Classifying Topological Sector via Machine Learning

<u>Masakiyo Kitazawa</u>, Takuya Matsumoto, Yasuhiro Kohno (Osaka University)

MK, Kohno, Matsumoto, to appear

Topological Charge in YM Theory

 $Q = \int d^4x q(x)$: integer

 $q(x) = -\frac{1}{32\pi^2} \operatorname{tr}[F_{\mu\nu}\tilde{F}_{\mu\nu}]$

Interests / applications

Instantons
Axial U(1) anomaly
Axion cosmology
Topological freezing

q(x) in SU(3) YM, β =5.8, 8⁴, t/a²=2.0

Topology on the Lattice

Distinct topological sectors on sufficiently fine lattices

Definitions of Q on the lattice:
 fermionic: Atiyah-Singer index theorem
 gluonic: q(x) after smoothing
 cooling, smearing
 gradient flow
 Luscher, Weisz, 2011

Good agreement b/w various definitions
 Faster algorithm is desirable!

Luscher, 1981

Machine Learning

Input: q(x)

4-dimensional field

Capture "instanton"-like structure?Acceleration of the analysis of Q?

Machine Learning

Input: q(x)

4-dimensional field

Capture "instanton"-like structure?Acceleration of the analysis of Q?

Machine Learning

Input: q(x)

4-dimensional field

Output

topological charge

Why q(x) rather than link variables?

to reduce the input data
 to skip teaching SU(N) and gauge invariance

Lattice Setting

□ SU(3) Yang-Mills
 □ Wilson gauge action
 □ 2 lattice spacings with same physical volume
 □ LT_c~0.63
 □ ⟨Q²⟩ ≃ 1.1

Gradient flow for smoothing

β	N ⁴	N _{conf}
6.2	164	20,000
6.5	24 ⁴	20,000

20,000 confs. in total

Training: 10,000

Validation: 5,000

Test: 5,000

distribution of Q

Q	-5	-4	-3	-2	-1	0	1	2	3	4	5
$\beta = 6.2$	2	17	235	1325	4571	7474	4766	1352	240	18	0
$\beta = 6.5$	0	5	105	1080	4639	8296	4621	1039	202	13	0

Neural Network Setting

convolutional neural network by CHAINER framework
 supervised learning
 convolutional layer: 4-dim., periodic BC
 regression analysis / round off to obtain integer
 activation: logistic

answer of Q
 Q(t) @ t/a²=4.0
 round off

Trial 1: Topol. Charge Density

Input: q(x) in 4-dim space
 Data reduction to 8⁴ (average pooling)

GAP=Global Average Pooling Translational invariance is respected in this NN.

Trial 1: Topol. Charge Density

Input: q(x) in 4-dim space
 Data reduction to 8⁴ (average pooling)

\Box Result: best accuracy for $\beta = 6.2$: **37.0%**

Accuracy of each topological sector (%)

Q	-4	-3	-2	-1	0	1	2	3	4	total
t/a ² =0	0	0	0	0	37.2	0	0	0	0	37.0

Trial 2: Topol. Density @ t>0

Input: q(x,t) in 4-dim space at nonzero flow time
 Data reduction to 8⁴ (average pooling)

Accuracy of each topological sector (%)

Q	-4	-3	-2	-1	0	1	2	3	4	total
t/a ² =0	0	0	0	0	37.2	0	0	0	0	37.0
t/a ² =0.1	0	0	31.6	39.1	41.4	38.9	19.0	0	0	40.3
t/a ² =0.2	0	40.0	46.4	53.8	55.9	52.3	48.1	50.0	0	53.7
t/a ² =0.3	0	91.3	72.9	76.3	79.0	74.8	68.1	70.0	50.0	76.1

Benchmark Simple estimator from Q(t)

1) Naïve: $Q = \operatorname{round}[Q(t)]$ **2)** Improved: $Q = \operatorname{round}[cQ(t)]$
c>1: optimization param.

Q = 0

3) zero:

0.0

 $\beta = 6.2, \text{ imp.}$ $\beta = 6.2, \text{ naive}$ $\beta = 6.2, Q = 0$ $\beta = 6.2, Q = 0$ $\beta = 6.5, \text{ imp.}$ $\beta = 6.5, \text{ naive}$ $\beta = 6.5, Q = 0$

0.4

 t/a^2

0.5

0.6

0.7

0.8

0.2

0.1

0.3

Distribution of Q(t)

.019), Wuhan, China, June 21, 2019

37th intern

Comparison: NN vs Benchmark

accuracy at $\beta = 6.2$

	ML (Trial 2)	naïve	improved
t/a ² =0	37.0	27.3	27.3
t/a ² =0.1	40.3	38.3	38.3
t/a ² =0.2	53.7	54.0	54.6
t/a ² =0.3	76.1	69.8	77.3

Machine learning cannot exceed the benchmark value.
 NN would be trained to answer the "improved" value.
 No useful local structures found by the NN.

Trial 3: Multi-Channel Analysis

□ Input: q(x,t) in four-dimensional space **at t/a²=0.1, 0.2, 0.3**

Trial 3: Multi-Channel Analysis

Input: q(x,t) in four-dimensional space at t/a²=0.1, 0.2, 0.3

Res	ult				
	machine	learning	ben	chmark @ t/a^2	=0.3
β=6	.2	93.8		77.3	
β=6	.5	94.1		71.3	

non-trivial improvement from the benchmark!!

Is this a non-trivial result?

We can estimate the answer from Q(t) by our eyes...

Result	O(t)	Trial 3 (4dim)	benchmark
β=6.2	95.5	93.8	77.3
β=6.5	95.7	94.1	71.3

Good accuracy is obtained only from Q(t)

Using different flow times

t/a²=0.3, 0.25, 0.2 gives the best accuracy.
 Better accuracy on the finer lattice.
 More than three t values do not improve accuracy.
 error: variance in 10 independent trainings

Reducing the Training Data

Smaller training data will reduce numerical cost for the training.

Training data	10,000	5,000	1,000	500	100
β=6.2	95.9(2)	95.9(2)	95.9(2)	95.5(3)	90.3(7)
β=6.5	99.0(2)	99.0(2)	98.9(2)	98.9(1)	90.2(8)

1000 configurations are enough to train the NN successfully!
 Numerical cost for the training is small.

Versatility

Analyze configurations with a different parameter set

	analyzed data							
		β=6.2	β=6.5					
ning ta	β=6.2	95.9(2)	98.6(2)					
train da	β=6.5	95.6(2)	99.0(2)					

NNs trained for β=6.2 and 6.5 can be used for another parameter successfully.
 Universal NN would be developed!
 Note: same physical volume

Trial 5: Dimensional Reduction

Optimal dimension between d=0 and 4? q₃(x, y, z) = \$\int d\tau q(x)\$

d-dimensional CNN

Input: q_d(x) after dimensional reduction

3-channel analysis: t/a²=0.1, 0.2, 0.3

Summary and Outlook

Topological charge can be estimated with high accuracy from Q(t) at 0.2<t/a²<0.3 with the aid of the machine learning technique.
 On the finer lattices, the better accuracy.
 Applications: checking topological freezing, etc.

No local structure captured by NN
 No "Instanton"-like structure? Or too noisy data?

Future Study
 Continuum limit / volume dependence
 High T configurations where DIGA is valid

Topological Charge Density

 $t/a^2 = 0.1$

 $t/a^2 = 0.2$

 $t/a^2 = 0.3$

No isolated instanton structure...

backup

Details of NN

□ Trial 1~3

Layer	Filter size	Output size	Activation
input		$8^4 \times 1$	
convolution	$3^4 \times 5$	$8^4 \times 5$	Logistic
convolution	$3^4 \times 5$	$8^4 \times 5$	Logistic
average pooling	$8^4 \times 1$	5×1	
full connect		5	Logistic
full connect		1	

Trial 4

Layer	Output size	Activation
input	3	
full connect	5	Logistic
full connect	1	

□ Trial 5

Layer	Filter size	Output size	Activation
input		$12^d \text{or} 8^d \times 3$	
convolution	$3^d \times 5$	$12^d \text{or} 8^d \times 5$	Logistic
convolution	$3^d \times 5$	$12^d \text{or} 8^d \times 5$	Logistic
convolution	$3^d \times 5$	$12^d \text{or} 8^d \times 5$	Logistic
average pooling	$12^d \text{or} 8^d \times 1$	5×1	
full connect		5	Logistic
full connect		1	

