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Time Evolution of  Fluctuations

Distributions in DY and
Dy are different due to
“thermal blurring”.
Ohnishi, MK, Asakawa, PRC(2016)

Fluctuations in DY continue 
to change until kinetic f.o.

Detector
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Thermal Blurring  Asakawa, Heinz, Muller, 2000
Jeon, Koch, 2000

Detector

Distributions in DY and
Dy are different due to
“thermal blurring”.



Thermal distribution in y space  

pion

nucleon
• pions
• nucleons

• blast wave
• flat freezeout surface

Blast wave squeezes the 
distribution in rapidity space

Ohnishi, MK, Asakawa
PRC, 2016



Thermal distribution in y space  
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Rapidity distribution can be
well approximated by Gaussian.

Ohnishi, MK, Asakawa
PRC, 2016



Rapidity-window Dependence

The larger Dh, the slower diffusion.

Quark-Gluon Plasma

Hadronization

Freezeout

Asakawa, Heinz, Muller, 2000
Jeon, Koch, 2000; Shuryak, Stephanov, 2001



Resonance Decay

Neutral Particles

Decay into charged particles



Resonance Decay

The larger Dh, the slower diffusion.

Neutral Particles

Decay into charged particles



2nd Order @ ALICE

Net charge fluctuation

ALICE, PRL2013

D-measure



2nd Order @ ALICE

Net charge fluctuation

ALICE, PRL2013

Net proton fluctuation

Rustamov, 2017

 Net-charge fluctuation has a suppression, 
 but net-proton fluctuation does not. Why??



Suggestion
Net charge fluctuation

ALICE, PRL2013

Net proton fluctuation

Rustamov, 2017

 Construct

 Then, take ratio

 Compare it with lattice 

HotQCD preliminary
Special thanks to F. Karsch

 linear T dependence near Tc !!
 only 2nd order: reliable !!

First reliable comparison of LAT/HIC



Prediction

LATTICE ALICE

Δη dependence for tracing back the history!

HotQCD preliminary
Special thanks to F. Karsch
before continuum limit

1.6
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Time Evolution of  Fluctuations

Fluctuations in DY continue 
to change until kinetic f.o.

Asakawa, Heinz, Muller, 2000
Jeon, Koch, 2000
Shuryak, Stephanov, 2001Detector



<dNB
2> and < dNp

2 > @ LHC ?  

should have different Dh dependence.

Baryon # cumulants are experimentally observable! MK, Asakawa, 2012

MK, presentations
GSI, Jan. 2013

Berkeley, Sep. 2014

FIAS, Jul. 2015

GSI, Jan. 2016

…



<dNQ
4> @ LHC ?  

suppression

How does               behave as a function of Dh?

enhancementor

MK, presentations
GSI, Jan. 2013

Berkeley, Sep. 2014

FIAS, Jul. 2015

GSI, Jan. 2016

…



(Non-Interacting) Brownian Particle Model  

Initial condition (uniform)

random

walk

cumulants:

diffusion master equation: MK+, PLB(2014)

probabilistic argument: Ohnishi+, PRC(2016)



(Non-Interacting) Brownian Particle Model  

Initial condition (uniform)

diffusion

distance
random

walk

diffusion master equation: MK+, PLB(2014)

probabilistic argument: Ohnishi+, PRC(2016)

Study DY dependence

Poisson distribution

cumulants:



Baryons in Hadronic Phase  
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4th Order Cumulant MK+ (2014)
MK (2015)

Before the diffusion



4th Order Cumulant MK+ (2014)
MK (2015)

After the diffusion

 Cumulant at small Dh is modified toward a Poisson value.

 Non-monotonic behavior can appear.

(rough estimate)



Time Evolution of Fluctuations  
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Rapidity Window Dep.  

STAR Collab. (X. Luo, CPOD2014)

Initial Conditions

4th-order cumulant

 Is non-monotonic Dh dependence already observed?
 Different initial conditions give rise to different characteristic Dh

dependence.  Study initial condition
Finite volume effects: Sakaida+, PRC90 (2015)

MK+, 2014

MK, 2015



Dh Dependence: 4th order  

Initial Condition

Charcteristic Dh dependences!
Cumulants with a Dh is not the initial value.

MK, arXiv:1505.04349



Dh Dependence: 4th order  

at ALICEat ALICE

Initial Condition

baryon #

MK, arXiv:1505.04349
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Critical Fluctuation

0 m

T

Hadrons

①

②
③

① Growth of critical fluctuation
• Critical slowing down

Decay by diffusion②

③ At 1st order transition
• domain formation



Critical Fluctuation

0 m

T

Hadrons

①

②
③

① Growth of critical fluctuation
• Critical slowing down

Decay by diffusion②

③ At 1st order transition
• domain formation

Kibble
-Zurek



Dynamical Evolution of Critical Fluctuations  

Evolution of spatially uniform “s” mode

Berdnikov, Rajagopal (2000)
Asakawa, Nonaka (2002)

Mukherjee+ (2015)
…

See also, Kapusta, Torres-Rincon (2012); Herold, Nahrgang, … (2015); …

THIS STUDY
Evolution of conserved charge fluctuations

Sakaida+, PRC2017; Murata, MK, in prep.

1. Conserved charges are directly observable.
2. Soft mode at QCD-CP is a conserved mode.

Model A
Model B



Soft Mode of QCD-CP = Conserved Mode  

Fujii 2003; Fujii, Ohtani, 2004; Son, Stephanov, 2004

Fluctuations of s and nB are 
coupled around the CP!

s: fast damping



Analysis of 2nd-order Cumulant

Evolution of baryon number density

Stochastic Diffusion Equation

:parameters characterizing criticality

Sakaida+ (2017)

Our Main Conclusion

Non-monotonicity in
cumulants or correlation func. = Signal of

QCD-CP

 Analytic solution is obtained.
 Study 2nd order cumulant & correlation function.



Bjorken Expansion

Cartesian coordinates

Milne coordinates

density
reduction

suppression
of diffusion



Parametrizing D(t) and c(t)  

Critical behavior

• 3D Ising (r,h)
• model H

(critical point)

critical
enhancement

critical
slowing
down

Temperature dep.

Berdnikov, Rajagopal (2000)
Stephanov (2011); Mukherjee+(2015)



Assumptions

Uniform / infinitely long system
Near equilibrium: δNμ << N0

Short correlation length
Slow diffusion

Evolution of baryon number density

Stochastic Diffusion Equation

:parameters characterizing criticality



Resonance Decay

The larger Dh, the slower diffusion.

Neutral Particles

Decay into charged particles



Crossover / Cumulant

monotonically decresing

monotonically
increasing

monotonically
decreasing

Analytic
result

ALICE
PRL 2013



Critical Point / Cumulant

non-monotonic Dy dep.

non-monotonic non-monotonic

Analytic
result

See also,
Wu, Song
arXiv: 1903.06075



Cumulants and Correlation Function  

2nd order cumulant
(fluctuation)

correlation function

total charge charge density

1-dim case

1-to-1 correspondence



Criticap Point / Correlation Func.  

non-monotonic Dy dep.

non-monotonic non-monotonic

Analytic
result

See also,
Wu, Song
arXiv: 1903.06075



Away from the CP  

 Signal of the critical enhancement can be clearer on a path 
away from the CP.

Away from the CP Weaker critical slowing down

(critical point)



Describing Non-Gaussianity
Nahrgang, Bluhm, Schaefer, Bass

arxiv:1804.05728Diffusion Eq. with Non-linear Terms

Application to 
1st order transition:
Nonaka, Akamatsu, Bluhm, 
MK, Nahrgang,
Wednesday

 Proper description of higher order cumulants
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1st-Order Transition

 Domain formation
 Non-uniform system

Herold, Nahrgang, et al. (2011~); Steinheimer, Randrup (2012; 2013)

T

μ



Including Non-Linearity  

Include non-linear effects

Nahrgang, Bluhm, 

Schafer, Bass (2018)

 Diffusion equation:

 solve numerically



Free Energy

 At 1st transition point

 Large and small n

Poisson



Modeling 1st Transition

 Γ: positive
 adjust Γ and A to reproduce the 

behavior of D at small and large n





Configurations in Equilibrium

 Domain formation
 Surface: thickness √(2k/a), surface tension



Time Evolution

initial

 Dynamical domain formation
 Domains survive even after 1st

transition
rapidity



Time Evolution

Weaker 1st transition can also lead to formation of domains.



Correlation Function

t=  2fm
t=  5fm
t=10fm
t=20fm

Correlation Function

rapidity gap Dy

 Domain leads to a peak structure in C(y).
 The peak can survive even in the final state.

Peak
structure



Summary

 Fluctuations observed in HIC are not in equilibrium. 

 Plenty of information in rapidity window dependences of 
higher-order cumulants.

 2nd-order cumulant (correlation function) already contains 
interesting information.

Future
 Evolution of higher-order cumulants around the critical 

point / 1st transition
 combination to momentum (model-H)
more realistic model (dimension, Y dependence, …)



Prediction

LATTICE ALICE

Δη dependence for tracing back the history!

HotQCD preliminary
Special thanks to F. Karsch
before continuum limit
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