Critical Diffusion Dynamics

Masakiyo Kitazawa (Osaka U.)

Rapid Reaction Task Force on Dynamics of Critical Fluctuations: Theory – Phenomenology – HIC GSI, Darmstadt, Germany, 11/Apr./2019

Time Evolution of Fluctuations

distribution in rapidity space

• flat freezeout surface

Thermal distribution in y space

Ohnishi, MK, Asakawa PRC, 2016

 $w \simeq 1.5$

 $\langle \beta_{T} \rangle$

 $w \simeq 9$

T_{kin} (GeV) ALICE, Fit Range π : 0.5 < p_{τ} < 1 GeV/c 0.18 0.2 < p'₊ < 1.5 GeV/c 80-90% p: $0.3 < p_{-}^{1} < 3.0 \text{ GeV/}c$ 0.16 0.14 70-80% 0.12 0.1 STAR, Fit Range _π: 0.5 < p_ < 0.8 GeV/c 0.08 K: 0.2 < p_ < 0.75 GeV/c (a) $0.06 \text{ Lp}: 0.35 < p_{-} < 1.2 \text{ GeV/}c$ 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

m

T

pions

nucleons

w

Rapidity distribution can be well approximated by Gaussian.

- blast wave
- flat freezeout surface

Rapidity-window Dependence

The larger $\Delta \eta$, the slower diffusion.

Resonance Decay

Resonance Decay

The larger $\Delta \eta$, the slower diffusion.

2nd Order @ ALICE

Net charge fluctuation

2nd Order @ ALICE

Net charge fluctuation Net proton fluctuation Skellam 0-5% ALICE Preliminary, Pb-Pb $\sqrt{s_{_{NN}}}$ = 2.76 TeV 20-30% 0.6 , centrality 0-5%3.5 40-50% Function Erf ratio, stat. uncert. Extrapolation syst. uncert. 3 HIJING ALICE, PRL2013 e 2.5 0.9 2 Rustamov, 2017 0.5 1.5 2 2.5 3 3.5 D 1 0.5 1.5

Net-charge fluctuation has a suppression,

but net-proton fluctuation does not. Why??

Suggestion

Prediction

Δη dependence for tracing back the history!

Contents of Critical Diffusion Dynamics

1. in Hadronic Stage

MK, Ono, Asakawa, PLB (2014); MK(2015)

2. around the Critical Point

Sakaida, Asakawa, Fujii, MK (2017)

3. at First Order Transition

Nonaka, MK, Akamatsu, Bluhm, Nahrgang, in prep.

Time Evolution of Fluctuations

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000 Shuryak, Stephanov, 2001

Fluctuations in ΔY continue to change until kinetic f.o.

 $<\delta N_{\rm B}^2$ > and $<\delta N_{\rm p}^2$ > @ LHC ?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$

should have different $\Delta\eta$ dependence.

MK, presentations GSI, Jan. 2013 Berkeley, Sep. 2014 FIAS, Jul. 2015 GSI, Jan. 2016

Baryon # cumulants are experimentally observable! MK, Asakawa, 2012

(Non-Interacting) Brownian Particle Model

(Non-Interacting) Brownian Particle Model

Baryons in Hadronic Phase

time

4th Order Cumulant

MK+ (2014) MK (2015)

4th Order Cumulant

MK+ (2014) MK (2015)

□ Cumulant at small $\Delta \eta$ is modified toward a Poisson value. **□** Non-monotonic behavior can appear.

Time Evolution of Fluctuations

As മ result of a simple random walk..

Is non-monotonic Δη dependence already observed?
Different initial conditions give rise to different characteristic Δη dependence. → Study initial condition

Finite volume effects: Sakaida+, PRC90 (2015)

Charcteristic $\Delta \eta$ dependences! Cumulants with a $\Delta \eta$ is not the initial value.

Contents of Critical Diffusion Dynamics

1. in Hadronic Stage

MK, Ono, Asakawa, PLB (2014); MK(2015)

2. around the Critical Point

Sakaida, Asakawa, Fujii, MK (2017)

3. at First Order Transition

Nonaka, MK, Akamatsu, Bluhm, Nahrgang, in prep.

Critical Fluctuation

Critical Fluctuation

Dynamical Evolution of Critical Fluctuations

\square Evolution of **spatially uniform "\sigma" mode**

See also, Kapusta, Torres-Rincon (2012); Herold, Nahrgang, ... (2015); ...

Soft Mode of QCD-CP = Conserved Mode

Fujii 2003; Fujii, Ohtani, 2004; Son, Stephanov, 2004

Evolution of baryon number density **Stochastic Diffusion Equation**

$$\partial_t n = D(t) \partial_x^2 n + \partial_x \xi$$

$$\langle \xi(x_1, t_1)\xi(x_2, t_2) \rangle = \frac{2D\chi_2}{\delta^{(2)}(1-2)}$$

 $D(t), \ \chi_2(t)$:parameters characterizing criticality

□ Analytic solution is obtained.

□ Study 2nd order cumulant & correlation function.

Our Main Conclusion

Non-monotonicity in cumulants or correlation func.

Bjorken Expansion

Cartesian coordinates

$$\partial_t n = D(t)\partial_x^2 n + \partial_x \xi$$

Parametrizing $D(\tau)$ and $\chi(\tau)$

Critical behavior

- 3D Ising (r,h)
- model H

Berdnikov, Rajagopal (2000) Stephanov (2011); Mukherjee+(2015)

Temperature dep.

Assumptions

Evolution of baryon number density **Stochastic Diffusion Equation**

$$\partial_t n = D(t) \partial_x^2 n + \partial_x \xi$$

$$\langle \xi(x_1, t_1)\xi(x_2, t_2) \rangle = 2D\chi_2 \delta^{(2)}(1-2)$$

 $D(t), \ \chi_2(t)$:parameters characterizing criticality

Uniform / infinitely long system
Near equilibrium: δN_µ << N₀
Short correlation length
Slow diffusion

Resonance Decay

The larger $\Delta \eta$, the slower diffusion.

Cumulants and Correlation Function

Signal of the critical enhancement can be clearer on a path away from the CP.

Away from the CP \rightarrow Weaker critical slowing down

Describing Non-Gaussianity

Diffusion Eq. with Non-linear Terms

$$\partial_{\tau} n = \Gamma(n) \partial_Y^2 \frac{\delta F[n]}{\delta n(Y)} + \partial_Y \xi$$

$$\langle \xi(Y_1, \tau_1)\xi(Y_2, \tau_2) \rangle = 2A\delta^{(2)}(1-2)$$
$$f(n) = k(\nabla n)^2 + a\Delta n^2 + b\Delta n^3 + c\Delta n^4 + \cdots$$

Nahrgang, Bluhm, Schaefer, Bass arxiv:1804.05728

> Application to 1st order transition: Nonaka, Akamatsu, Bluhm, MK, Nahrgang, Wednesday

Proper description of higher order cumulants

Contents of Critical Diffusion Dynamics

1. in Hadronic Stage

MK, Ono, Asakawa, PLB (2014); MK(2015)

2. around the Critical Point

Sakaida, Asakawa, Fujii, MK (2017)

3. at First Order Transition

Nonaka, MK, Akamatsu, Bluhm, Nahrgang, in prep.

1st-Order Transition

Domain formationNon-uniform system

Herold, Nahrgang, et al. (2011~); Steinheimer, Randrup (2012; 2013)

Including Non-Linearity

Nahrgang, Bluhm, Schafer, Bass (2018)

$$\partial_{\tau} n = \frac{D}{\tau^2} \partial_Y^2 n + \frac{1}{\tau} \partial_Y \xi(\eta, \tau) - \frac{n}{\tau}$$

Include non-linear effects

$$\partial_{\tau} n = \frac{\Gamma(n)}{\tau^2} \partial_Y^2 \frac{\delta F[n]}{\delta n(x)} + \frac{1}{\tau} \partial_Y \xi(\eta, \tau) - \frac{n}{\tau}$$
$$F[n(x)] = \int dx f(x)$$

Diffusion equation:
$$f(n) = \frac{a}{2}n^2$$
, $D = \Gamma a$

□ solve numerically

Free Energy

□ At 1st transition point

□ Large and small n

$$\chi(n) = \frac{\partial^2 f}{\partial n^2} \to \chi_{\text{QGP}} \ (n \to \infty)$$
$$\to \chi_{\text{hadron}} \ (n \to 0) \text{ Poisson}$$

Modeling 1st Transition

$$\partial_{\tau} n = \Gamma(n) \partial_Y^2 \frac{\delta F[n]}{\delta n(Y)} + \partial_Y \xi$$

$$\langle \xi(Y_1, \tau_1) \xi(Y_2, \tau_2) \rangle = 2A\delta^{(2)}(1-2)$$

$$\square f(n) = \frac{1}{2}a(n - n_s)^2 + \frac{1}{4}b(n - n_s)^4 + c(\tau)n + k(\partial_Y n)^2$$

- **Π** Γ: positive
- adjust Γ and A to reproduce the behavior of D at small and large n

$$\tilde{D} = \Gamma \left(\frac{\partial^2 f}{\partial n^2} + X \right) \quad A = 2D\chi_2$$

Configurations in Equilibrium

$$\partial_{\tau} n = \frac{\Gamma(n)}{\tau^2} \partial_Y^2 \frac{\delta F[n]}{\delta n(x)} + \frac{1}{\tau} \partial_Y \xi(\eta, \tau) - \frac{n}{\tau}$$

Domain formation Surface: thickness V(2k/a), surface tension

Time Evolution

Weaker 1st transition can also lead to formation of domains.

Correlation Function

Summary

□ Fluctuations observed in HIC are not in equilibrium.

- Plenty of information in rapidity window dependences of higher-order cumulants.
- 2nd-order cumulant (correlation function) already contains interesting information.

Future

- Evolution of higher-order cumulants around the critical point / 1st transition
- **Combination to momentum (model-H)**
- □ more realistic model (dimension, Y dependence, ...)

Prediction

Δη dependence for tracing back the history!