Critical Diffusion Dynamics

Masakiyo Kitazawa
(Osaka U.)

Rapid Reaction Task Force on
Dynamics of Critical Fluctuations: Theory – Phenomenology – HIC
GSI, Darmstadt, Germany, 11/Apr./2019
Time Evolution of Fluctuations

Distributions in ΔY and Δy are different due to “thermal blurring”.
Ohnishi, MK, Asakawa, PRC(2016)

Fluctuations in ΔY continue to change until kinetic f.o.
Distributions in ΔY and Δy are different due to “thermal blurring”.

Asakawa, Heinz, Muller, 2000
Jeon, Koch, 2000
Thermal distribution in y space

Blast wave squeezes the distribution in rapidity space

\[w = \frac{m}{T} \]

\[\begin{align*}
& \text{• pions} & \quad w & \approx 1.5 \\
& \text{• nucleons} & \quad w & \approx 9
\end{align*} \]

- blast wave
- flat freezeout surface

Ohnishi, MK, Asakawa
PRC, 2016
Rapidity distribution can be well approximated by Gaussian.

- blast wave
- flat freezeout surface

\[w = \frac{m}{T} \]

- pions \(w \approx 1.5 \)
- nucleons \(w \approx 9 \)
Rapidity-window Dependence

Asakawa, Heinz, Muller, 2000
Jeon, Koch, 2000; Shuryak, Stephanov, 2001

Quark-Gluon Plasma

Hadronization

Freezeout

The larger $\Delta \eta$, the slower diffusion.
Resonance Decay

Neutral Particles

ρ_0

Decay into charged particles

$\langle \Delta N^2 \rangle$

$\Delta \eta$

$\Delta \eta$
Resonance Decay

Neutral Particles

\(\rho_0 \)

Decay into charged particles

The larger \(\Delta \eta \), the slower diffusion.
2nd Order @ ALICE

Net charge fluctuation

\[D \simeq 4 \frac{\langle \delta N_Q^2 \rangle}{\langle \delta N_Q^2 \rangle_{\text{HRG}}} \]

ALICE, PRL2013
Net charge fluctuation has a suppression, but net-proton fluctuation does not. Why??
Suggestion

Net charge fluctuation
- Construct $\langle \delta N_B^2 \rangle$ ($\langle \delta N_N^2 \rangle$), $\langle \delta N_Q^2 \rangle$
- Then, take ratio $\frac{\langle \delta N_B^2 \rangle}{\langle \delta N_Q^2 \rangle}$
- Compare it with lattice

Net proton fluctuation
- First reliable comparison of LAT/HIC

Special thanks to F. Karsch

- Linear T dependence near T_c!!
- Only 2nd order: reliable!!

ALICE, PRL2013

HotQCD preliminary
\[\frac{\langle \delta N_B^2 \rangle}{\langle \delta N_Q^2 \rangle} \]

Prediction

LATTICE

\[T_{pc} = (156.5 \pm 1.5) \text{ MeV} \]

ALICE

\[\sqrt{s_{NN}} = 5.02 \text{ TeV} \]

\[\sqrt{s_{NN}} = 2.76 \text{ TeV} \]

\[\Delta \eta \]

\[\Delta \eta \text{ dependence for tracing back the history!} \]

HotQCD preliminary

Special thanks to F. Karsch before continuum limit

\[1.6 \]
Contents of Critical Diffusion Dynamics

1. in **Hadronic Stage**
 MK, Ono, Asakawa, PLB (2014); MK (2015)

2. around the **Critical Point**
 Sakaida, Asakawa, Fujii, MK (2017)

3. at **First Order Transition**
 Nonaka, MK, Akamatsu, Bluhm, Nahrgang, in prep.
Time Evolution of Fluctuations

Fluctuations in ΔY continue to change until kinetic f.o.

Asakawa, Heinz, Muller, 2000
Jeon, Koch, 2000
Shuryak, Stephanov, 2001
<\delta N_B^2> \text{ and } <\delta N_p^2> \text{ @ LHC?}

\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle
should have different \Delta \eta dependence.

Baryon # cumulants are experimentally observable! MK, Asakawa, 2012
How does $\langle \delta N_Q^4 \rangle_c$ behave as a function of D_{h}? suppression or enhancement
(Non-Interacting) Brownian Particle Model

Initial condition (uniform)

Random walk

Cumulants: $\langle \bar{Q}^2 \rangle_c$, $\langle \bar{Q}^3 \rangle_c$, $\langle \bar{Q}^4 \rangle_c$

diffusion master equation: MK+, PLB(2014)

Probabilistic argument: Ohnishi+, PRC(2016)
(Non-Interacting) Brownian Particle Model

Initial condition (uniform)

\[\Delta Y_{\text{drift}} \]

diffusion distance

\[t \rightarrow \infty \]

Poisson distribution

\[\Delta Y \]

Study \(\Delta Y \) dependence

cumulants: \(\langle \bar{Q}^2 \rangle_c, \langle \bar{Q}^3 \rangle_c, \langle \bar{Q}^4 \rangle_c \)

random walk

diffusion master equation: MK+, PLB(2014)

probabilistic argument: Ohnishi+, PRC(2016)
Baryons in Hadronic Phase

Baryons behave like Brownian pollens in water
Before the diffusion

\[D_4 = 4, \ D_2 = 1 \]

Initial Condition

\[
D_4 = \frac{\langle Q_{(net)}^4 \rangle_c}{\langle Q_{(tot)} \rangle} = 4
\]

\[
b = \frac{\langle Q_{(net)}^2 \rangle_c}{\langle Q_{(net)} \rangle}
\]

\[
c = \frac{\langle Q_{(tot)}^2 \rangle_c}{\langle Q_{(tot)} \rangle}
\]

\[
D_2 = \frac{\langle Q_{(net)}^2 \rangle_c}{\langle Q_{(tot)} \rangle} = 1
\]
Cumulant at small $\Delta\eta$ is modified toward a Poisson value. Non-monotonic behavior can appear.
Time Evolution of Fluctuations

As a result of a simple random walk…
Rapidity Window Dep.

4th-order cumulant

STAR Collab. (X. Luo, CPOD2014)

- Initial Conditions

 \[D_4 = \frac{\langle Q_{(net)}^4 \rangle_c}{\langle Q_{(tot)} \rangle} \quad b = \frac{\langle Q_{(net)}^2 Q_{(tot)} \rangle_c}{\langle Q_{(net)} \rangle} \]

 \[D_2 = \frac{\langle Q_{(net)}^2 \rangle_c}{\langle Q_{(tot)} \rangle} \quad c = \frac{\langle Q_{(tot)}^2 \rangle_c}{\langle Q_{(tot)} \rangle} \]

- Is non-monotonic \(\Delta \eta \) dependence already observed?
- Different initial conditions give rise to different characteristic \(\Delta \eta \) dependence. → Study initial condition

 Finite volume effects: Sakaida+ , PRC90 (2015)
\(\Delta \eta \) Dependence: 4th order

Initial Condition

\[D_4 = \frac{\langle Q_{\text{net}}^4 \rangle_c}{\langle Q_{\text{tot}} \rangle} \]

\[b = \frac{\langle Q_{\text{net}}^2 Q_{\text{tot}} \rangle_c}{\langle Q_{\text{net}}^2 \rangle} \]

\[c = \frac{\langle Q_{\text{tot}}^2 \rangle_c}{\langle Q_{\text{tot}} \rangle} \]

\[D_2 = \frac{\langle Q_{\text{net}}^2 \rangle_c}{\langle Q_{\text{tot}} \rangle} = 0.5 \]

Characteristic \(\Delta \eta \) dependences!
Cumulants with a \(\Delta \eta \) is not the initial value.
\(\Delta \eta \) Dependence: 4\(^{th}\) order

Initial Condition

\[
D_4 = \frac{\langle Q_{\text{net}}^4 \rangle_c}{\langle Q_{\text{tot}} \rangle_c}
\]

\[
b = \frac{\langle Q_{\text{net}}^2 Q_{\text{tot}} \rangle_c}{\langle Q_{\text{net}}^2 \rangle_c}
\]

\[
c = \frac{\langle Q_{\text{tot}}^2 \rangle_c}{\langle Q_{\text{tot}} \rangle_c}
\]

\[
D_2 = \frac{\langle Q_{\text{net}}^2 \rangle_c}{\langle Q_{\text{tot}} \rangle_c} = 0.5
\]

\[D \sim M^{-1}\]

\(\Delta \eta = 1.0 \) at ALICE

\(\Delta \eta = 1.6 \) at ALICE

\(\Delta \eta = 1.0 \) baryon #
Contents of Critical Diffusion Dynamics

1. in Hadronic Stage
 MK, Ono, Asakawa, PLB (2014); MK(2015)

2. around the Critical Point
 Sakaida, Asakawa, Fujii, MK (2017)

3. at First Order Transition
 Nonaka, MK, Akamatsu, Bluhm, Nahrgang, in prep.
Critical Fluctuation

① Growth of critical fluctuation
 - Critical slowing down

② Decay by diffusion

③ At 1st order transition
 - domain formation
Critical Fluctuation

① Growth of critical fluctuation
 • Critical slowing down

② Decay by diffusion

③ At 1st order transition
 • domain formation

Kibble-Zurek

Hadrons
Evolution of spatially uniform “σ” mode

Berdnikov, Rajagopal (2000)
Asakawa, Nonaka (2002)
Mukherjee+ (2015)

See also, Kapusta, Torres-Rincon (2012); Herold, Nahrgang, ... (2015); ...

THIS STUDY

Evolution of conserved charge fluctuations

Sakaida+, PRC2017; Murata, MK, in prep.

1. Conserved charges are directly observable.
2. Soft mode at QCD-CP is a conserved mode.
Fluctuations of σ and n_B are coupled around the CP!

$$\delta \sigma \simeq \delta n_B$$

$\sigma \sim M_q$

$F(\sigma, n) = A\sigma^2 + B\sigma n + Cn^2 + \cdots$

Critical soft mode
Analysis of 2nd-order Cumulant

Evolution of baryon number density

Stochastic Diffusion Equation

\[
\partial_t n = D(t) \partial_x^2 n + \partial_x \xi
\]

\[
\langle \xi(x_1, t_1) \xi(x_2, t_2) \rangle = 2D \chi_2 \delta^{(2)}(1 - 2)
\]

\(D(t), \chi_2(t)\): parameters characterizing criticality

- Analytic solution is obtained.
- Study 2nd order cumulant & correlation function.

Our Main Conclusion

Non-monotonicity in cumulants or correlation func. = Signal of QCD-CP
Bjorken Expansion

Cartesian coordinates

$$\partial_t n = D(t) \partial_x^2 n + \partial_x \xi$$

Milne coordinates

$$\partial_{\tau} n = \frac{D(t)}{\tau^2} \partial_Y^2 n + \frac{1}{\tau} \partial_Y \xi - \frac{n}{\tau}$$

suppression of diffusion
density reduction
Parametrizing $D(\tau)$ and $\chi(\tau)$

- Critical behavior
 - 3D Ising (r,h)
 - model H

Berdnikov, Rajagopal (2000)
Stephanov (2011); Mukherjee+ (2015)

- Temperature dep.
Assumptions

Evolution of baryon number density

Stochastic Diffusion Equation

\[\partial_t n = D(t) \partial_x^2 n + \partial_x \xi \]

\[\langle \xi(x_1, t_1) \xi(x_2, t_2) \rangle = 2D \chi_2 \delta^{(2)}(1 - 2) \]

\(D(t), \chi_2(t) \) : parameters characterizing criticality

- Uniform / infinitely long system
- Near equilibrium: \(\delta N_\mu \ll N_0 \)
- Short correlation length
- Slow diffusion
Resonance Decay

The larger D_h, the slower diffusion.

Neutral Particles

Decay into charged particles

The larger $\Delta \eta$, the slower diffusion.
Crossover / Cumulant

\[K(\Delta y) = \frac{\langle \delta Q^2 \rangle}{\langle \delta Q^2 \rangle_{\text{eq.}}} \]

- \(T = 220 \)
- \(T = 170 \)
- \(T = 160 \)
- \(T = 150 \)
- \(T = 100 \)
- Blurring

- monotonically decreasing

Analytic result

\[\chi(\tau) \]

monotonically increasing

\[K(\Delta y) \]

monotonically decreasing

ALICE
PRL 2013
Critical Point / Cumulant

\[K(\Delta y) = \frac{\langle \delta Q^2 \rangle}{\langle \delta Q^2 \rangle_{\text{eq.}}} \]

- non-monotonic \(\Delta y \) dep.

Analytic result: \(K(\Delta y) \) non-monotonic \(\leftrightarrow \) \(\chi(\tau) \) non-monotonic

See also,
Wu, Song
arXiv: 1903.06075
Cumulants and Correlation Function

\[Q = \int_V dx n(x) \]

(total charge)

\[\langle \delta Q^2 \rangle = \int_V dx dy \langle \delta n(x) \delta n(y) \rangle \]

(2nd order cumulant (fluctuation))

\[\langle \delta Q^2 \rangle_{\Delta y} = \int_{\Delta y} dy (\Delta y - |y|) \langle \delta n(y) \delta n(0) \rangle \]

(1-dim case)

1-to-1 correspondence

charge density

correlation function
Criticap Point / Correlation Func.

\[C(\bar{y}) = \left\langle \delta n(\bar{y}) \delta n(0) \right\rangle / \chi_{\text{hadron}} \]

- **non-monotonic** Δy dep.

Analytic result:
- $C(\Delta y)$ non-monotonic
- $\chi(\tau)$ non-monotonic

See also, Wu, Song
arXiv: 1903.06075
Away from the CP

\[K(\Delta y) = \frac{\langle \delta Q^2 \rangle}{\langle \delta Q^2 \rangle_{\text{eq}}} \]

- Signal of the critical enhancement can be clearer on a path away from the CP.

Away from the CP \(\rightarrow \) Weaker critical slowing down
Describing Non-Gaussianity

Diffusion Eq. with Non-linear Terms

\[
\partial_\tau n = \Gamma(n) \partial_Y^2 \frac{\delta F[n]}{\delta n(Y)} + \partial_Y \xi
\]

\[
\langle \xi(Y_1, \tau_1) \xi(Y_2, \tau_2) \rangle = 2A \delta^{(2)}(1 - 2)
\]

\[
f(n) = k(\nabla n)^2 + a\Delta n^2 + b\Delta n^3 + c\Delta n^4 + \cdots
\]

Application to 1\(^{st}\) order transition:
Nonaka, Akamatsu, Bluhm, MK, Nahrgang, Wednesday

- Proper description of higher order cumulants
Contents of Critical Diffusion Dynamics

1. in **Hadronic Stage**
 MK, Ono, Asakawa, PLB (2014); MK (2015)

2. around the **Critical Point**
 Sakaida, Asakawa, Fujii, MK (2017)

3. at **First Order Transition**
 Nonaka, MK, Akamatsu, Bluhm, Nahrgang, in prep.
1st-Order Transition

- Domain formation
- Non-uniform system

Herold, Nahrgang, et al. (2011~); Steinheimer, Randrup (2012; 2013)
Including Non-Linearity

Nahrgang, Bluhm, Schafer, Bass (2018)

\[\partial_\tau n = \frac{D}{\tau^2} \partial^2_Y n + \frac{1}{\tau} \partial_Y \xi(\eta, \tau) - \frac{n}{\tau} \]

Include non-linear effects

\[\partial_\tau n = \frac{\Gamma(n)}{\tau^2} \partial^2_Y \frac{\delta F[n]}{\delta n(x)} + \frac{1}{\tau} \partial_Y \xi(\eta, \tau) - \frac{n}{\tau} \]

\[F[n(x)] = \int dx f(x) \]

- Diffusion equation: \(f(n) = \frac{a}{2} n^2, \quad D = \Gamma a \)
- solve numerically
Free Energy

- At 1st transition point

- Large and small n

\[\chi(n) = \frac{\partial^2 f}{\partial n^2} \rightarrow \chi_{\text{QGP}} \ (n \rightarrow \infty) \]

\[\rightarrow \chi_{\text{hadron}} \ (n \rightarrow 0) \text{ Poisson} \]
Modeling 1st Transition

\[\partial_\tau n = \Gamma(n) \partial_Y^2 \frac{\delta F[n]}{\delta n(Y)} + \partial_Y \xi \]

\[\langle \xi(Y_1, \tau_1)\xi(Y_2, \tau_2) \rangle = 2A\delta^{(2)}(1 - 2) \]

- \(f(n) = \frac{1}{2}a(n - n_s)^2 + \frac{1}{4}b(n - n_s)^4 \]
 \[+ c(\tau)n + k(\partial_Y n)^2 \]

- \(\Gamma \): positive
- adjust \(\Gamma \) and \(A \) to reproduce the behavior of \(D \) at small and large \(n \)

\[\tilde{D} = \Gamma \left(\frac{\partial^2 f}{\partial n^2} + X \right) \quad A = 2D\chi_2 \]
Configurations in Equilibrium

\[\partial_\tau n = \frac{\Gamma(n)}{\tau^2} \partial^2_Y \frac{\delta F[n]}{\delta n(x)} + \frac{1}{\tau} \partial_Y \xi(\eta, \tau) \frac{n}{\tau} \]

- Domain formation
- Surface: thickness \(v(2k/a) \), surface tension
Time Evolution

- Dynamical domain formation
- Domains survive even after 1st transition
Time Evolution

- Weaker 1ˢᵗ transition can also lead to formation of domains.
Correlation Function

\[C(\bar{y}) = \langle \delta n(\bar{y}) \delta n(0) \rangle / \chi_{\text{hadron}} \]

- Domain leads to a peak structure in \(C(y) \).
- The peak can survive even in the final state.
Summary

- Fluctuations observed in HIC are not in equilibrium.

- Plenty of information in rapidity window dependences of higher-order cumulants.

- 2nd-order cumulant (correlation function) already contains interesting information.

Future
- Evolution of higher-order cumulants around the critical point / 1st transition
- Combination to momentum (model-H)
- More realistic model (dimension, Y dependence, ...
Δη dependence for tracing back the history!