Equilibration of Higher-order Cumulants

Masakiyo Kitazawa (Osaka U.)

GSI Workshop on

Probing the Phase Structure of Strongly Interacting Matter: Theory and Experiment GSI, Darmstadt, 26/Mar./2019

Masakiyo Kitazawa (Osaka U.)

GSI Workshop on

Probing the Phase Structure of Strongly Interacting Matter: Theory and Experiment GSI, Darmstadt, 26/Mar./2019

QCD Phase Diagram

Beam-Energy Scan Program in Heavy-Ion Collisions

Higher-Order Cumulants

Non-zero non-Gaussian cumulants have been established!

General Review: Asakawa, MK, PPNP (2016)

Detector-Response Correction

Correction assuming a binomial response

Bialas, Peschanski (1986); MK, Asakawa (2012); Bzdak, Koch (2012);

But, the response of the detector is not binomial...

Non-Binomial Correction

Response matrix

$$\tilde{P}(n) = \sum_{N} \mathcal{R}(n; N) P(N)$$

Reconstruction for any R(n;N) with moments of R(n;N)

$$\langle n^m \rangle_R = \sum_n n^m \mathcal{R}(n;N)$$

40

60

20

0

Nonaka, MK, Esumi (2018)

Caveats:

- \square R(n;N) describes the property of the detector.
- Detailed properties of the detector have to be known.
- Multi-distribution function can be handled.
- □ Huge numerical cost would be required.
- □ Truncation is required in general: another systematics?

Proton vs Baryon Cumulants

MK, Asakawa, 2012; 2012

□ Clear difference b/w these cumulants.

□ Isospin randomization justifies the reconstruction of $\langle N_B^n \rangle_c$ via the binomial model.

G Similar problem on the **momentum cut**...

Time Evolution of Fluctuations

Critical Fluctuation

Contents of Evolution of Fluctuations

1. in Hadronic Stage

MK, Ono, Asakawa, PLB (2014); MK(2015)

2. around the Critical Point

Sakaida, Asakawa, Fujii, MK (2017)

3. at First Order Transition

Nonaka, MK, Akamatsu, Bluhm, Nahrgang, in prep.

Time Evolution of Fluctuations

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000 Shuryak, Stephanov, 2001

Fluctuations in ΔY continue to change until kinetic f.o.

(Non-Interacting) Brownian Particle Model

(Non-Interacting) Brownian Particle Model

Baryons in Hadronic Phase

time

4th Order Cumulant

MK+ (2014) MK (2015)

4th Order Cumulant

MK+ (2014) MK (2015)

□ Cumulant at small $\Delta \eta$ is modified toward a Poisson value. **□** Non-monotonic behavior can appear.

Time Evolution of Fluctuations

As മ result of a simple random walk..

Is non-monotonic Δη dependence already observed?
Different initial conditions give rise to different characteristic Δη dependence. → Study initial condition

Finite volume effects: Sakaida+, PRC90 (2015)

Contents of Evolution of Fluctuations

1. in Hadronic Stage

MK, Ono, Asakawa, PLB (2014); MK(2015)

2. around the Critical Point

Sakaida, Asakawa, Fujii, MK (2017)

3. at First Order Transition

Nonaka, MK, Akamatsu, Bluhm, Nahrgang, in prep.

Dynamical Evolution of Critical Fluctuations

\square Evolution of **spatially uniform "\sigma" mode**

See also, Kapusta, Torres-Rincon (2012); Herold, Nahrgang, ... (2015); ...

Soft Mode of QCD-CP = Conserved Mode

Fujii 2003; Fujii, Ohtani, 2004; Son, Stephanov, 2004

Evolution of baryon number density **Stochastic Diffusion Equation**

$$\partial_t n = D(t) \partial_x^2 n + \partial_x \xi$$

$$\langle \xi(x_1, t_1)\xi(x_2, t_2) \rangle = \frac{2D\chi_2}{\delta^{(2)}(1-2)}$$

 $D(t), \ \chi_2(t)$:parameters characterizing criticality

□ Analytic solution is obtained.

□ Study 2nd order cumulant & correlation function.

Our Main Conclusion

Non-monotonicity in cumulants or correlation func.

Bjorken Expansion

Cartesian coordinates

$$\partial_t n = D(t)\partial_x^2 n + \partial_x \xi$$

Parametrizing $D(\tau)$ and $\chi(\tau)$

Critical behavior

- 3D Ising (r,H)
- model H

Berdnikov, Rajagopal (2000) Stephanov (2011); Mukherjee+(2015)

Temperature dep.

r > 0 r = 0 (critical point)

 $\cdot \cdot / \cdot T_{\rm c} = 160 \; [{\rm MeV}]$

 $T_{\rm f} = 100 \left[{\rm MeV} \right]$

STAR(2014)

>μ_Β

 $\cdots T_0 = 220 \; [\text{MeV}]$

Ð

Crossove

Cumulants and Correlation Function

Signal of the critical enhancement can be clearer on a path away from the CP.

Away from the CP \rightarrow Weaker critical slowing down

Contents of Evolution of Fluctuations

1. in Hadronic Stage

MK, Ono, Asakawa, PLB (2014); MK(2015)

2. around the Critical Point

Sakaida, Asakawa, Fujii, MK (2017)

3. at First Order Transition

Nonaka, MK, Akamatsu, Bluhm, Nahrgang, in prep.

1st-Order Transition

Domain formationNon-uniform system

Herold, Nahrgang, et al. (2011~); Steinheimer, Randrup (2012; 2013)

Including Non-Linearity

Nahrgang, Bluhm, Schafer, Bass (2018)

$$\partial_{\tau} n = \frac{D}{\tau^2} \partial_Y^2 n + \frac{1}{\tau} \partial_Y \xi(\eta, \tau) - \frac{n}{\tau}$$

Include non-linear effects

$$\partial_{\tau} n = \frac{\Gamma(n)}{\tau^2} \partial_Y^2 \frac{\delta F[n]}{\delta n(x)} + \frac{1}{\tau} \partial_Y \xi(\eta, \tau) - \frac{n}{\tau}$$
$$F[n(x)] = \int dx f(x)$$

Diffusion equation:
$$f(n) = \frac{a}{2}n^2$$
, $D = \Gamma a$

□ solve numerically

Free Energy

□ At 1st transition point

□ Large and small n

$$\chi(n) = \frac{\partial^2 f}{\partial n^2} \to \chi_{\text{QGP}} \ (n \to \infty)$$
$$\to \chi_{\text{hadron}} \ (n \to 0) \text{ Poisson}$$

Modeling 1st Transition

$$\partial_{\tau} n = \Gamma(n) \partial_Y^2 \frac{\delta F[n]}{\delta n(Y)} + \partial_Y \xi$$

$$\langle \xi(Y_1, \tau_1) \xi(Y_2, \tau_2) \rangle = 2A\delta^{(2)}(1-2)$$

$$\square f(n) = \frac{1}{2}a(n - n_s)^2 + \frac{1}{4}b(n - n_s)^4 + c(\tau)n + k(\partial_Y n)^2$$

- **Π** Γ: positive
- adjust Γ and A to reproduce the behavior of D at small and large n

$$\tilde{D} = \Gamma \left(\frac{\partial^2 f}{\partial n^2} + X \right) \quad A = 2D\chi_2$$

Configurations in Equilibrium

$$\partial_{\tau} n = \frac{\Gamma(n)}{\tau^2} \partial_Y^2 \frac{\delta F[n]}{\delta n(x)} + \frac{1}{\tau} \partial_Y \xi(\eta, \tau) - \frac{n}{\tau}$$

Domain formation Surface: thickness V(2k/a), surface tension

Time Evolution

transition

Weaker 1st transition can also lead to formation of domains.

Correlation Function

Both critical phenomena & 1st transition lead to a minimum of the C(y) with different mechanisms.

Summary

□ Fluctuations observed in HIC are not in equilibrium.

- Plenty of information in rapidity window dependences of higher-order cumulants.
- 2nd-order cumulant (correlation function) already contains interesting information.

Future

- Evolution of higher-order cumulants around the critical point / 1st transition
- **Combination to momentum (model-H)**
- □ more realistic model (dimension, Y dependence, ...)

Translating Languages

Brownian particle model

From Bzdak's talk

$$\langle n^m \bar{n}^{\bar{m}} \rangle_{\rm fc} = \kappa_{m\bar{m}} \Delta y F_{m+\bar{m}} (\Delta y/d)$$

$$\begin{split} c_{m\bar{m}}^{0} &= \frac{1}{2} \frac{\partial^{2}}{\partial \Delta y^{2}} \langle n^{m} \bar{n}^{\bar{m}} \rangle_{\rm fc} \Big|_{\Delta y \to 0} = \kappa_{m\bar{m}} \frac{\partial}{\partial \Delta y} F_{m+\bar{m}} (\Delta y/d) \Big|_{\Delta y \to 0} \\ &= \frac{\kappa_{m\bar{m}}}{d} \frac{1}{\sqrt{(m+\bar{m})(2\pi)^{m+\bar{m}-1}}} \\ &\kappa_{m\bar{m}}: \ {\rm F \ cumulants \ at \ initial \ condition} \\ d: \ {\rm diffusion \ distance} \end{split}$$