

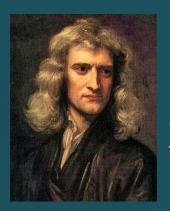
高温物質中における クオーク間相互作用の 微視的伝達機構の解明

北沢正清(阪大理)

FlowQCD Collab. (Yanagihara, Iritani, MK, Asakawa, Hatsuda Phys. Lett. **B789**, 210 (2019)

Force

Action-at-a-distance

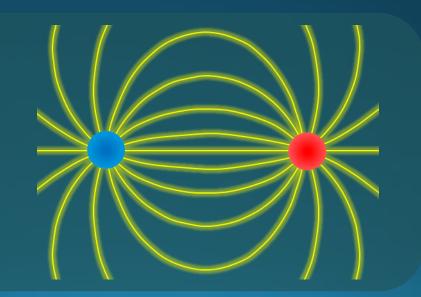


1687

Newton
$$F = -G \frac{m_1 m_2}{r^2}$$
 $F = -\frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$

Local interaction

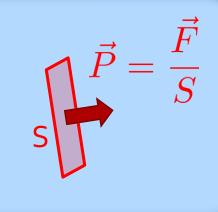
Faraday 1839



Stress = Force per Unit Area

Stress = Force per Unit Area

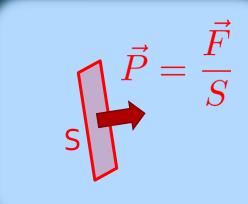
Pressure



$$\vec{P} = P\vec{n}$$

Stress = Force per Unit Area

Pressure

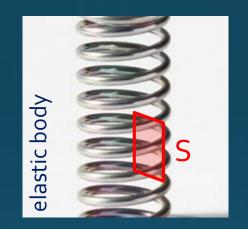


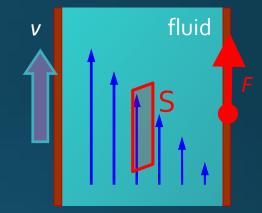
$$\vec{P} = P\vec{n}$$

In thermal medium

$$T_{ij} = P\delta_{ij}$$

Generally, F and n are not parallel





$$\frac{F_i}{S} = \sigma_{ij} n_j$$

Stress Tensor

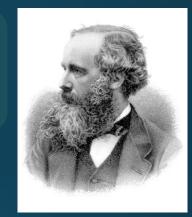
$$\sigma_{ij} = -T_{ij}$$

Landau Lifshitz

Maxwell Stress

(in Maxwell Theory)

$$\sigma_{ij} = \varepsilon_0 E_i E_j + \frac{1}{\mu_0} B_i B_j - \frac{1}{2} \delta_{ij} \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)$$

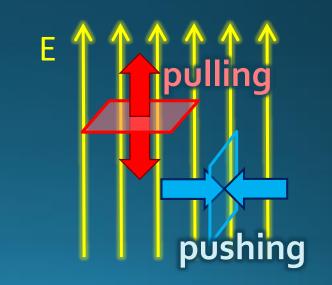


Maxwell

$$\vec{E} = (E, 0, 0)$$

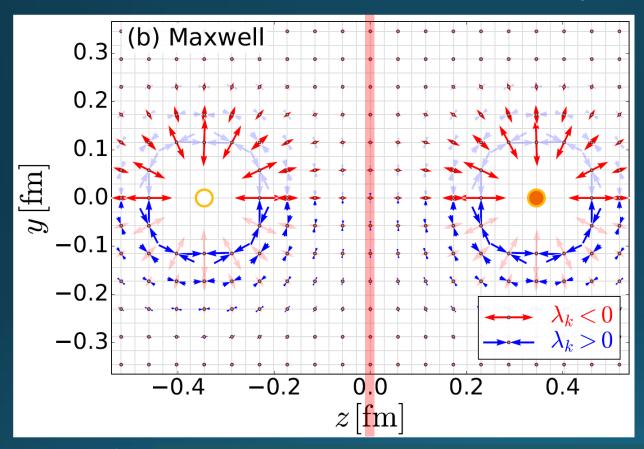
$$T_{ij} = \left(egin{array}{cccc} -E^2 & 0 & 0 \ 0 & E^2 & 0 \ 0 & 0 & E^2 \end{array}
ight)$$

Parallel to field: PullingVertical to field: Pushing



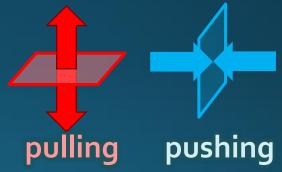
Maxwell Stress

(in Maxwell Theory)



$$T_{ij}v_j^{(k)} = \lambda_k v_i^{(k)}$$
$$(k = 1, 2, 3)$$

length: $\sqrt{|\lambda_k|}$

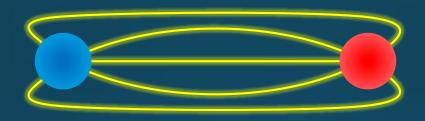


Definite physical meaning

- Distortion of field, line of the field
- Propagation of the force as local interaction

Quark-Anti-quark system

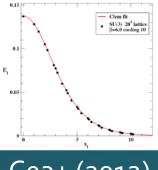
Formation of the flux tube -> confinement



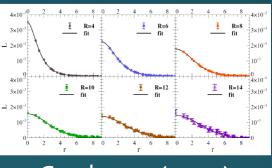
Previous Studies on Flux Tube

- □ Potential
- ☐ Action density
- ☐ Color-electric field

so many studies...

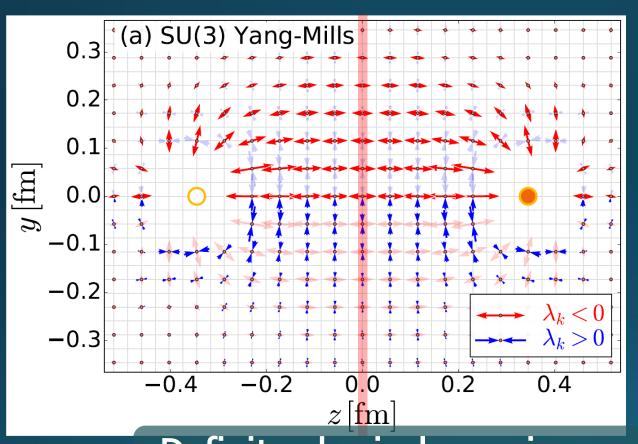


Cea+ (2012)



Cardoso+ (2013)

Stress Tensor in QQ System



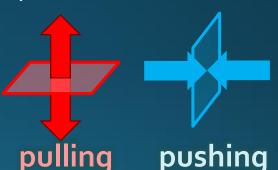
Yanagihara+, PLB (2019)

Lattice simulation SU(3) Yang-Mills

a=0.029 fm

R=0.69 fm

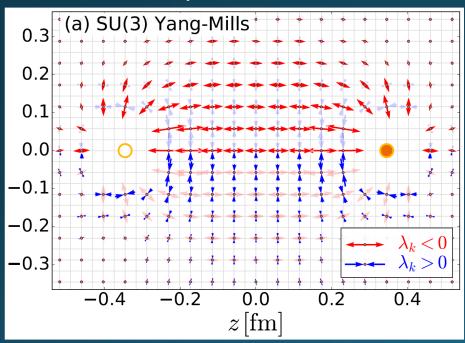
 $t/a^2 = 2.0$



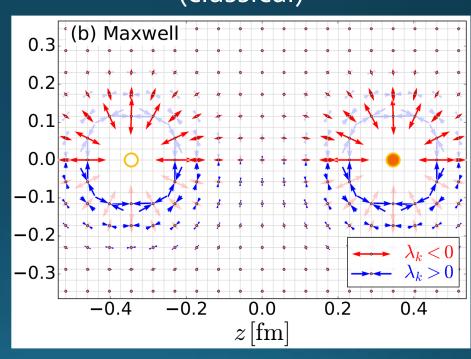
Definite physical meaning

- Distortion of field, line of the field
- Propagation of the force as local interaction
- ☐ Manifestly gauge invariant

SU(3) YM vs Maxwell



Maxwell (classical)



Propagation of the force is clearly different in YM and Maxwell theories!

Energy-Momentum Tensor

the most fundamental observable in physics

Einstein Equation
$$G_{\mu
u} + \Lambda g_{\mu
u} = \kappa T_{\mu
u}$$

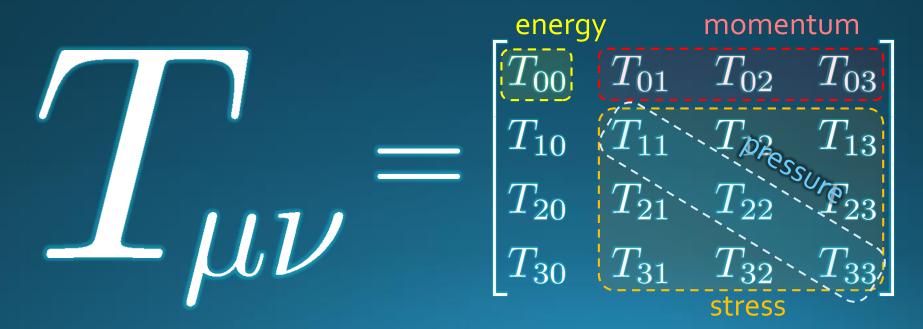
Energy-Momentum Tensor

the most fundamental observable in physics

Einstein Equation

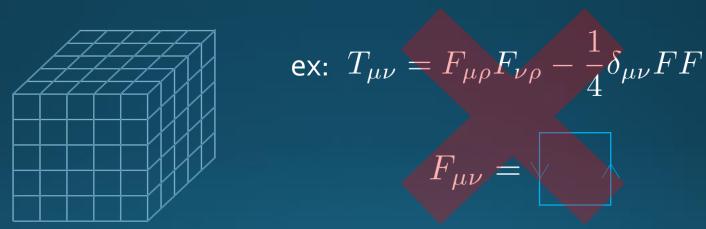
$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \kappa T_{\mu\nu}$$

All components are important physical observables!



$T_{\mu \nu}$: nontrivial observable on the lattice

Definition of the operator is nontrivial because of the explicit breaking of Lorentz symmetry



Its measurement is extremely noisy due to high dimensionality and etc.

Energy-Momentum Tensor on the Lattice and Gradient Flow

$$T_{00} = \begin{bmatrix} T_{01} & T_{02} & T_{03} \\ T_{10} & T_{11} & T_{02} & T_{13} \\ T_{20} & T_{21} & T_{22} & T_{23} \\ T_{30} & T_{31} & T_{32} & T_{33} \end{bmatrix}$$

Yang-Mills Gradient Flow

$$\frac{\partial}{\partial t} A_{\mu}(t, x) = -\frac{\partial S_{\text{YM}}}{\partial A_{\mu}}$$

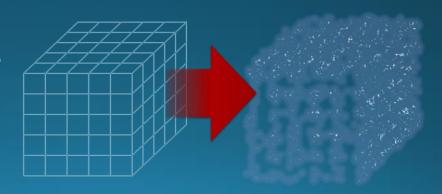
Luscher 2010 Narayanan, Neuberger, 2006 Luscher, Weiss, 2011

$$A_{\mu}(0,x) = A_{\mu}(x)$$

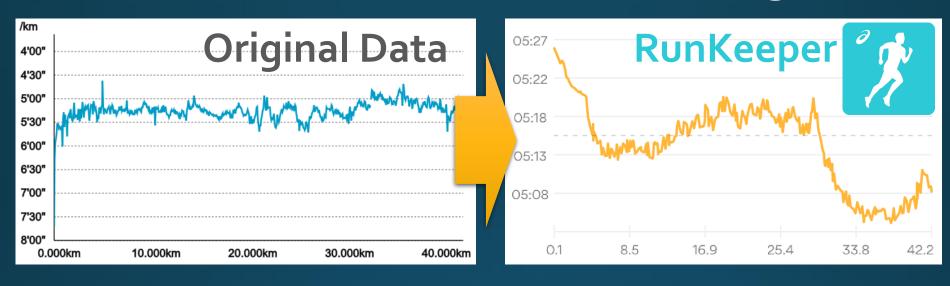
t: "flow time" dim:[length²]

$$\partial_t A_{\mu} = D_{\nu} G_{\mu\nu} = \partial_{\nu} \partial_{\nu} A_{\mu} + \cdots$$

- ☐ diffusion equation in 4-dim space
- $lue{}$ diffusion distance $d \sim \sqrt{8t}$
- "continuous" cooling/smearing
- No UV divergence at t>0



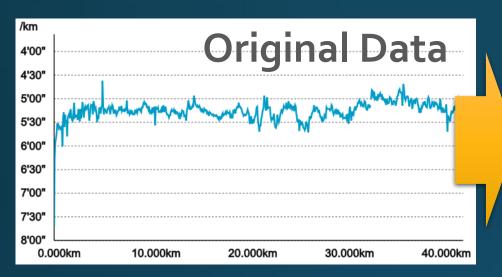
Gradient Flow = Smearing

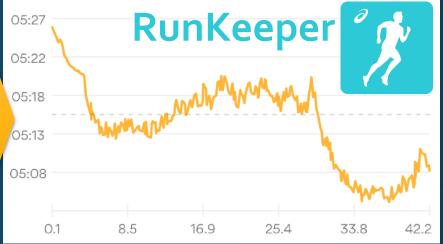


第39回篠山ABCマラソン 2019年3月3日(日)

記録:3:42.45

Gradient Flow = Smearing





1
$$x(t) \rightarrow x'(t) \sim \int dt' \exp\left[-\frac{(t-t')^2}{2\sigma^2}\right] x(t')$$

$$2 \frac{d}{ds}x(t;s) = \frac{d^2}{dt^2}x(t,s) x(t;0) = x(t)$$

$$\sigma = \sqrt{2s}$$

Gradient Flow $\partial_t A_\mu = \partial_\nu \partial_\nu A_\mu + \cdots$

Two Advantages of EMT Operator from Gradient Flow

$$\frac{\partial}{\partial t} A_{\mu}(t, x) = -\frac{\partial S_{\text{YM}}}{\partial A_{\mu}}$$

- 1. The operator is uniquely determined
- 2. Statistics is substantially improved

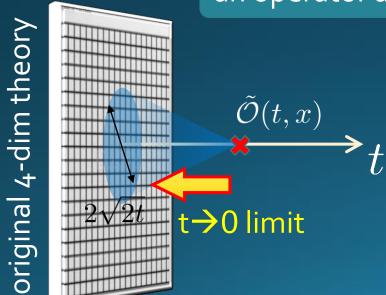
Small Flow-Time Expansion

Luescher, Weisz, 2011 Suzuki, 2013

$$\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$$

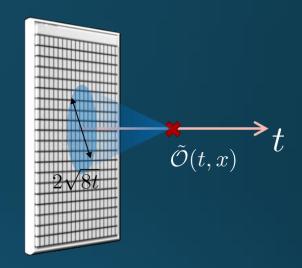
an operator at t>0

remormalized operators of original theory



Suzuki, 2013

$$\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$$



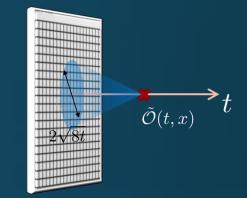
☐ Gauge-invariant dimension 4 operators

$$\begin{cases} U_{\mu\nu}(t,x) = G_{\mu\rho}(t,x)G_{\nu\rho}(t,x) - \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x) \\ E(t,x) = \frac{1}{4}\delta_{\mu\nu}G_{\mu\nu}(t,x)G_{\mu\nu}(t,x) \end{cases}$$

Constructing EMT 2

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T_{\mu\nu}^R(x) - \frac{1}{4} \delta_{\mu\nu} T_{\rho\rho}^R(x) \right] + \mathcal{O}(t)$$

$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T_{\rho\rho}^R(x) + \mathcal{O}(t)$$

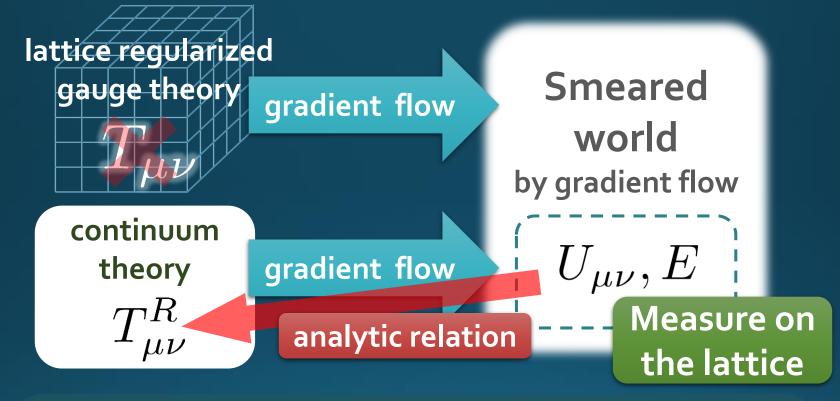


vacuum subtr.

Remormalized EMT

$$T_{\mu\nu}^{R}(x) = \lim_{t\to 0} \left[c_1(t)U_{\mu\nu}(t,x) + \delta_{\mu\nu}c_2(t)E(t,x)_{\text{subt.}} \right]$$

Gradient Flow Method



Take Extrapolation $(t,a) \rightarrow (0,0)$

$$\langle T_{\mu\nu}(t)\rangle_{\rm latt} = \langle T_{\mu\nu}(t)\rangle_{\rm phys} + C_{\mu\nu}t + \left[D_{\mu\nu}\frac{a^2}{t}\right] + \cdots$$

O(t) terms in SFTE lattice discretization

Thermodynamics of SU(3) YM

- □ Integral method
 - Most conventional / established
 - Use themodynamic relations Boyd+ 1995; Borsanyi, 2012

$$p = \frac{T}{V} \ln Z$$

$$T \frac{\partial (p/T^4)}{\partial T} = \frac{\varepsilon - 3p}{T^4}$$

- Gradient-flow method
 - Take expectation values of EMT FlowQCD, 2014, 2016

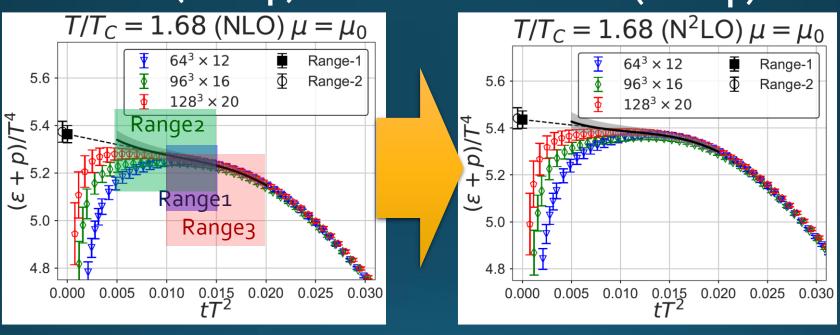
$$\begin{cases} \varepsilon = \langle T_{00} \rangle \\ p = \langle T_{11} \rangle \end{cases}$$

- Moving-frame method Giusti, Pepe, 2014~
- Non-equilibrium method
 - Use Jarzynski's equality Caselle+, 2016;2018
- Differential method
 Shirogane+(WHOT-QCD), 2016~

Higher Order Coefficient: ε+p

NLO (1-loop)

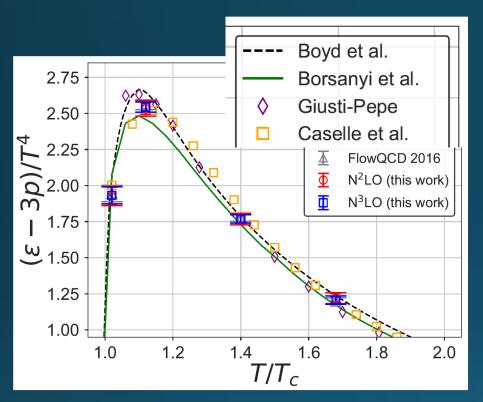
N²LO (2-loop)



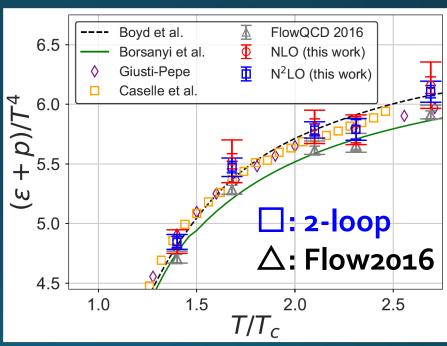
Iritani, MK, Suzuki, Takaura, 2019

- t dependence becomes milder with higher order coeff.
- □ 1-loop → 2-loop : about 2% increase
- \square Systematic analysis: μ_0 or μ_d , uncertainty of Λ , fit range
- \blacksquare Extrapolation func: linear, higher order term in c_1 (~g⁶)

Effect of Higher-Order Coeffs.



Iritani, MK, Suzuki, Takaura, 2019



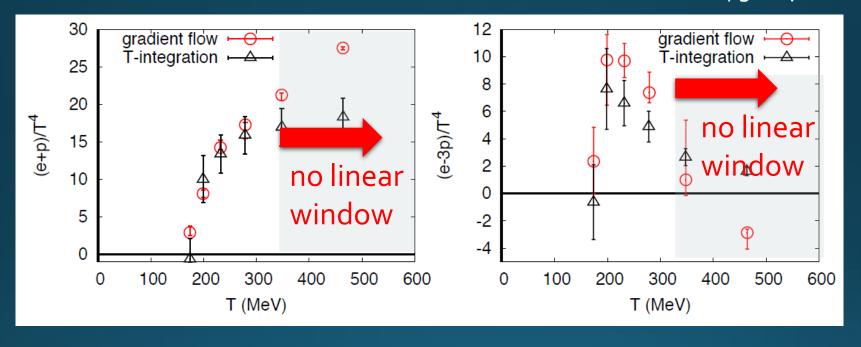
Systematic error: μ_0 or μ_d , Λ , $t \rightarrow 0$ function, fit range

Effect of higher order c₁ & c₂ (pure gauge)

□ e-3p: negligible (<0.5%)
□ e+p: ~2% increase

2+1 QCD EoS from Gradient Flow

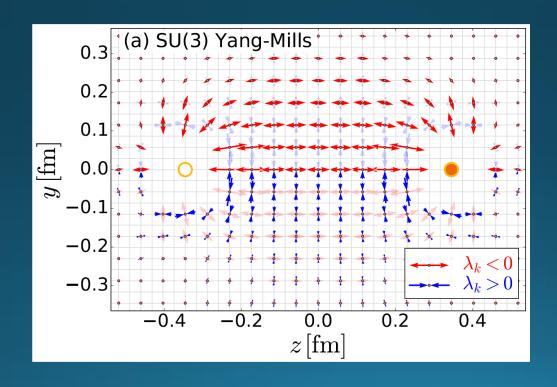
Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017) m_{PS}/m_V ≈0.63



- \square Agreement with integral method except for N_t=4, 6
- \square N_t=4, 6: No stable extrapolation is possible
- Statistical error is substantially suppressed!

Physical mass: Kanaya+ (WHOT-QCD), 1710.10015

Stress Tensor Distribution around Flux Tube

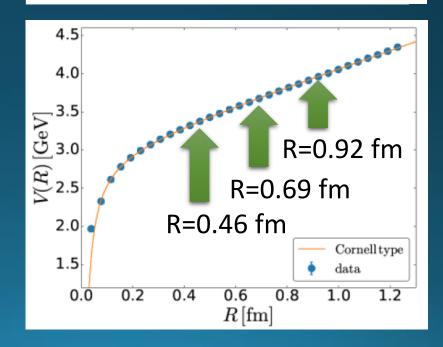


Lattice Setup

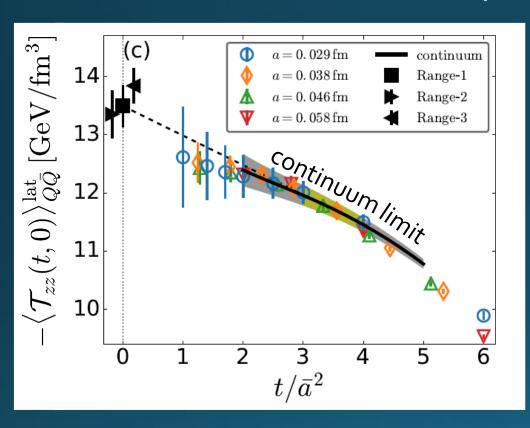
- SU(3) Yang-Mills (Quenched)
- Wilson gauge action
- ☐ Clover operator
- ☐ APE smearing / multi-hit
- fine lattices (a=0.029-0.06 fm)
- continuum extrapolation
- Simulation: bluegene/Q@KEK

Yanagihara+, 1803.05656

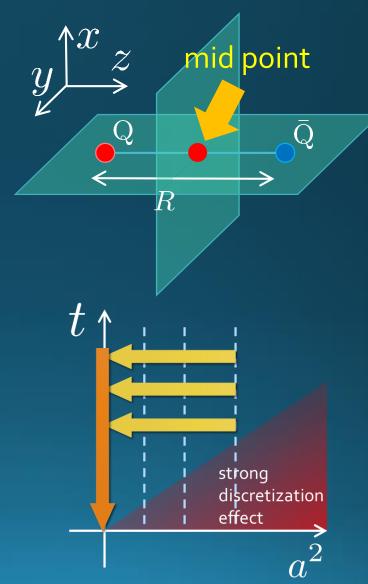
β	a [fm]	$N_{ m size}^4$	$N_{\rm conf}$		R/a	
	0.058		140	8	12	16
6.465	0.046	48^{4}	440	10	_	20
6.513	0.043	48^{4}	600	_	16	_
6.600	0.038	48^{4}		12	18	24
6.819	0.029	64^{4}	1,000	16	24	32
		R	[fm]	0.46	0.69	0.92



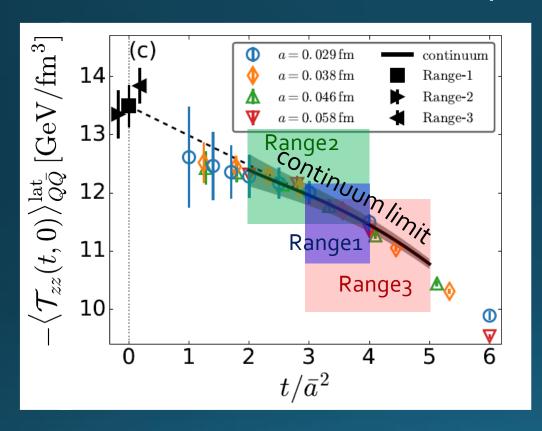
Continuum Extrapolation at mid-point



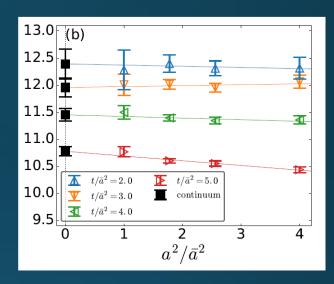
 \square a \rightarrow 0 extrapolation with fixed t

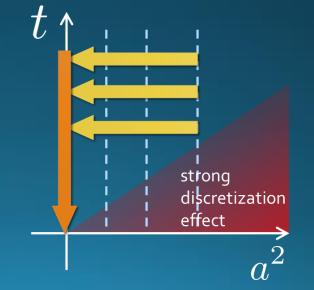


t→0 Extrapolation at mid-point



- \square a \rightarrow 0 extrapolation with fixed t
- \square Then, t \rightarrow 0 with three ranges





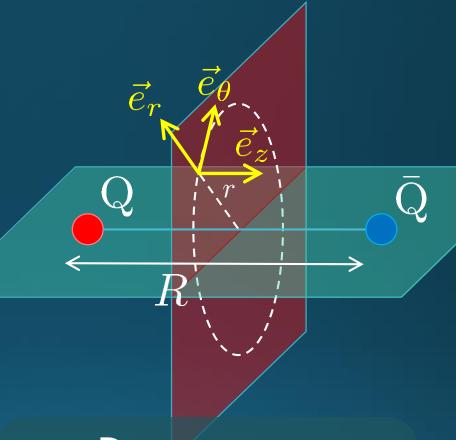
Stress Distribution on Mid-Plane

From rotational symm. & parity

EMT is diagonalized in Cylindrical Coordinates

$$T_{cc'}(r) = \left(egin{array}{c} T_{rr} & & \ & T_{ heta heta} & \ & & T_{zz} & \ & & & T_{44} \end{array}
ight)$$

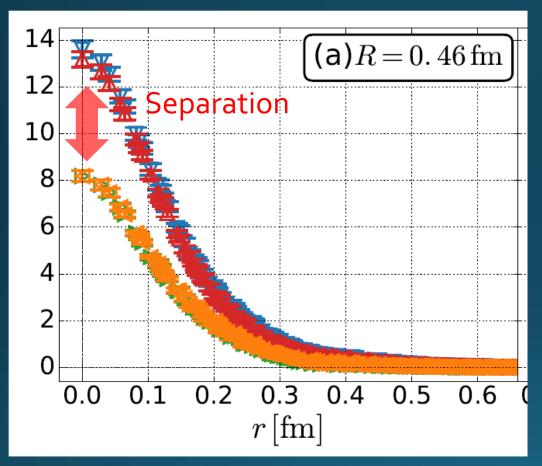
$$T_{rr} = \vec{e}_r^T T \vec{e}_r$$
 $T_{\theta\theta} = \vec{e}_{\theta}^T T \vec{e}_{\theta}$



Degeneracy in Maxwell theory

$$T_{rr} = T_{\theta\theta} = -T_{zz} = -T_{44}$$

Mid-Plane



$$oxed{\Delta} - ig\langle \mathcal{T}_{44}^{
m R}(r) ig
angle_{Qar Q} \left[{
m GeV/fm^3}
ight]$$

$$\overline{f \Psi} = - ig\langle \mathcal{T}^{
m R}_{zz}(r) ig
angle_{Qar Q} \left[{
m GeV/fm^3}
ight]$$

$$\langle \mathcal{T}^{
m R}_{rr}(r)
angle_{Qar Q}\,[{
m GeV/fm^3}]$$

$$raket{\mathcal{T}_{ heta heta}^{
m R}(r)}_{Qar{Q}} \, [{
m GeV/fm^3}]$$

Continuum Extrapolated!

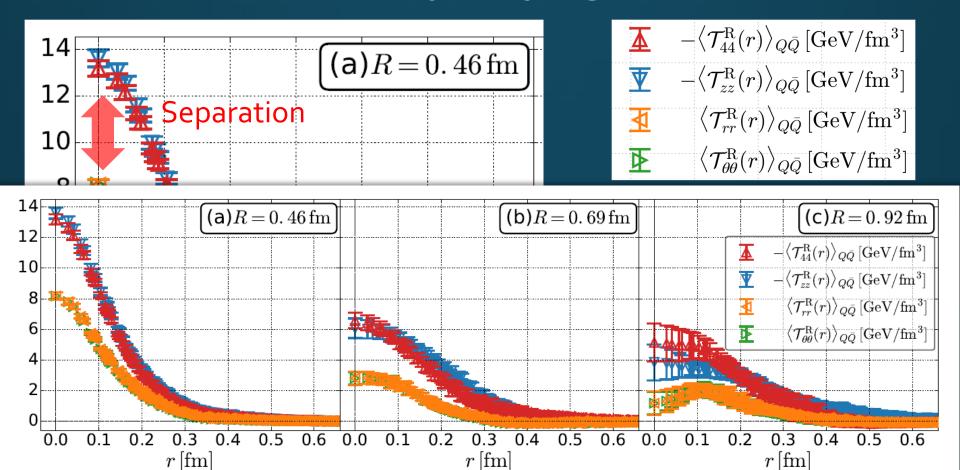
In Maxwell theory

$$T_{rr} = T_{\theta\theta} = -T_{zz} = -T_{44}$$

- lacksquare Degeneracy: $T_{44} \simeq T_{zz}, \quad T_{rr} \simeq T_{ heta heta}$
- $lue{}$ Separation: $T_{zz} \neq T_{rr}$
- lacksquare Nonzero trace anomaly $T_{cc} \neq 0$

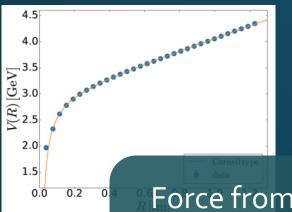
$$\sum T_{cc} \neq 0$$

Mid-Plane



- lacksquare Degeneracy: $T_{44} \simeq T_{zz}, \quad T_{rr} \simeq T_{ heta heta}$
- $lue{}$ Separation: $T_{zz} \neq T_{rr}$
- lacksquare Nonzero trace anomaly $T_{cc} \neq 0$

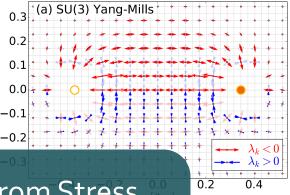
$$\sum T_{cc} \neq 0$$



Force from Potential

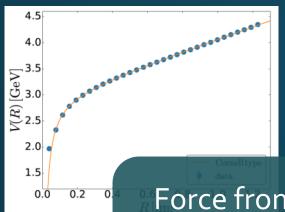
$$F_{
m pot} = -rac{dV}{dR}$$

Force

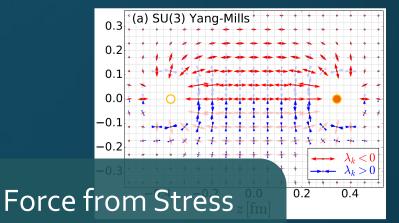


Force from Stress

$$F_{\text{stress}} = \int_{\text{mid.}} d^2x T_{zz}(x)$$



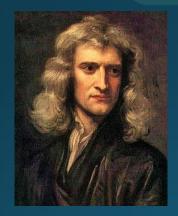
Force



Force from Potential

$$F_{\rm pot} = -\frac{dV}{dR}$$

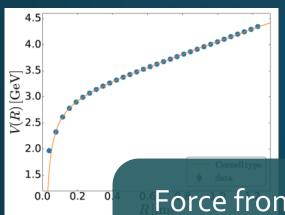
$$F_{\text{stress}} = \int_{\text{mid.}} d^2x T_{zz}(x)$$



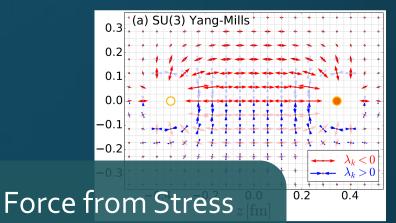
Newton 1687



Faraday 1839



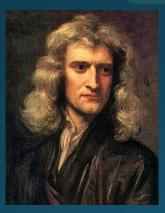
Force



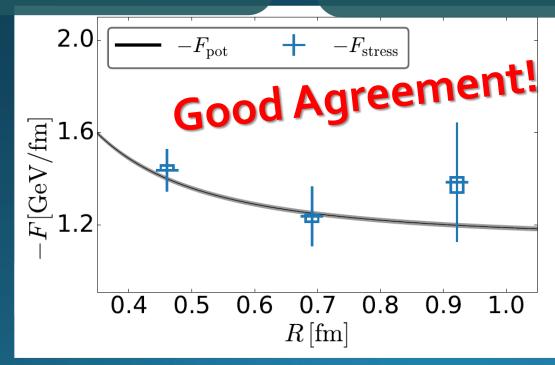
Force from Potential

$$F_{\rm pot} = -\frac{dV}{dR}$$

$$F_{\text{stress}} = \int_{\text{mid.}} d^2x T_{zz}(x)$$



Newton 1687



Faraday 1839

Dual Superconductor Picture

Nambu, 1970 Nielsen, Olesen, 1973 t 'Hooft, 1981

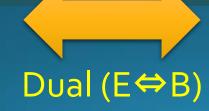
Quark Anti-quark

Flux Tube

Superconductor

Monopole Monopole

Magnetic Vortex



Abelian-Higgs Model

Yanagihara, Iritani, MK, in prep.

Abelian-Higgs Model

$$\mathcal{L}_{AH} = -\frac{1}{4}F_{\mu\nu}^2 + |(\partial_{\mu} + igA_{\mu})\phi|^2 - \lambda(\phi^2 - v^2)^2$$

GL parameter: $\kappa = \sqrt{\lambda/g}$

- $\begin{cases} \Box \text{ type-I}: & \kappa < 1/\sqrt{2} \\ \Box \text{ type-II}: & \kappa > 1/\sqrt{2} \end{cases}$ $\Box \text{ Bogomol'nyi bound}:$

$$\kappa = 1/\sqrt{2}$$

Infinitely long tube

degeneracy

$$T_{zz}(r)=T_{44}(r)\,$$
 Luscher, 1981

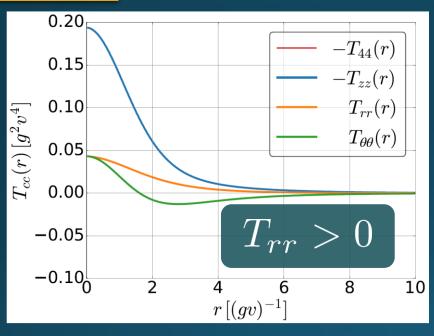
■ momentum conservation

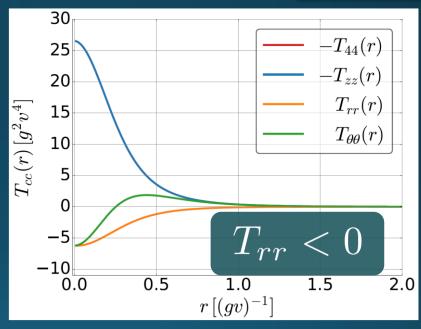
$$\frac{d}{dr}\left(rT_{rr}\right) = T_{\theta\theta}$$

Stress Tensor in AH Model

infinitely-long flux tube

$$\kappa = 0.1$$





- \blacksquare No degeneracy bw $T_{rr} \& T_{\theta\theta}$
- \square T_{$\theta\theta$} changes sign

conservation law

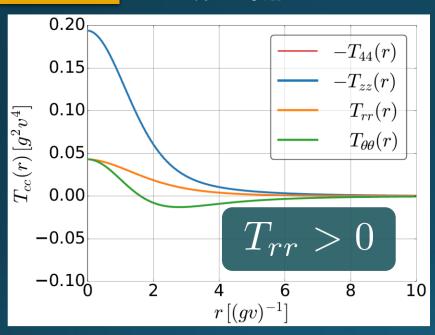
$$\frac{d}{dr}\left(rT_{rr}\right) = T_{\theta\theta}$$

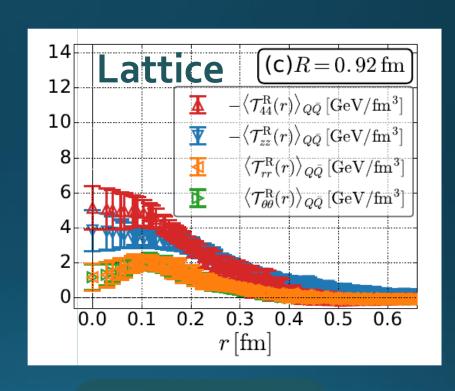
Stress Tensor in AH Model

infinitely-long flux tube

Type-I

$$\kappa = 0.1$$



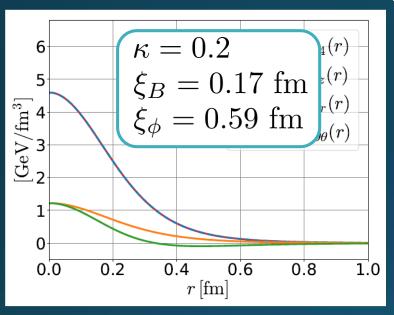


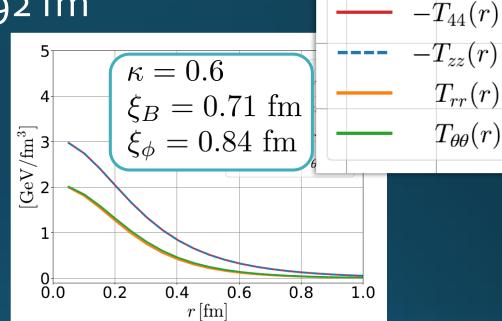
- \square No degeneracy bw $T_{rr} \& T_{\theta\theta}$
- \square T_{$\theta\theta$} changes sign

Inconsistent with lattice result

$$T_{rr} \simeq T_{\theta\theta}$$

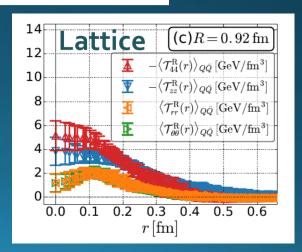
Flux Tube with Finite Length





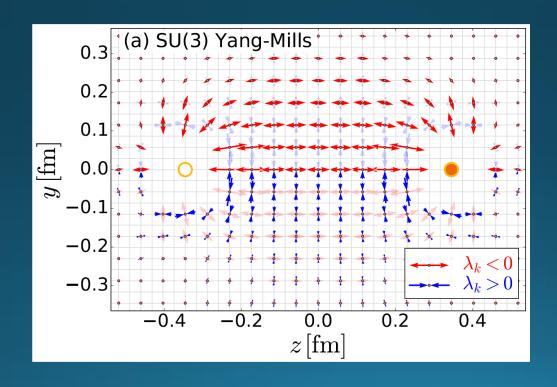
Left: $T_{zz}(o)$, $T_{rr}(o)$ reproduce lattice result **Right:** A parameter satisfying $T_{rr} \approx T_{\theta\theta}$

No parameter can reproduce lattice data at R=0.92fm.

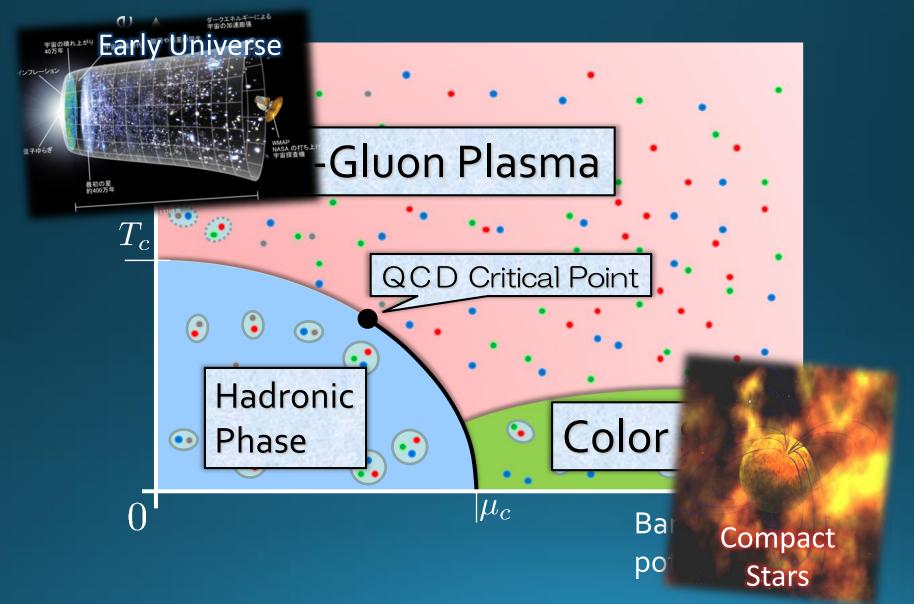


本年度の成果

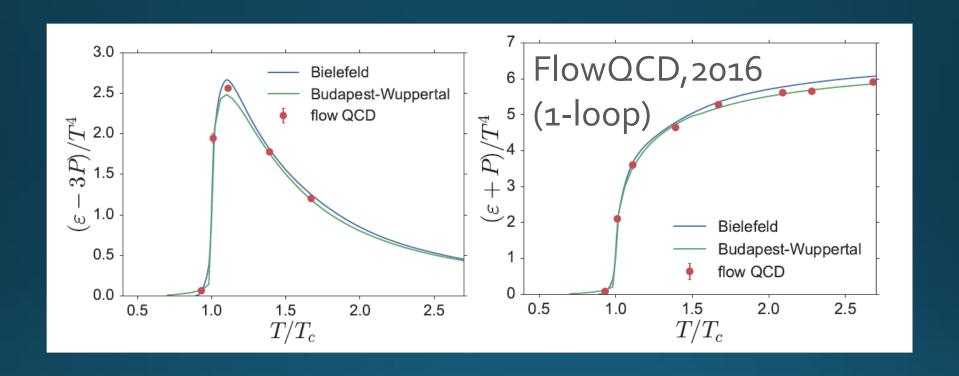
Quark Anti-Quark System in the Early Universe



QCD Phase Diagram

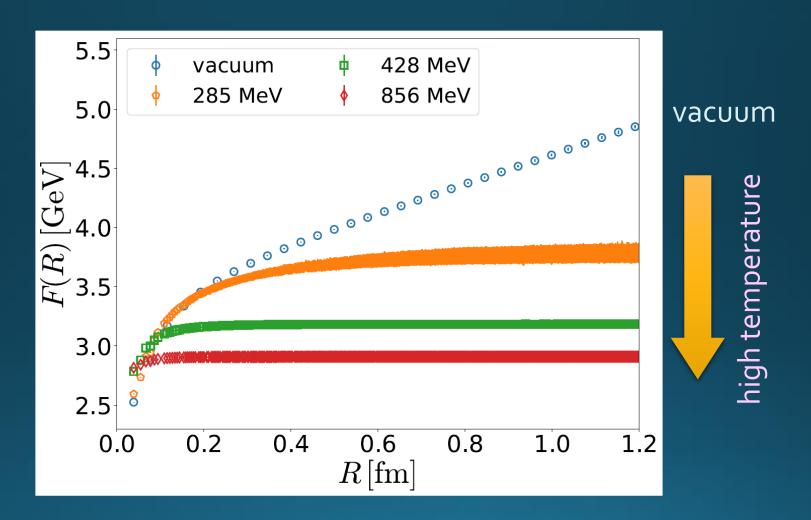


SU(3) YM Thermodynamics



- 1st order phase transition at Tc≈3x10¹² Kelvin
- Sudden increase of energy density and pressure at Tc

Quark Anti-Quark Potential

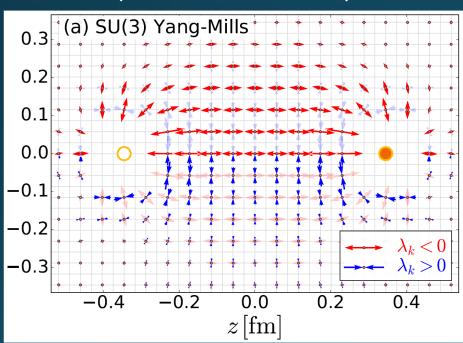


Q-Qbar force is screened in the deconfined phase.

Temperature Dependence

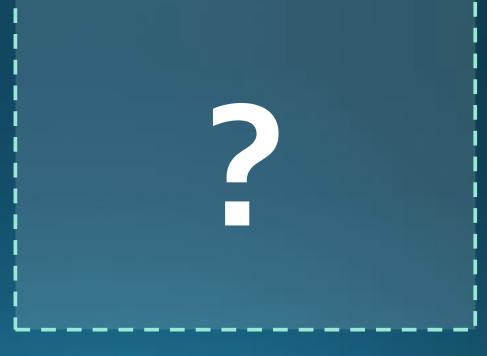
Vacuum

(Current Universe)



High Temperature

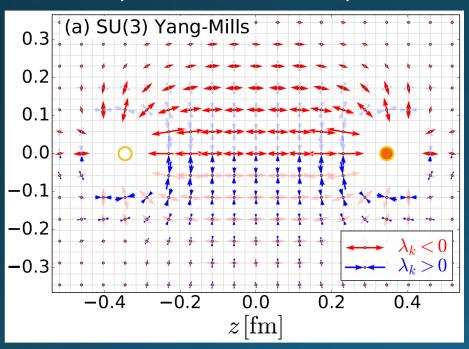
(Early Universe)



Temperature Dependence

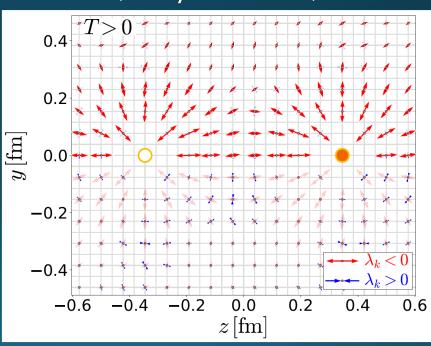
Vacuum

(Current Universe)



High Temperature

(Early Universe)



T=1.42Tc

Flux-tube structure disappears above Tc.

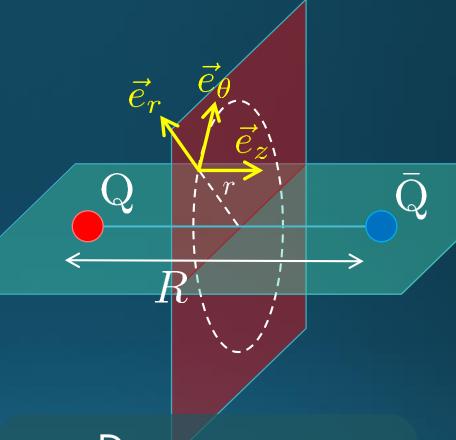
Stress Distribution on Mid-Plane

From rotational symm. & parity

EMT is diagonalized in Cylindrical Coordinates

$$T_{cc'}(r) = \left(egin{array}{c} T_{rr} & & \ & T_{ heta heta} & \ & & T_{zz} & \ & & & T_{44} \end{array}
ight)$$

$$T_{rr} = \vec{e}_r^T T \vec{e}_r$$
 $T_{\theta\theta} = \vec{e}_{\theta}^T T \vec{e}_{\theta}$

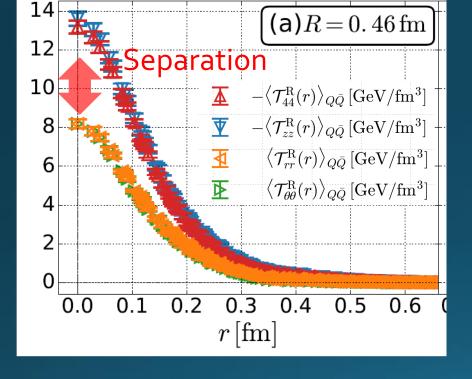


Degeneracy in Maxwell theory

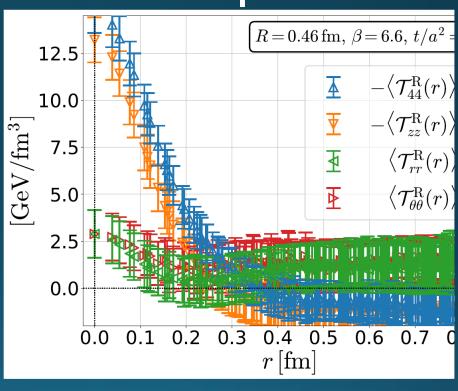
$$T_{rr} = T_{\theta\theta} = -T_{zz} = -T_{44}$$

Mid-Plane

Vacuum



T=1.42Tc

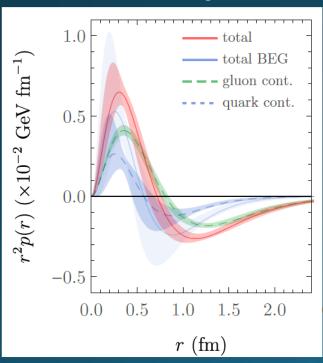


- lacksquare Degeneracy: $T_{44} \simeq T_{zz}, \quad T_{rr} \simeq \overline{T_{\theta\theta}}$
- $lue{}$ Separation: $\overline{T_{zz} \neq T_{rr}}$
- Too strong stress? Transverse stress is suppressed

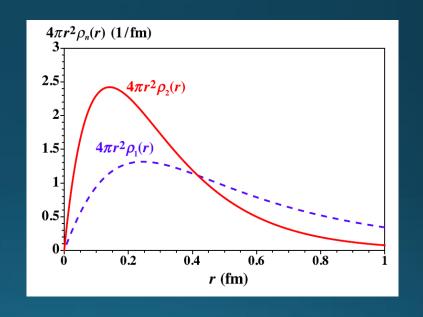
Proton EMT Distribution

EMT distribution inside hadrons now accessible??

Pressure @ proton



EMT distribution @ pion



arXiv:1810.07589 Nature, 557, 396 (2018) Kumano, Song, Teryaev Phys. Rev. D 97, 014020 (2018)

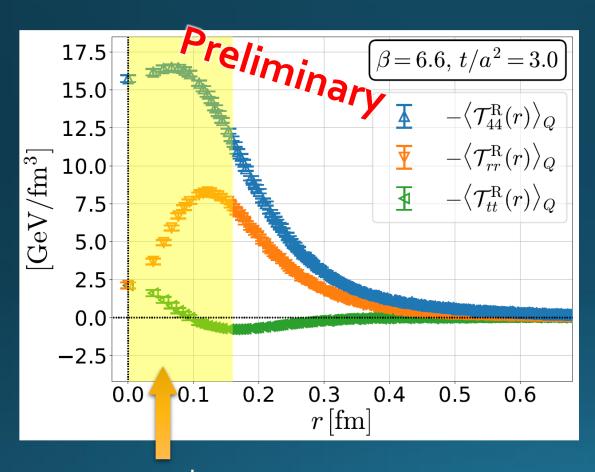
EMT around A Quark

in a deconfined phase

C

EMT around A Quark

in a deconfined phase



Yanagihara+, in prep.

Quenched QCD 48^3x12 (T \approx 1.4T_c) fixed t, a

■ Energy density

$$-\langle T_{44}\rangle = \varepsilon$$

Longitudinal pressure

$$-\langle T_{rr}\rangle = -p(r)$$

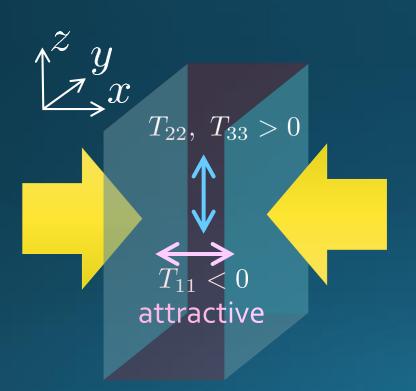
☐ Transverse pressure

$$-\langle T_{tt}\rangle$$

not reliable

Pressure anisotropy in finite system

Casimir effect



Finite system at nonzero T

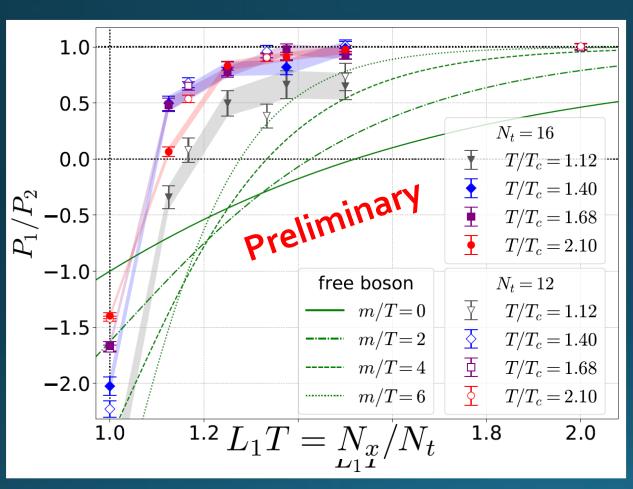
MK, Mogliacci, Kolbe, Horowitz, in preparation

$$V = L_x \times L_y \times L_z$$
$$L_x \ll L_y = L_z$$

pressure anisotropy

$$T_{11} \neq T_{22} = T_{33}$$

Pressure Anisotropy



MK, Mogliacci, Kolbe, Horowitz, in prep.

Free scalar field

$$\square$$
 $L_2 = L_3 = \infty$ Mogliacci+, 1807.07871

Lattice result

- ☐ Periodic BC
- □ Only t→0 limit

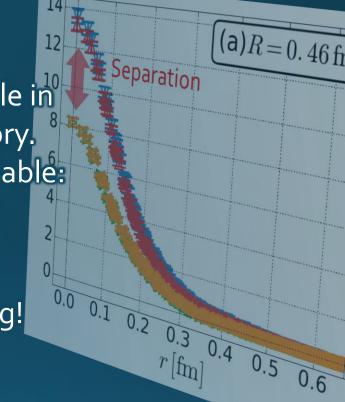
Medium near T_c is remarkably insensitive to finite size! How do we understand??

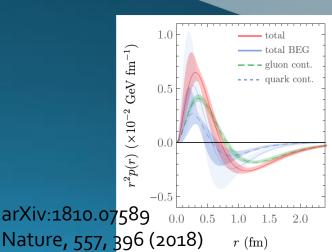
Summary

- EMT (stress tensor) is a useful observable in understanding QCD and YM gauge theory.
- EMT distribution in vacuum is now available:
 - Degeneracy: $T_{44} \approx T_{zz}$, $T_{rr} \approx T_{\theta\theta}$
 - Separation: $T_{zz} \neq T_{rr}$
- EMT distribution at nonzero T is ongoing!

□Future

- ☐ Continuum limit
- ☐ Temperature dependence
- ☐ Excited states / full QCD
- EMT distribution inside hadrons





Thermodynamics

direct measurement of expectation values

 $\langle T_{00} \rangle, \langle T_{ii} \rangle$

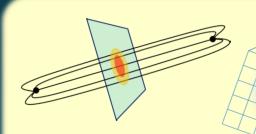
If we have

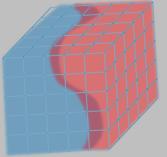
Fluctuations and Correlations

viscosity, specific heat, ...

$$c_V \sim \langle \delta T_{00}^2 \rangle$$

$$\eta = \langle T_{12}; T_{12} \rangle$$





- > flux tube / hadrons
- EM form factors

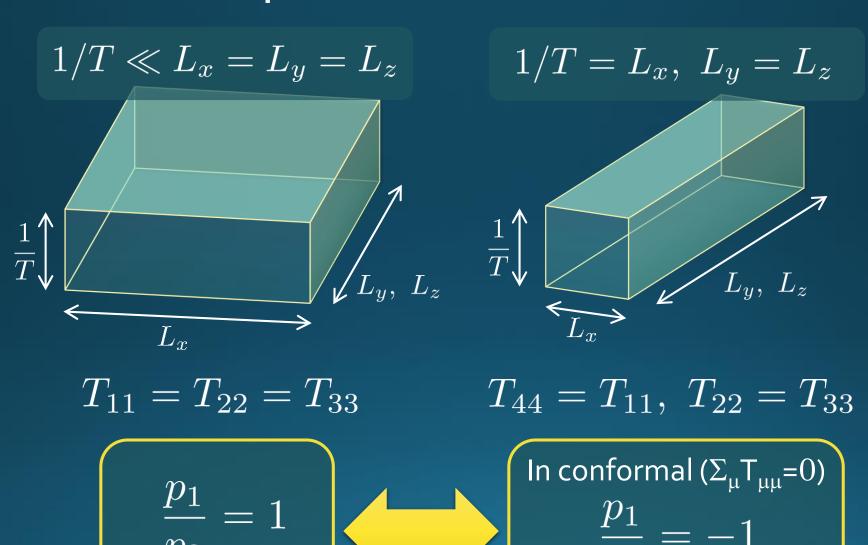
Hadron Structure

- > vacuum configuration
- > mixed state on 1st transition

Vacuum Structure

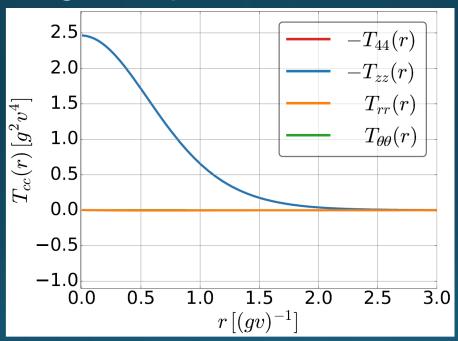
backup

Two Special Cases with PBC



Stress Tensor in AH Model infinitely-long flux tube

Bogomol'nyi bound : $\kappa = 1/\sqrt{2}$



$$T_{rr} = T_{\theta\theta} = 0$$

de Vega, Schaposnik, PR**D14**, 1100 (1976).

Perturbative Coefficients

$$T_{\mu\nu}(t) = c_1(t)U_{\mu\nu}(t) + \delta_{\mu\nu}c_2(t)E(t)$$

	LO	1 -loop	2-loop	3-loop
$c_1(t)$	O	0		
$c_2(t)$	X zero	0	0	

Suzuki, PTEP 2013, 083B03 Harlander+, 1808.09837 Iritani, MK, Suzuki, Takaura, PTEP 2019

Choice of the scale of g²

Suzuki (2013)

$$c_1(t) = c_1 \left(g^2 \left(\mu(t) \right) \right)$$

Previous: $\mu_d(t) = 1/\sqrt{8t}$

Improved: $\mu_0(t) = 1/\sqrt{2e^{\gamma_E}t}$

Harlander+ (2018)

Perturbative Coefficients

	LO	1 -loop	2-loop	3-loop
$c_1(t)$	O	0	0	
$c_2(t)$	X zero	O	0	O

Suzuki, PTEP 2013, 083B03 Harlander+, 1808.09837 Iritani, MK, Suzuki, Takaura, PTEP 2019

Iritani, MK, Suzuki, Takaura, 2019

Suzuki (2013) Harlander+(2018)

Choice of the scale of g²

$$c_1(t) = c_1 \left(g^2 \left(\mu(t) \right) \right)$$

Previous: $\mu_d(t) = 1/\sqrt{8t}$

Improved: $\mu_0(t) = 1/\sqrt{2e^{\gamma_E}t}$

Harlander+ (2018)

EMT on the Lattice: Conventional

Lattice EMT Operator Caracciolo+, 1990

$$T_{\mu\nu} = Z_6 T_{\mu\nu}^{[6]} + Z_3 T_{\mu\nu}^{[3]} + Z_1 \left(T_{\mu\nu}^{[1]} - \langle T_{\mu\nu}^{[1]} \rangle \right)$$

$$T_{\mu\nu}^{[6]} = (1 - \delta_{\mu\nu}) F_{\mu\rho}^a F_{\nu\rho}^a, \ T_{\mu\nu}^{[3]} = \delta_{\mu\nu} \left(F_{\mu\rho}^a F_{\nu\rho}^a - \frac{1}{4} F_{\rho\sigma}^a F_{\rho\sigma}^a \right), \ T_{\mu\nu}^{[1]} = \delta_{\mu\nu} F_{\rho\sigma}^a F_{\rho\sigma}^a$$

- \blacksquare Fit to thermodynamics: Z_3 , Z_1
- Shifted-boundary method: Z₆, Z₃ Giusti, Meyer, 2011; 2013; Giusti, Pepe, 2014~; Borsanyi+, 2018

Multi-level algorithm

effective in reducing statistical error of correlator

Meyer, 2007; Borsanyi, 2018; Astrakhantsev+, 2018

Numerical Simulation

- \blacksquare Expectation values of $T_{\mu\nu}$
- SU(3) YM theory
- Wilson gauge action
- Parameters:
 - $N_t = 12, 16, 20-24$
 - aspect ratio 5.3<N_s/N_t<8
 - 1500~2000 configurations
- Scale from gradient flow

 $\rightarrow aT_c$ and $a\Lambda_{\rm MS}$

FlowQCD, 1503.06516

FlowQCD, PR**D94**, 114512 (2016)

T/T_c	β	N_s	$N_{ au}$	Configurations
0.93	6.287	64	12	2125
	6.495	96	16	1645
	6.800	128	24	2040
1.02	6.349	64	12	2000
	6.559	96	16	1600
	6.800	128	22	2290
1.12	6.418	64	12	1875
	6.631	96	16	1580
	6.800	128	20	2000
1.40	6.582	64	12	2080
	6.800	128	16	900
	7.117	128	24	2000
1.68	6.719	64	12	2000
	6.941	96	16	1680
	7.117	128	20	2000
2.10	6.891	64	12	2250
	7.117	128	16	840
	7.296	128	20	2040
2.31	7.200	96	16	1490
	7.376	128	20	2020
	7.519	128	24	1970
2.69	7.086	64	12	2000
	7.317	96	16	1560
	7.500	128	20	2040

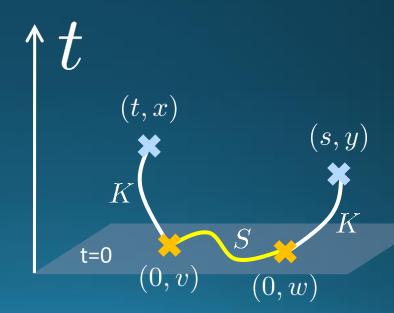
Fermion Propagator

$$S(t, x; s, y) = \langle \chi(t, x)\bar{\chi}(s, y)\rangle$$

$$= \sum_{v, w} K(t, x; 0, v)S(v, w)K(s, y; 0, w)^{\dagger}$$

$$\left(\partial_t - D_\mu D_\mu\right) K(t, x) = 0$$

- propagator of flow equation
- Inverse propagator is needed

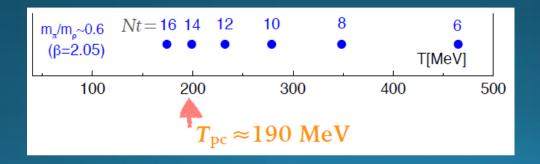


N_f=2+1 QCD Thermodynamics

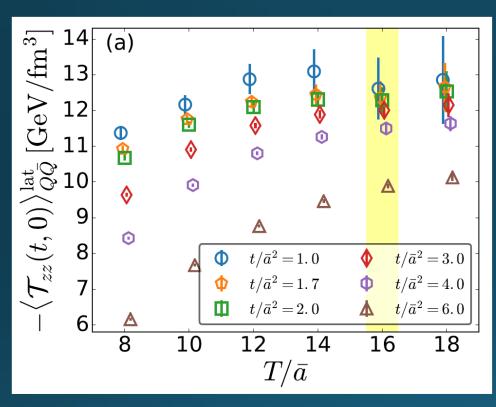
Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017)

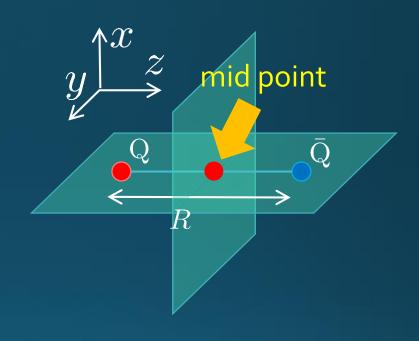
- N_f=2+1 QCD, Iwasaki gauge + NP-clover
- m_{PS}/m_V ≈ o.63 / almost physical s quark mass
- T=o: CP-PACS+JLQCD (ß=2.05, 283x56, a≈o.07fm)
- T>0: $32^3 \times N_t$, $N_t = 4, 6, ..., 14, 16$):
- T≈174-697MeV
- t

 o extrapolation only (No continuum limit)



Ground State Saturation



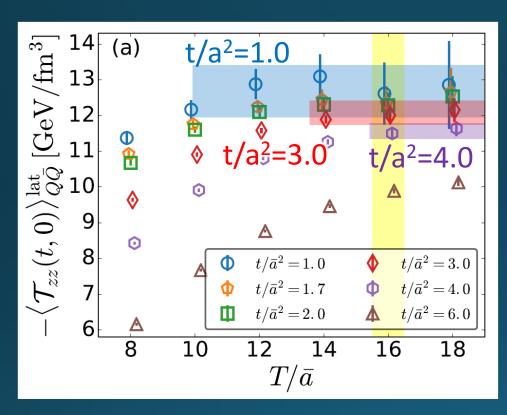


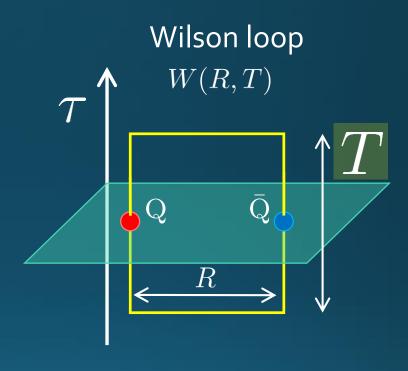
 β =6.819 (a=0.029 fm), R=0.46 fm

Appearance of plateau for t/a²<4, T/a>15

Grand state saturation under control

Ground State Saturation



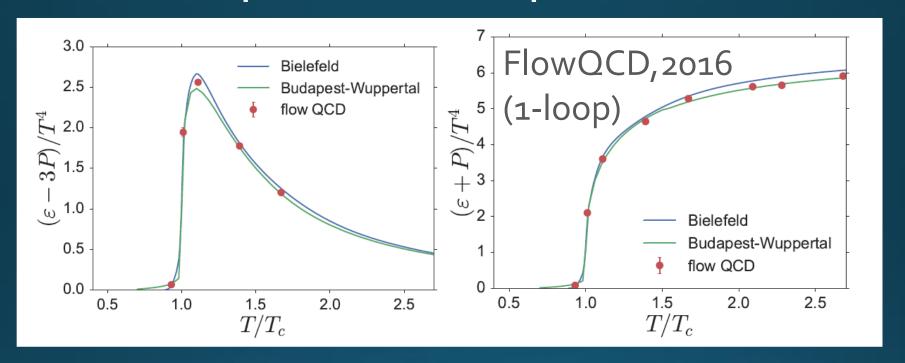


 β =6.819 (a=0.029 fm), R=0.46 fm

Appearance of plateau for t/a²<4, T/a>15

Grand state saturation under control

Temperature Dependence



Error includes

- > statistical error
- \triangleright choice of t range for t $\rightarrow 0$ limit
- \succ uncertainty in a $\Lambda_{
 m MS}$

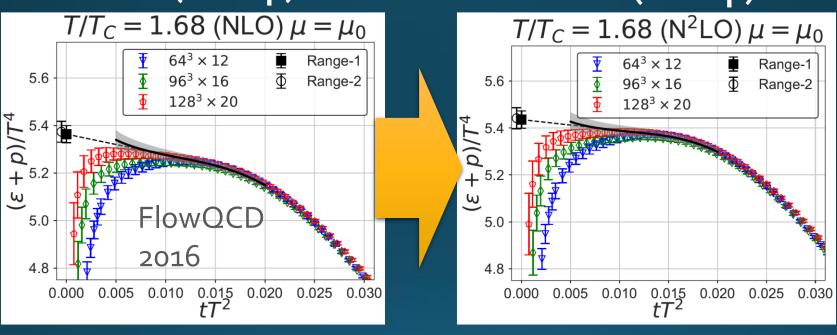
total error <1.5% for $T>1.1T_c$

- Excellent agreement with integral method
- ☐ High accuracy only with ~2000 confs.

Higher Order Coefficient: ε+p

NLO (1-loop)

N²LO (2-loop)



Iritani, MK, Suzuki, Takaura, 2019

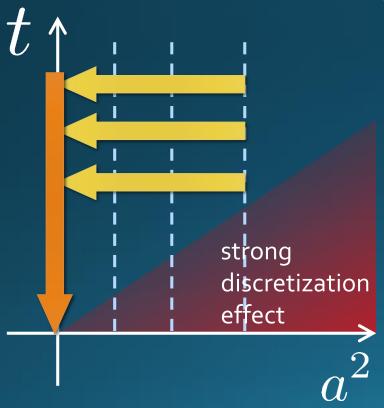
- t dependence becomes milder with higher order coeff.
- □ 1-loop → 2-loop : about 2% increase
- \square Systematic analysis: μ_0 or μ_d , uncertainty of Λ , fit range
- \blacksquare Extrapolation func: linear, higher order term in c_1 (~g⁶)

Double Extrapolation

 $t \rightarrow 0, a \rightarrow 0$

$$\langle T_{\mu\nu}(t)\rangle_{\rm latt} = \langle T_{\mu\nu}(t)\rangle_{\rm phys} + C_{\mu\nu}t + \left[D_{\mu\nu}(t)\frac{a^2}{t}\right]$$

O(t) terms in SFTE lattice discretization



$$\langle T_{\mu\nu}(t)\rangle_{\rm cont} = \langle T_{\mu\nu}(t)\rangle_{\rm lat} + C(t)a^2$$

Small t extrapolation

$$\langle T_{\mu\nu}\rangle = \langle T_{\mu\nu}(t)\rangle + C't$$

EMT in QCD

$$T_{\mu\nu}(t,x) = c_1(t)U_{\mu\nu}(t,x) + c_2(t)\delta_{\mu\nu} \left(E(t,x) - \langle E \rangle_0 \right)$$

$$+ c_3(t) \left(O_{3\mu\nu}(t,x) - 2O_{4\mu\nu}(t,x) - \text{VEV} \right)$$

$$+ c_4(t) \left(O_{4\mu\nu}(t,x) - \text{VEV} \right) + c_5(t) \left(O_{5\mu\nu}(t,x) - \text{VEV} \right)$$

$$T_{\mu\nu}(x) = \lim_{t \to 0} T_{\mu\mu}(t,x)$$

$$\widetilde{\mathcal{O}}_{3\mu\nu}^{f}(t,x) \equiv \varphi_{f}(t)\bar{\chi}_{f}(t,x) \left(\gamma_{\mu} \overleftrightarrow{D}_{\nu} + \gamma_{\nu} \overleftrightarrow{D}_{\mu}\right) \chi_{f}(t,x),
\widetilde{\mathcal{O}}_{4\mu\nu}^{f}(t,x) \equiv \varphi_{f}(t)\delta_{\mu\nu}\bar{\chi}_{f}(t,x) \overleftrightarrow{\mathcal{D}} \chi_{f}(t,x),
\widetilde{\mathcal{O}}_{5\mu\nu}^{f}(t,x) \equiv \varphi_{f}(t)\delta_{\mu\nu}\bar{\chi}_{f}(t,x)\chi_{f}(t,x),$$

$$\varphi_f(t) \equiv \frac{-6}{(4\pi)^2 t^2 \left\langle \bar{\chi}_f(t,x) \overleftrightarrow{D} \chi_f(t,x) \right\rangle_0}.$$

$$c_{1}(t) = \frac{1}{\bar{g}(1/\sqrt{8t})^{2}} - \frac{1}{(4\pi)^{2}} \left[9(\gamma - 2\ln 2) + \frac{19}{4} \right],$$

$$c_{2}(t) = \frac{1}{(4\pi)^{2}} \frac{33}{16},$$

$$c_{3}(t) = \frac{1}{4} \left\{ 1 + \frac{\bar{g}(1/\sqrt{8t})^{2}}{(4\pi)^{2}} \left[2 + \frac{4}{3}\ln(432) \right] \right\},$$

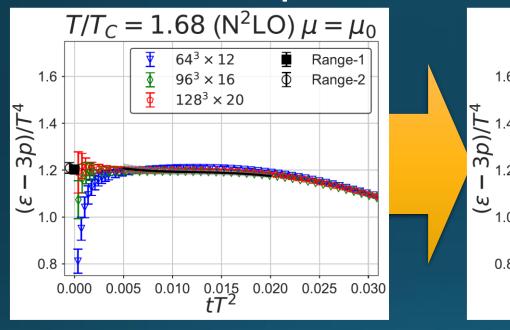
$$c_{4}(t) = \frac{1}{(4\pi)^{2}} \bar{g}(1/\sqrt{8t})^{2},$$

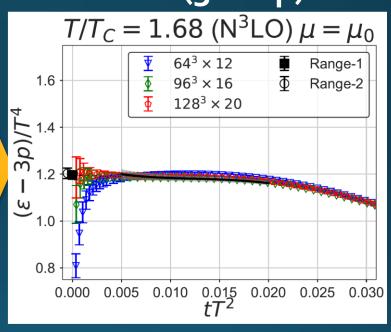
$$c_{5}^{f}(t) = -\bar{m}_{f}(1/\sqrt{8t}) \left\{ 1 + \frac{\bar{g}(1/\sqrt{8t})^{2}}{(4\pi)^{2}} \left[4(\gamma - 2\ln 2) + \frac{14}{3} + \frac{4}{3}\ln(432) \right] \right\}$$

Higher Order Coefficient: ε-3p

N²LO (2-loop)

N3LO (3-loop)





Iritani, MK, Suzuki, Takaura, in prep.

- No difference b/w 2- & 3-loops: 2-loop is already good!
- \blacksquare Systematic analysis: μ_0 or μ_d , uncertainty of Λ , fit range
- \blacksquare Extrapolation func: linear, higher order term in c_2 (~g8)

Gradient Flow for Fermions

$$\partial_t \psi(t, x) = D_{\mu} D_{\mu} \psi(t, x)$$
$$\partial_t \bar{\psi}(t, x) = \psi(t, x) \overleftarrow{D}_{\mu} \overleftarrow{D}_{\mu}$$
$$D_{\mu} = \partial_{\mu} + A_{\mu}(t, x)$$

Luscher, 2013 Makino, Suzuki, 2014 Taniguchi+ (WHOT) 2016; 2017

- □ Not "gradient" flow but a "diffusion" equation.
- Divergence in field renormalization of fermions.
- All observables are finite at t>0 once Z(t) is fixed.

$$\tilde{\psi}(t,x) = Z(t)\psi(t,x)$$

Energy-momentum tensor from SFTE Makino, Suzuki, 2014

Abelian-Higgs Model

Abelian-Higgs Model

$$\mathcal{L}_{AH} = -\frac{1}{4}F_{\mu\nu}^2 + |(\partial_{\mu} + igA_{\mu})\phi|^2 - \lambda(\phi^2 - v^2)^2$$

GL parameter: $\kappa = \sqrt{\lambda/g}$

- $\begin{cases} \Box \text{ type-I}: & \kappa < 1/\sqrt{2} \\ \Box \text{ type-II}: & \kappa > 1/\sqrt{2} \end{cases}$ $\Box \text{ Bogomol'nyi bound}:$

$$\kappa = 1/\sqrt{2}$$

Infinitely long tube

degeneracy

$$T_{zz}(r)=T_{44}(r)\,$$
 Luscher, 1981

conservation law

$$\frac{d}{dr}\left(rT_{rr}\right) = T_{\theta\theta}$$