuki, 2013

$$\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$$

an operator at t>0

remormalized operators of original theory

Suzuki, 2013

$$\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$$

☐ Gauge-invariant dimension 4 operators

$$\begin{cases} U_{\mu\nu}(t,x) = G_{\mu\rho}(t,x)G_{\nu\rho}(t,x) - \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x) \\ E(t,x) = \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x) \end{cases}$$

Constructing EMT 2

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T_{\mu\nu}^R(x) - \frac{1}{4} \delta_{\mu\nu} T_{\rho\rho}^R(x) \right] + \mathcal{O}(t)$$

$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T_{\rho\rho}^R(x) + \mathcal{O}(t)$$

vacuum subtr.

Remormalized EMT

$$T_{\mu\nu}^{R}(x) = \lim_{t\to 0} \left[c_1(t)U_{\mu\nu}(t,x) + \delta_{\mu\nu}c_2(t)E(t,x)_{\text{subt.}} \right]$$

Perturbative Coefficients

$$T_{\mu\nu}(t) = c_1(t)U_{\mu\nu}(t) + \delta_{\mu\nu}c_2(t)E(t)$$

	LO	1 -loop	2-loop	3-loop
$c_1(t)$	O	0		
$c_2(t)$	X zero	0	O	

Suzuki, PTEP 2013, 083B03 Harlander+, 1808.09837 Iritani, MK, Suzuki, Takaura, in prep.

☐ Choice of the scale of g²

Suzuki (2013)

$$c_1(t) = c_1 \left(g^2 \left(\mu(t) \right) \right)$$

Previous: $\mu_d(t) = 1/\sqrt{8t}$

Improved: $\mu_0(t) = 1/\sqrt{2e^{\gamma_E}t}$

Harlander+ (2018)

Perturbative Coefficients

	LO	1 -loop	2-loop	3-loop
$c_1(t)$	O	O	0	
$c_2(t)$	X zero	0	0	O

Suzuki, PTEP 2013, 083B03 Harlander+, 1808.09837 Iritani, MK, Suzuki, Takaura, in prep.

Iritani, MK, Suzuki, Takaura, in prep.

Suzuki (2013) Harlander+(2018)

Choice of the scale of g²

$$c_1(t) = c_1 \left(g^2 \left(\mu(t) \right) \right)$$

Previous: $\mu_d(t) = 1/\sqrt{8t}$

Improved: $\mu_0(t) = 1/\sqrt{2e^{\gamma_E}t}$

Harlander+ (2018)

Contents

Constructing EMT on the lattice

Thermodynamics

direct measurement of expectation values $\langle T_{00} \rangle, \langle T_{ii} \rangle$

Thermodynamics

Fluctuations and Correlations

viscosity, specific heat, ... $\eta = \int_0^\infty dt \langle T_{12}; T_{12} \rangle$ $c_V \sim \langle \delta T_{00}^2 \rangle$

EMT Correlation Function

Hadron Structure

· flux tube / hadrons

Stress distribution in $\overline{q}q$ system

Thermodynamics of SU(3) YM

- □Integral method
 - Most conventional / established
 - Use themodynamic relations Boyd+ 1995; Borsanyi, 2012

$$p = \frac{T}{V} \ln Z$$
$$T \frac{\partial (p/T^4)}{\partial T} = \frac{\varepsilon - 3p}{T^4}$$

- Gradient-flow method
 - Take expectation values of EMT FlowQCD, 2014, 2016

$$\begin{cases} \varepsilon = \langle T_{00} \rangle \\ p = \langle T_{11} \rangle \end{cases}$$

- Moving-frame method Giusti, Pepe, 2014~
- Non-equilibrium method
 - Use Jarzynski's equality Caselle+, 2016;2018
- Differential method
 Shirogane+(WHOT-QCD), 2016~

t, a Dependence

Bielefeld
$$\beta = 6.719, 64^{3} \times 12$$

$$\beta = 6.941, 96^{3} \times 16$$

$$T_{\mu\nu}(t) = c_1(t)U_{\mu\nu}(t) + \delta_{\mu\nu}c_2(t)E(t)$$

$$\beta = 7.117, 128^3 \times 20$$

Budapest-Wuppertal

FlowQCD2016 (c1: 1-loop / c2: 2-loop)

$$\sqrt{8t} < a :$$
 strong discretization $\sqrt{8t} > 1/(2T) :$ over smeared

$$a < \sqrt{8t} < 1/(2T)$$

Stable t dependence

Double Extrapolation

 $t \rightarrow 0, a \rightarrow 0$

$$\langle T_{\mu\nu}(t)\rangle_{\rm latt} = \langle T_{\mu\nu}(t)\rangle_{\rm phys} + C_{\mu\nu}t + \left[D_{\mu\nu}(t)\frac{a^2}{t}\right]$$

O(t) terms in SFTE lattice discretization

$$\langle T_{\mu\nu}(t)\rangle_{\rm cont} = \langle T_{\mu\nu}(t)\rangle_{\rm lat} + C(t)a^2$$

Small t extrapolation

$$\langle T_{\mu\nu}\rangle = \langle T_{\mu\nu}(t)\rangle + C't$$

Double Extrapolation

Black line: continuum extrapolated

Double Extrapolation

Black line: continuum extrapolated

☐ Fitting ranges:

 \square range-1: $0.01 < tT^2 < 0.015$

 \square range-2: $0.005 < tT^2 < 0.015$

 \square range-3: $0.01 < tT^2 < 0.02$

Systematic error from the choice of fitting range

≈ statistical error

Temperature Dependence

Error includes

- > statistical error
- \triangleright choice of t range for t $\rightarrow 0$ limit
- \succ uncertainty in a $\Lambda_{\sf MS}$

total error <1.5% for $T>1.1T_c$

- Excellent agreement with integral method
- ☐ High accuracy only with ~2000 confs.

Higher Order Coefficient: ε+p

NLO (1-loop)

N²LO (2-loop)

Iritani, MK, Suzuki, Takaura, in prep.

- t dependence becomes milder with higher order coeff.
- □ 1-loop → 2-loop : about 2% increase
- \square Systematic analysis: μ_0 or μ_d , uncertainty of Λ , fit range
- \blacksquare Extrapolation func: linear, higher order term in c_1 (~g⁶)

Higher Order Coefficient: ε-3p

N²LO (2-loop)

N3LO (3-loop)

Iritani, MK, Suzuki, Takaura, in prep.

- No difference b/w 2- & 3-loops: 2-loop is already good!
- \blacksquare Systematic analysis: μ_0 or μ_d , uncertainty of Λ , fit range
- \blacksquare Extrapolation func: linear, higher order term in c_2 (~g8)

Effect of Higher-Order Coeffs.

Iritani, MK, Suzuki, Takaura, in prep.

Systematic error: μ_0 or μ_d , Λ , $t \rightarrow 0$ function, fit range

Effect of higher order c₁ & c₂ (pure gauge)

□ e-3p: negligible (<0.5%)□ e+p: ~2% increase

Gradient Flow for Fermions

$$\partial_t \psi(t, x) = D_{\mu} D_{\mu} \psi(t, x)$$
$$\partial_t \bar{\psi}(t, x) = \psi(t, x) \overleftarrow{D}_{\mu} \overleftarrow{D}_{\mu}$$
$$D_{\mu} = \partial_{\mu} + A_{\mu}(t, x)$$

Luscher, 2013 Makino, Suzuki, 2014 Taniguchi+ (WHOT) 2016; 2017

- □ Not "gradient" flow but a "diffusion" equation.
- Divergence in field renormalization of fermions.
- All observables are finite at t>0 once Z(t) is fixed.

$$\tilde{\psi}(t,x) = Z(t)\psi(t,x)$$

Energy-momentum tensor from SFTE Makino, Suzuki, 2014

EMT in QCD

$$T_{\mu\nu}(t,x) = c_1(t)U_{\mu\nu}(t,x) + c_2(t)\delta_{\mu\nu} \left(E(t,x) - \langle E \rangle_0 \right)$$

$$+ c_3(t) \left(O_{3\mu\nu}(t,x) - 2O_{4\mu\nu}(t,x) - \text{VEV} \right)$$

$$+ c_4(t) \left(O_{4\mu\nu}(t,x) - \text{VEV} \right) + c_5(t) \left(O_{5\mu\nu}(t,x) - \text{VEV} \right)$$

$$T_{\mu\nu}(x) = \lim_{t \to 0} T_{\mu\mu}(t,x)$$

$$\widetilde{\mathcal{O}}_{3\mu\nu}^{f}(t,x) \equiv \varphi_{f}(t)\bar{\chi}_{f}(t,x) \left(\gamma_{\mu} \overleftrightarrow{D}_{\nu} + \gamma_{\nu} \overleftrightarrow{D}_{\mu}\right) \chi_{f}(t,x),
\widetilde{\mathcal{O}}_{4\mu\nu}^{f}(t,x) \equiv \varphi_{f}(t)\delta_{\mu\nu}\bar{\chi}_{f}(t,x) \overleftrightarrow{\mathcal{D}} \chi_{f}(t,x),
\widetilde{\mathcal{O}}_{5\mu\nu}^{f}(t,x) \equiv \varphi_{f}(t)\delta_{\mu\nu}\bar{\chi}_{f}(t,x)\chi_{f}(t,x),$$

$$arphi_f(t) \equiv rac{-6}{(4\pi)^2 t^2 \left\langle \bar{\chi}_f(t,x) \overleftrightarrow{D} \chi_f(t,x) \right\rangle_0}.$$

$$c_{1}(t) = \frac{1}{\bar{g}(1/\sqrt{8t})^{2}} - \frac{1}{(4\pi)^{2}} \left[9(\gamma - 2\ln 2) + \frac{19}{4} \right],$$

$$c_{2}(t) = \frac{1}{(4\pi)^{2}} \frac{33}{16},$$

$$c_{3}(t) = \frac{1}{4} \left\{ 1 + \frac{\bar{g}(1/\sqrt{8t})^{2}}{(4\pi)^{2}} \left[2 + \frac{4}{3}\ln(432) \right] \right\},$$

$$c_{4}(t) = \frac{1}{(4\pi)^{2}} \bar{g}(1/\sqrt{8t})^{2},$$

$$c_{5}^{f}(t) = -\bar{m}_{f}(1/\sqrt{8t}) \left\{ 1 + \frac{\bar{g}(1/\sqrt{8t})^{2}}{(4\pi)^{2}} \left[4(\gamma - 2\ln 2) + \frac{14}{3} + \frac{4}{3}\ln(432) \right] \right\}$$

2+1 QCD EoS from Gradient Flow

Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017) m_{PS}/m_V ≈0.63

- \square Agreement with integral method except for N_t=4, 6
- \square N_t=4, 6: No stable extrapolation is possible
- Statistical error is substantially suppressed!

Physical mass: Kanaya+ (WHOT-QCD), 1710.10015

Pressure anisotropy in finite system

Casimir effect

Finite system at nonzero T

MK, Mogliacci, Kolbe, Horowitz, in preparation

$$V = L_x \times L_y \times L_z$$
$$L_x \ll L_y = L_z$$

pressure anisotropy

$$T_{11} \neq T_{22} = T_{33}$$

Two Special Cases with PBC

Pressure Anisotropy

MK, Mogliacci, Kolbe, Horowitz, in prep.

Free scalar field

$$\Box L_2 = L_3 = \infty$$
Mogliacci+, 1807.07871

Pressure Anisotropy

MK, Mogliacci, Kolbe, Horowitz, in prep.

Free scalar field

$$\Box L_2 = L_3 = \infty$$
Mogliacci+, 1807.07871

Lattice result

- Periodic BC
- \square $N_s^2 \times N_x \times N_t = 72^2 \times N_x \times 12$
- \square N_x=12, 14, 16, 18
- \square Only t $\rightarrow 0$ limit (fixed a)

Medium near T_c is remarkably insensitive to finite size! How do we understand??

Contents

Constructing EMT on the lattice

Thermodynamics

direct measurement of expectation values

Thermodynamics

Fluctuations and Correlations

viscosity, specific heat, ...

 $\eta = \int_0^\infty dt \langle T_{12}; T_{12} \rangle$ $c_V \sim \langle \delta T_{00}^2 \rangle$

EMT Correlation Function

Hadron Structure

- · flux tube / hadrons

Stress distribution in qq system

EMT Correlator: Motivation

☐ Transport Coefficient

Kubo formula → viscosity

$$\eta = \int_0^\infty dt \int_0^{1/T} d\tau \int d^3x \langle T_{12}(x, -i\tau) T_{12}(0, t) \rangle$$

Karsch, Wyld, 1987 Nakamura, Sakai, 2005 Meyer; 2007, 2008

...

Borsanyi+, 2018 Astrakhantsev+, 2018

■ Energy/Momentum Conservation

$$\langle \bar{T}_{0\mu}(\tau) \bar{T}_{\rho\sigma}(0) \rangle$$
 : τ -independent constant

☐ Fluctuation-Response Relations

$$c_V = \frac{\langle \delta E^2 \rangle}{VT^2}$$
 $E + p = \frac{\langle \bar{T}_{01}^2 \rangle}{VT} = \frac{\langle \bar{T}_{11}\bar{T}_{00} \rangle}{VT}$

EMT Euclidean Correlator

FlowQCD, PR **D96**, 111502 (2017)

$$\langle \bar{T}_{44}(\tau)\bar{T}_{44}(0)\rangle$$

$$\langle \bar{T}_{44}(\tau)\bar{T}_{11}(0)\rangle$$

$$\langle \bar{T}_{41}(\tau)\bar{T}_{41}(0)\rangle$$

- \Box τ -independent plateau in all channels \Rightarrow conservation law
- Confirmation of fluctuation-response relations
- New method to measure c_v
 - ☐ Similar result for (41;41) channel: Borsanyi+, 2018
 - ☐ Perturbative analysis: Eller, Moore, 2018

Fluctuation-Response Relations

$$\langle T_{44}(\tau)T_{44}(0)\rangle$$

$\langle T_{41}(\tau)T_{41}(0)\rangle$

New measurement of cv

c_V/T^3						
$T/T_{ m c}$	$C_{44;44}(\tau_m)$	Ref.[19]	Ref.[11]	ideal gas		
1.68	(/ (-0.4/	22.8(7)*	17.7	21.06		
2.24	$17.5(0.8)(^{+0}_{-0.1})$	$17.9(7)^{**}$	18.2	21.06		

Confirmation of FRR

$$E + p = \frac{\langle \bar{T}_{01}^2 \rangle}{VT} = \frac{\langle \bar{T}_{11}\bar{T}_{00} \rangle}{VT}$$

2+1 QCD:

Taniguchi+ (WHOT-QCD), 1711.02262

Contents

Constructing EMT on the lattice

Thermodynamics

direct measurement of expectation values $\langle T_{00}
angle, \langle T_{ii}
angle$

Thermodynamics

Fluctuations and Correlations

viscosity, specific heat, ... $\eta = \int_0^\infty dt \langle T_{12}; T_{12} \rangle$ $c_V \sim \langle \delta T_{00}^2 \rangle$

EMT Correlation Function

Hadron Structure

- flux tube / hadrons
- · stress distribution

Stress distribution in qq system

SU(3) YM vs Maxwell

Maxwell (classical)

Propagation of the force is clearly different in YM and Maxwell theories!

Lattice Setup

- SU(3) Yang-Mills (Quenched)
- Wilson gauge action
- ☐ Clover operator
- ☐ APE smearing / multi-hit
- ☐ fine lattices (a=0.029-0.06 fm)
- continuum extrapolation
- Simulation: bluegene/Q@KEK

Yanagihara+, 1803.05656

β	a [fm]	$N_{ m size}^4$	$N_{\rm conf}$		R/a	
	0.058		140	8	12	16
	0.046		440	10	_	20
6.513	0.043	48^{4}	600	_	16	_
	0.038		1,500	12	18	24
6.819	0.029	64^{4}	1,000	16	24	32
		R [fm]		0.46	0.69	0.92

Stress Distribution in QQ

$$\langle T_{\mu\nu}(x)\rangle_{Q\bar{Q}} = \lim_{T\to\infty} \frac{\langle W(T,R)T_{\mu\nu}(x)\rangle}{\langle W(T,R)\rangle} - \langle T_{\mu\nu}(x)\rangle$$

- lacksquare EMT $T_{\mu\nu}(x)$
 - via gradient flow method
- $lue{}$ Wilson Loop $\overline{W(R,T)}$
 - No gradient flow for W(R,T)
 - APE smearing for spatial links
 - Multi-hit for temporal links

Continuum Extrapolation at mid-point

 \square a \rightarrow 0 extrapolation with fixed t

t→0 Extrapolation at mid-point

- \square a \rightarrow 0 extrapolation with fixed t
- □ Then, t→0 with three ranges

Stress Distribution on Mid-Plane

From rotational symm. & parity

EMT is diagonalized in Cylindrical Coordinates

$$T_{cc'}(r) = \left(egin{array}{c} T_{rr} & & \ & T_{ heta heta} & \ & & T_{zz} & \ & & & T_{44} \end{array}
ight)$$

$$T_{rr} = \vec{e}_r^T T \vec{e}_r$$
 $T_{\theta\theta} = \vec{e}_{\theta}^T T \vec{e}_{\theta}$

Degeneracy in Maxwell theory

$$T_{rr} = T_{\theta\theta} = -T_{zz} = -T_{44}$$

Mid-Plane

$$oxed{\Delta} - ig\langle \mathcal{T}_{44}^{
m R}(r) ig
angle_{Qar Q} \left[{
m GeV/fm^3}
ight]$$

$$\overline{f \Psi} = - ig\langle \mathcal{T}^{
m R}_{zz}(r) ig
angle_{Qar Q} \left[{
m GeV/fm^3}
ight]$$

$$\langle \mathcal{T}^{
m R}_{rr}(r)
angle_{Qar Q}\,[{
m GeV/fm^3}]$$

$$raket{\mathcal{T}_{ heta heta}^{
m R}(r)}_{Qar{Q}} \, [{
m GeV/fm^3}]$$

Continuum Extrapolated!

In Maxwell theory

$$T_{rr} = T_{\theta\theta} = -T_{zz} = -T_{44}$$

- lacksquare Degeneracy: $T_{44} \simeq T_{zz}, \quad T_{rr} \simeq T_{ heta heta}$
- $lue{}$ Separation: $T_{zz} \neq T_{rr}$
- lacksquare Nonzero trace anomaly $T_{cc} \neq 0$

$$\sum T_{cc} \neq 0$$

Mid-Plane

- lacksquare Degeneracy: $T_{44} \simeq T_{zz}, \quad T_{rr} \simeq T_{ heta heta}$
- $lue{}$ Separation: $T_{zz} \neq T_{rr}$
- lacksquare Nonzero trace anomaly $T_{cc} \neq 0$

$$T_{rr} \simeq T_{\theta\theta}$$

$$\sum T_{cc} \neq 0$$

Force

Force from Potential

$$F_{\rm pot} = -\frac{dV}{dR}$$

Force from Stress

$$F_{\text{stress}} = \int_{\text{mid.}} d^2x T_{zz}(x)$$

Force

$$F_{\rm pot} = -\frac{dV}{dR}$$

$$F_{\text{stress}} = \int_{\text{mid.}} d^2x T_{zz}(x)$$

Newton 1687

Faraday 1839

Force

Force from Potential

$$F_{\rm pot} = -\frac{dV}{dR}$$

$$F_{\text{stress}} = \int_{\text{mid.}} d^2x T_{zz}(x)$$

Newton 1687

Faraday 1839

Abelian-Higgs Model

Yanagihara, Iritani, MK, in prep.

Abelian-Higgs Model

$$\mathcal{L}_{AH} = -\frac{1}{4}F_{\mu\nu}^2 + |(\partial_{\mu} + igA_{\mu})\phi|^2 - \lambda(\phi^2 - v^2)^2$$

GL parameter: $\kappa = \sqrt{\lambda/g}$

- $\begin{cases} \Box \text{ type-I}: & \kappa < 1/\sqrt{2} \\ \Box \text{ type-II}: & \kappa > 1/\sqrt{2} \end{cases}$ $\Box \text{ Bogomol'nyi bound}:$

$$\kappa = 1/\sqrt{2}$$

Infinitely long tube

degeneracy

$$T_{zz}(r)=T_{44}(r)\,$$
 Luscher, 1981

■ momentum conservation

$$\frac{d}{dr}\left(rT_{rr}\right) = T_{\theta\theta}$$

Stress Tensor in AH Model infinitely-long flux tube

Bogomol'nyi bound : $\kappa = 1/\sqrt{2}$

$$T_{rr} = T_{\theta\theta} = 0$$

de Vega, Schaposnik, PR**D14**, 1100 (1976).

Stress Tensor in AH Model

infinitely-long flux tube

$$\kappa = 0.1$$

- \blacksquare No degeneracy bw $T_{rr} \& T_{\theta\theta}$
- \square T_{$\theta\theta$} changes sign

conservation law

$$\frac{d}{dr}\left(rT_{rr}\right) = T_{\theta\theta}$$

Stress Tensor in AH Model

infinitely-long flux tube

Type-I

$$\kappa = 0.1$$

- \square No degeneracy bw $T_{rr} \& T_{\theta\theta}$
- \square T_{$\theta\theta$} changes sign

Inconsistent with lattice result

$$T_{rr} \simeq T_{\theta\theta}$$

Flux Tube with Finite Length

Left: $T_{zz}(o)$, $T_{rr}(o)$ reproduce lattice result **Right:** A parameter satisfying $T_{rr} \approx T_{\theta\theta}$

No parameter can reproduce lattice data at R=0.92fm.

Summary

- The analysis of energy-momentum tensor on the lattice is now available, and various stuides are ongoing!
 - gradient flow method
 - higher-order perturbative coefficients

Summary

- The analysis of energy-momentum tensor on the lattice is now available, and various stuides are ongoing!
 - gradient flow method
 - higher-order perturbative coefficients

If we have

☐So many future studies

- ☐ Flux tube at nonzero temperature
- ☐ EMT distribution inside hadrons
- viscosity / other operators / instantons / full OCD hixed state on 1st transis:

backup

EMT on the Lattice: Conventional

Lattice EMT Operator Caracciolo+, 1990

$$T_{\mu\nu} = Z_6 T_{\mu\nu}^{[6]} + Z_3 T_{\mu\nu}^{[3]} + Z_1 \left(T_{\mu\nu}^{[1]} - \langle T_{\mu\nu}^{[1]} \rangle \right)$$

$$T_{\mu\nu}^{[6]} = (1 - \delta_{\mu\nu}) F_{\mu\rho}^a F_{\nu\rho}^a, \ T_{\mu\nu}^{[3]} = \delta_{\mu\nu} \left(F_{\mu\rho}^a F_{\nu\rho}^a - \frac{1}{4} F_{\rho\sigma}^a F_{\rho\sigma}^a \right), \ T_{\mu\nu}^{[1]} = \delta_{\mu\nu} F_{\rho\sigma}^a F_{\rho\sigma}^a$$

- \blacksquare Fit to thermodynamics: Z_3 , Z_1
- Shifted-boundary method: Z₆, Z₃ Giusti, Meyer, 2011; 2013; Giusti, Pepe, 2014~; Borsanyi+, 2018

Multi-level algorithm

effective in reducing statistical error of correlator

Meyer, 2007; Borsanyi, 2018; Astrakhantsev+, 2018

Gradient Flow Method

Take Extrapolation $(t,a) \rightarrow (0,0)$

$$\langle T_{\mu\nu}(t)\rangle_{\rm latt} = \langle T_{\mu\nu}(t)\rangle_{\rm phys} + C_{\mu\nu}t + \left[D_{\mu\nu}\frac{a^2}{t}\right] + \cdots$$

O(t) terms in SFTE lattice discretization

Numerical Simulation

- \blacksquare Expectation values of $T_{\mu\nu}$
- SU(3) YM theory
- Wilson gauge action
- Parameters:
 - $N_t = 12, 16, 20-24$
 - aspect ratio 5.3<N_s/N_t<8
 - 1500~2000 configurations
- Scale from gradient flow

 $\rightarrow aT_c$ and $a\Lambda_{\rm MS}$

FlowQCD, 1503.06516

FlowQCD, PR**D94**, 114512 (2016)

T/T_c	β	N_s	$N_{ au}$	Configurations
0.93	6.287	64	12	2125
	6.495	96	16	1645
	6.800	128	24	2040
1.02	6.349	64	12	2000
	6.559	96	16	1600
	6.800	128	22	2290
1.12	6.418	64	12	1875
	6.631	96	16	1580
	6.800	128	20	2000
1.40	6.582	64	12	2080
	6.800	128	16	900
	7.117	128	24	2000
1.68	6.719	64	12	2000
	6.941	96	16	1680
	7.117	128	20	2000
2.10	6.891	64	12	2250
	7.117	128	16	840
	7.296	128	20	2040
2.31	7.200	96	16	1490
	7.376	128	20	2020
	7.519	128	24	1970
2.69	7.086	64	12	2000
	7.317	96	16	1560
	7.500	128	20	2040

Fermion Propagator

$$S(t, x; s, y) = \langle \chi(t, x)\bar{\chi}(s, y)\rangle$$

$$= \sum_{v, w} K(t, x; 0, v)S(v, w)K(s, y; 0, w)^{\dagger}$$

$$\left(\partial_t - D_\mu D_\mu\right) K(t, x) = 0$$

- propagator of flow equation
- Inverse propagator is needed

N_f=2+1 QCD Thermodynamics

Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017)

- N_f=2+1 QCD, Iwasaki gauge + NP-clover
- m_{PS}/m_V ≈ o.63 / almost physical s quark mass
- T=o: CP-PACS+JLQCD (ß=2.05, 283x56, a≈o.07fm)
- T>0: $32^3 \times N_t$, $N_t = 4, 6, ..., 14, 16$):
- T≈174-697MeV
- t

 o extrapolation only (No continuum limit)

Preparing Static QQ

$$V(R) = -\lim_{T \to \infty} \log \langle W(R, T) \rangle$$

$$\langle O(x) \rangle_{Q\bar{Q}} = \lim_{T \to \infty} \frac{\langle \delta O(x) \delta W(R, T) \rangle}{\langle W(R, T) \rangle}$$

- APE smearing for spatial links
- Multi-hit for temporal links
- No gradient flow for W(R,T)

Ground State Saturation of W

Effective Mass Plot of W(R,T)

- APE smearing for spatial links
- Multi-hit for temporal links
- About 100 confs.
- Use translational symmetry

With an optimal choice of N_{APE} , ground-state saturation is already established at T/a=5 ($C_o>99.5\%$)

Ground State Saturation

 β =6.819 (a=0.029 fm), R=0.46 fm

Appearance of plateau for t/a²<4, T/a>15

Grand state saturation under control

Ground State Saturation

 β =6.819 (a=0.029 fm), R=0.46 fm

Appearance of plateau for t/a²<4, T/a>15

Grand state saturation under control

Abelian-Higgs Model

Abelian-Higgs Model

$$\mathcal{L}_{AH} = -\frac{1}{4}F_{\mu\nu}^2 + |(\partial_{\mu} + igA_{\mu})\phi|^2 - \lambda(\phi^2 - v^2)^2$$

GL parameter: $\kappa = \sqrt{\lambda/g}$

- $\begin{cases} \Box \text{ type-I}: & \kappa < 1/\sqrt{2} \\ \Box \text{ type-II}: & \kappa > 1/\sqrt{2} \end{cases}$ $\Box \text{ Bogomol'nyi bound :}$

$$\kappa = 1/\sqrt{2}$$

Infinitely long tube

degeneracy

$$T_{zz}(r)=T_{44}(r)\,$$
 Luscher, 1981

conservation law

$$\frac{d}{dr}\left(rT_{rr}\right) = T_{\theta\theta}$$