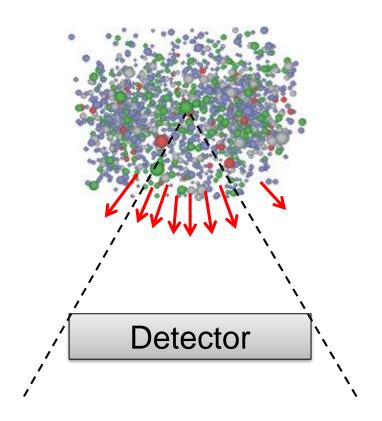
E-b-E Fluctuations in Dense Baryonic Medium

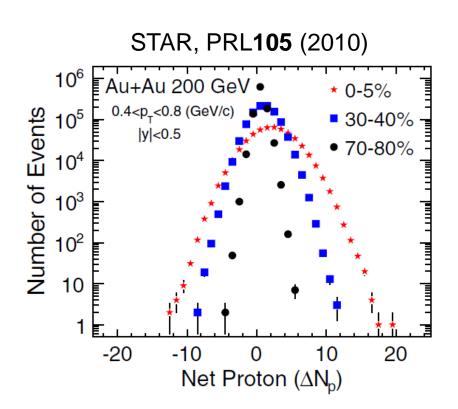
Masakiyo Kitazawa (Osaka U.)

Heavy Ion Cafe Sophia University, Tokyo, 23/June/2019

Event-by-Event Fluctuations

Review: Asakawa, MK, PPNP 90 (2016)

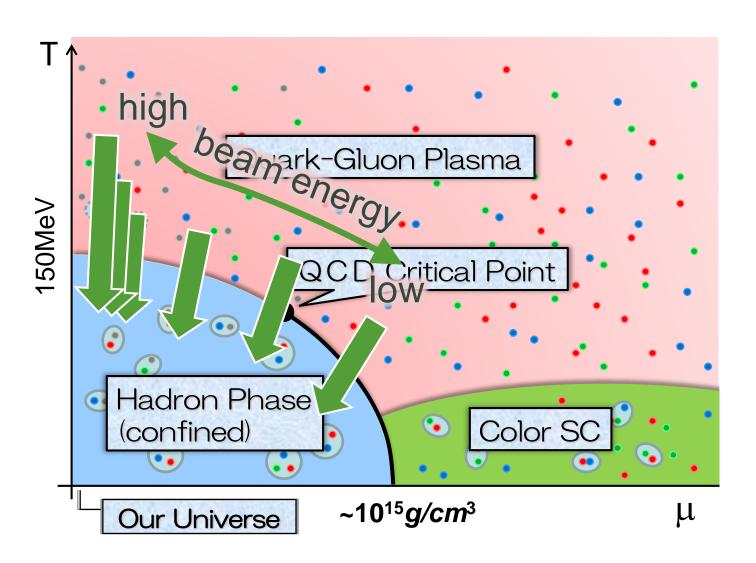




Structure of distribution reflects microscopic properties

Cumulants: $\langle \delta N_p^2 \rangle, \langle \delta N_p^3 \rangle, \langle \delta N_p^4 \rangle_c$

Beam-Energy Scan Program in Heavy-Ion Collisions



A Coin Game

- 1) Bet 25 Euro
- 2 You get head coins of

Same expectation value.

A Coin Game

- 1 Bet 25 Euro
- 2 You get head coins of

But, different fluctuation.

Fluctuations in HIC: 2nd Order

Search for QCD CP

Fluctuation increases

Fluctuation **decreases**

Asakawa, Heinz, Muller, 2000; Jeon, Koch, 2000

Higher-order Cumulants

$$2\langle \delta \in ^{2} \rangle = \langle \delta \in ^{2} \rangle$$

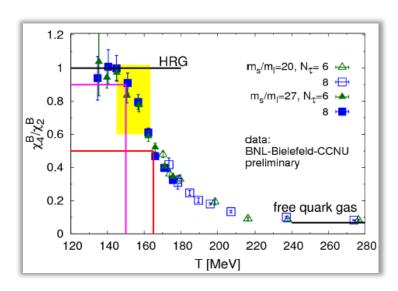
$$4\langle \delta \in ^{3} \rangle = \langle \delta \in ^{3} \rangle$$

$$8\langle \mathbf{\epsilon}^4 \rangle_{\mathbf{c}} = \langle \mathbf{\epsilon}^4 \rangle_{\mathbf{c}}$$

Asakawa, MK, PPNP 90, 299 (2016)

Non-Gaussian Fluctuations

Onset of QGP



Fluctuation **decreases**

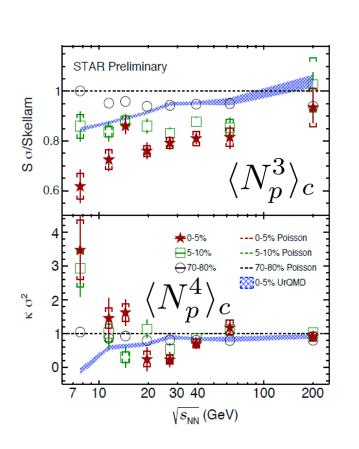
Ejiri, Karsch, Redlich, 2006

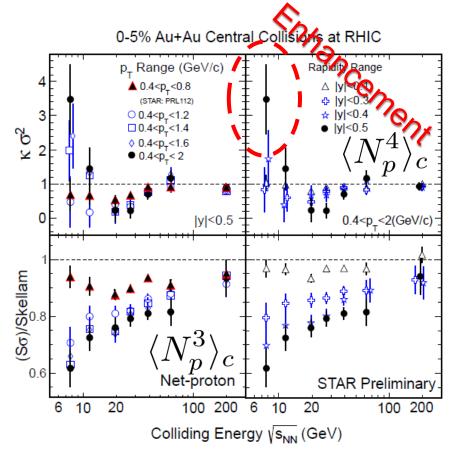
Search for QCD CP

Fluctuation increases

Stephanov, 2009

Higher-Order Cumulants





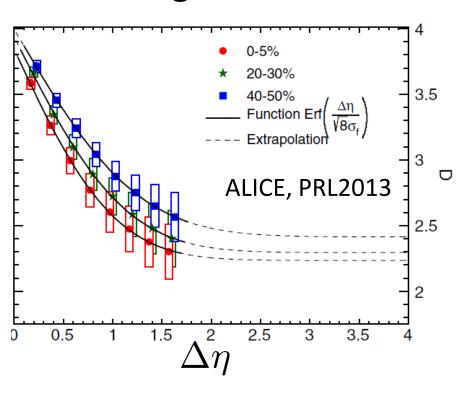
STAR 2010~

Non-zero non-Gaussian cumulants have been established!

General Review: Asakawa, MK, PPNP (2016)

2nd Order @ ALICE

Net charge fluctuation

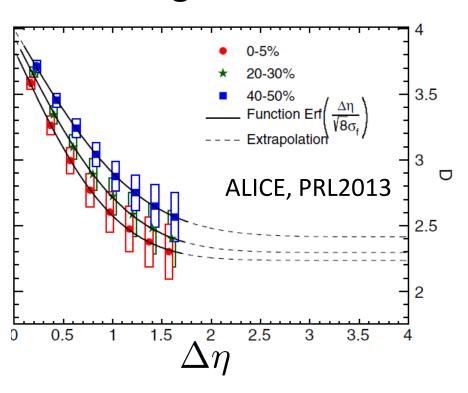


D-measure

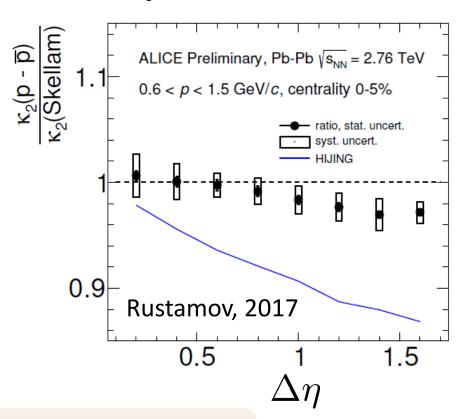
$$D \simeq 4 \frac{\langle \delta N_{\rm Q}^2 \rangle}{\langle \delta N_{\rm Q}^2 \rangle_{\rm HRG}}$$

2nd Order @ ALICE

Net charge fluctuation



Net proton fluctuation



- Net-charge fluctuation has a suppression,
- but net-proton fluctuation does not. Why??

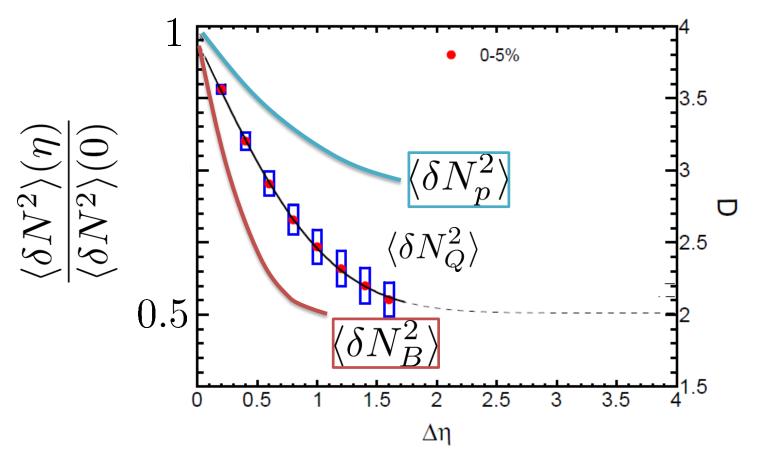
$$<\delta N_{\rm B}^2>$$
 and $<\delta N_{\rm p}^2>$ @ LHC?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$

should have different $\Delta \eta$ dependence.

MK, presentations GSI, Jan. 2013 Berkeley, Sep. 2014 FIAS, Jul. 2015 GSI, Jan. 2016

. . .



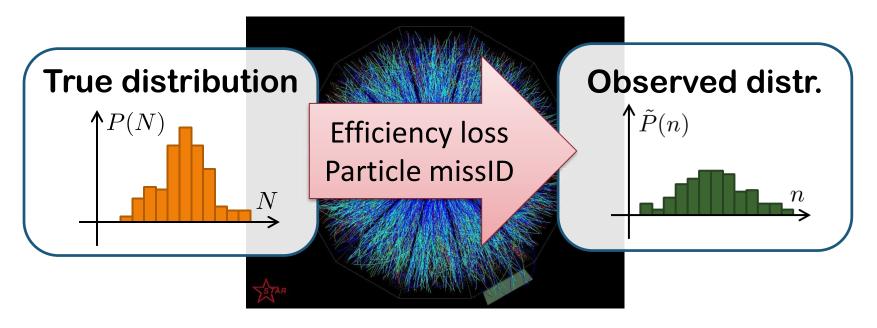
Baryon # cumulants are experimentally observable! MK, Asakawa, 2012

Message

Understand 2nd-order fluctuations @ LHC & top-RHIC

- 1. Problems in experimental analysis
 - proper correction of detector's property
- 2. Conserved-charge fluctuations
- 3. Dynamics of non-Gaussian fluctuations
- 4. A suggestion: chiB/chiQ

Detector-Response Correction

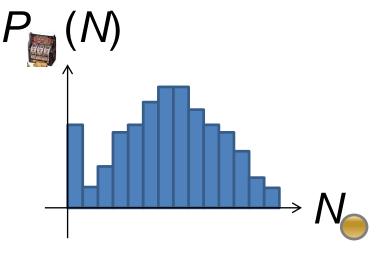


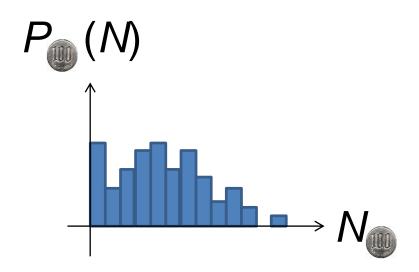
□ Correction assuming a binomial response

Bialas, Peschanski (1986); MK, Asakawa (2012); Bzdak, Koch (2012);

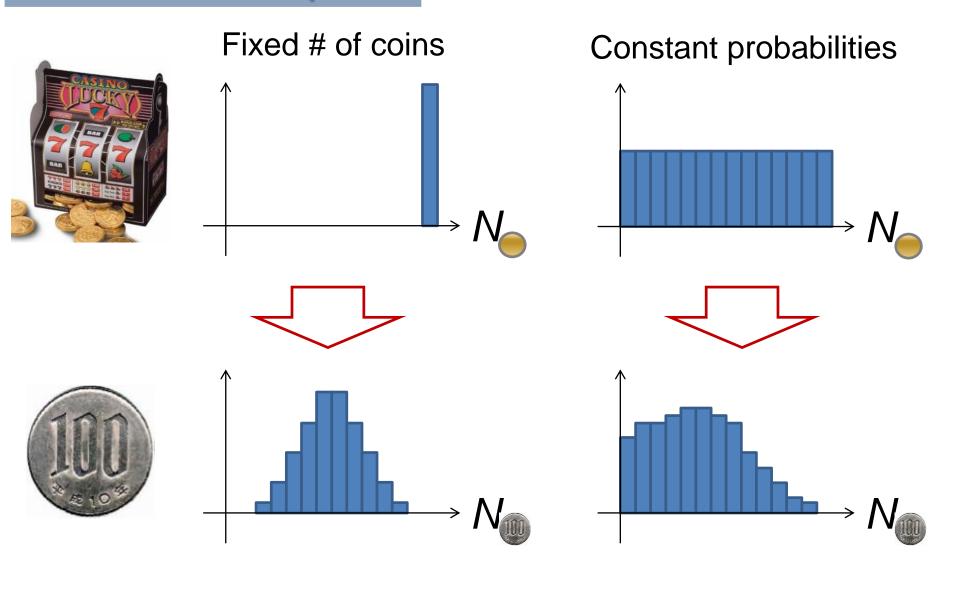
But, the response of the detector is not binomial...

Slot Machine Analogy



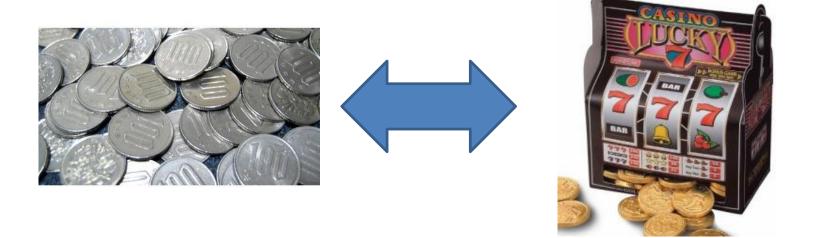


Extreme Examples



Reconstructing Total Coin Number

$$P_{0}(N_{0}) = \sum_{n} P_{0}(N_{n})B_{1/2}(N_{0};N_{0})$$



 $B_p(k;N) = p^k(1-p)^{N-k} {}_kC_N$:binomial distr. func.

Non-Binomial Correction

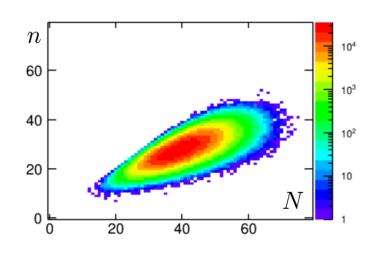
■ Response matrix

$$\tilde{P}(n) = \sum_{N} \mathcal{R}(n; N) P(N)$$

Reconstruction for any R(n;N) with moments of R(n;N)

$$\langle n^m \rangle_R = \sum_n n^m \mathcal{R}(n; N)$$

Nonaka, MK, Esumi (2018)



- ☐ Caveats:
 - \square R(n;N) describes the property of the detector.
 - ☐ Detailed properties of the detector have to be known.
 - Multi-distribution function can be handled.
 - ☐ Huge numerical cost would be required.
 - ☐ Truncation is required in general: another systematics?

Result in a Toy-Model

Binomial w/ multiplicity-dependent efficiency

$$\epsilon(N) = \epsilon_0 + (N - N_{\text{ave}})\epsilon'$$

Holtzman, Bzdak, Koch (16) Nonaka, MK, Esumi (2018)

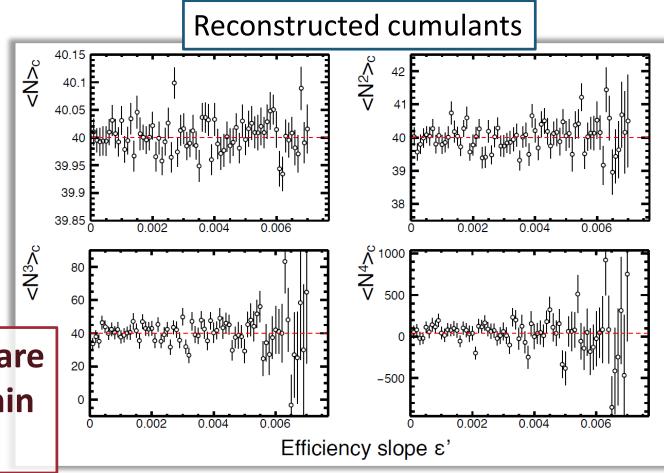
Input P(N): Poisson(λ =40)

$$\epsilon_0 = 0.7$$

Red:

true cumulant

True cumulants are reproduced within statistics!



Message

Understand 2nd-order fluctuations @ LHC & top-RHIC

- 1. Problems in experimental analysis
 - proper correction of detector's property
- 2. Conserved-charge fluctuations
- 3. Dynamics of non-Gaussian fluctuations
- 4. A suggestion: chiB/chiQ

Why Conserved Charges?

- ☐ Direct comparison with theory / lattice
 - ☐ Strong constraint from lattice
 - ☐ Ignorance on spatial volume of medium
- ☐ Slow time evolution

Why Conserved Charges?

- ☐ Direct comparison with theory / lattice
 - ☐ Strong constraint from lattice
 - ☐ Ignorance on spatial volume of medium
- ☐ Slow time evolution

AHM-JK (2000)

D-measure

$$D \sim \frac{\langle \delta N_{\rm Q}^2 \rangle}{S}$$

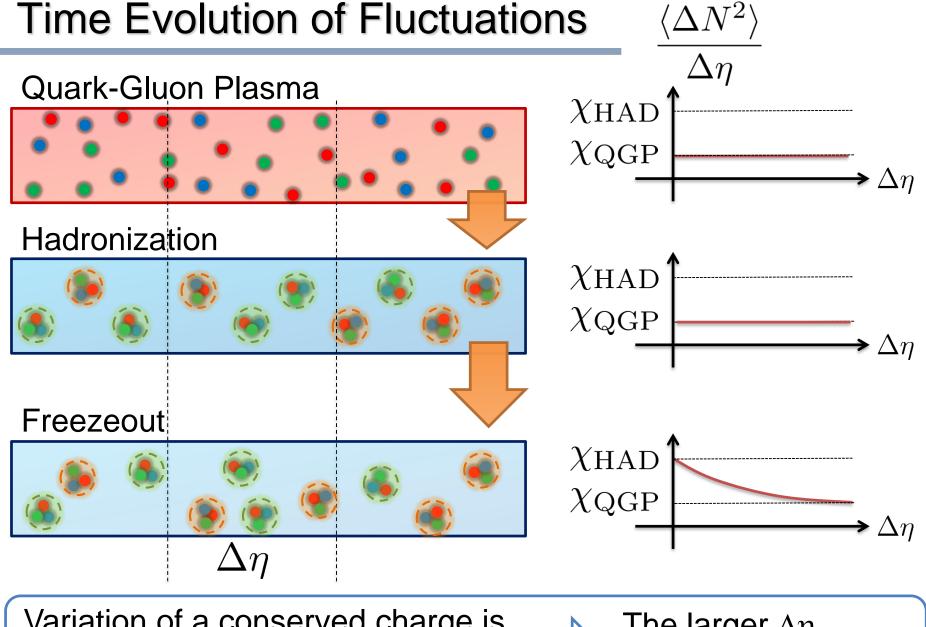
Ejiri-Karsch-Redlich

Ratio of cumulants

$$\frac{\langle N_{
m Q}^4 \rangle_c}{\langle N_{
m Q}^2 \rangle_c}, \quad \frac{\langle N_{
m B}^4 \rangle_c}{\langle N_{
m B}^2 \rangle_c}$$

S is model dependent

Experimentally difficult



Variation of a conserved charge is achieved only through diffusion.

The larger $\Delta \eta$, the slower diffusion

Proton vs Baryon Cumulants

MK, Asakawa, 2012; 2012

Experiments

proton number cumulants

$$\langle N_p^n \rangle_{\rm c}$$

Many theories

baryon number cumulants

$$\langle N_{\rm B}^n \rangle_{\rm c}$$

measurement with 50% efficiency loss

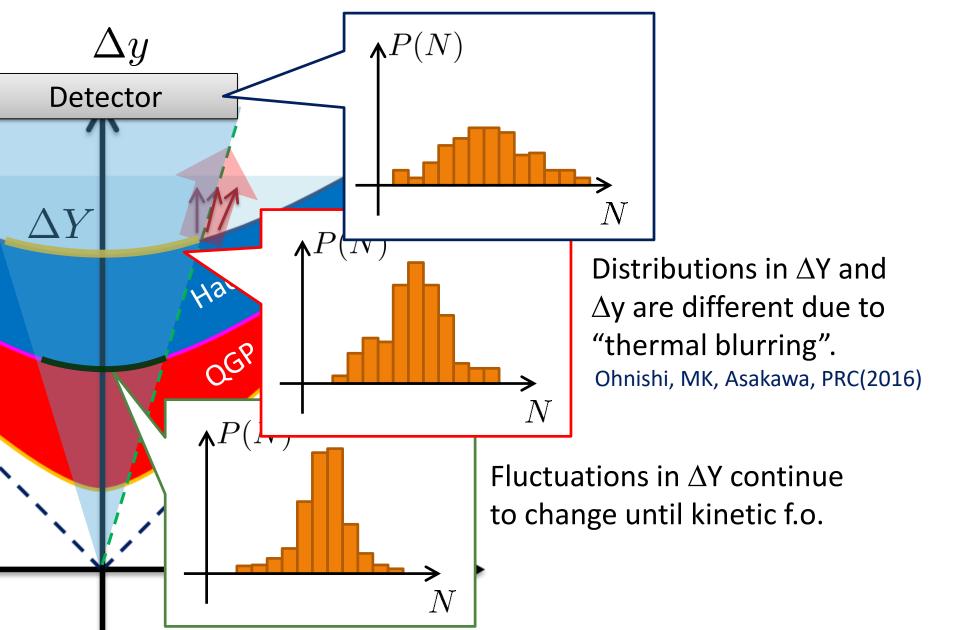
- ☐ Clear difference b/w these cumulants.
- □ Isospin randomization justifies the reconstruction of $\langle N_B^n \rangle_c$ via the binomial model.
- ☐ Similar problem on the **momentum cut**...

Message

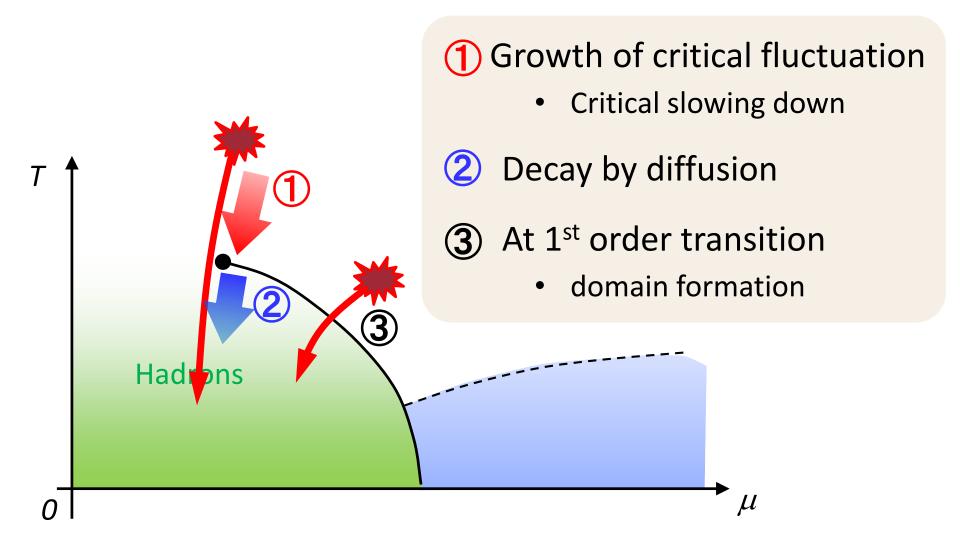
Understand 2nd-order fluctuations @ LHC & top-RHIC

- 1. Problems in experimental analysis
 - proper correction of detector's property
- 2. Conserved-charge fluctuations
- 3. Dynamics of non-Gaussian fluctuations
- 4. A suggestion: chiB/chiQ

Time Evolution of Fluctuations



Critical Fluctuation



Sakaida+ (2017)

Evolution of baryon number density

Stochastic Diffusion Equation

$$\partial_t n = D(t)\partial_x^2 n + \partial_x \xi$$

$$\langle \xi(x_1, t_1)\xi(x_2, t_2)\rangle = 2D\chi_2 \delta^{(2)}(1-2)$$

 $D(t), \chi_2(t)$:parameters characterizing criticality

- ☐ Analytic solution is obtained.
- ☐ Study 2nd order cumulant & correlation function.

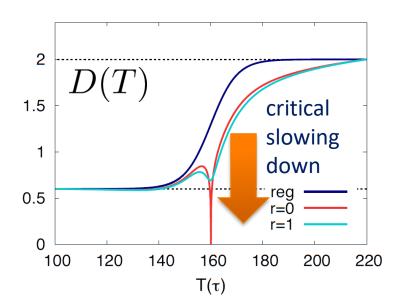
Parametrizing $D(\tau)$ and $\chi(\tau)$

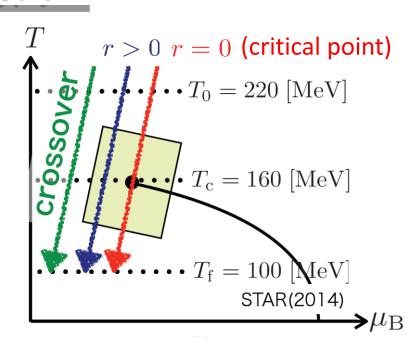
☐ Critical behavior

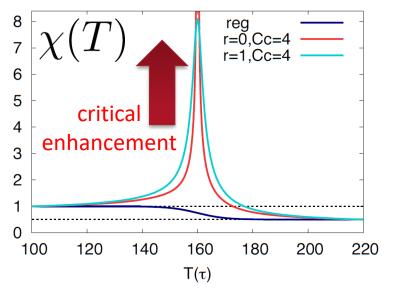
- 3D Ising (r,H)
- model H

Berdnikov, Rajagopal (2000) Stephanov (2011); Mukherjee+(2015)

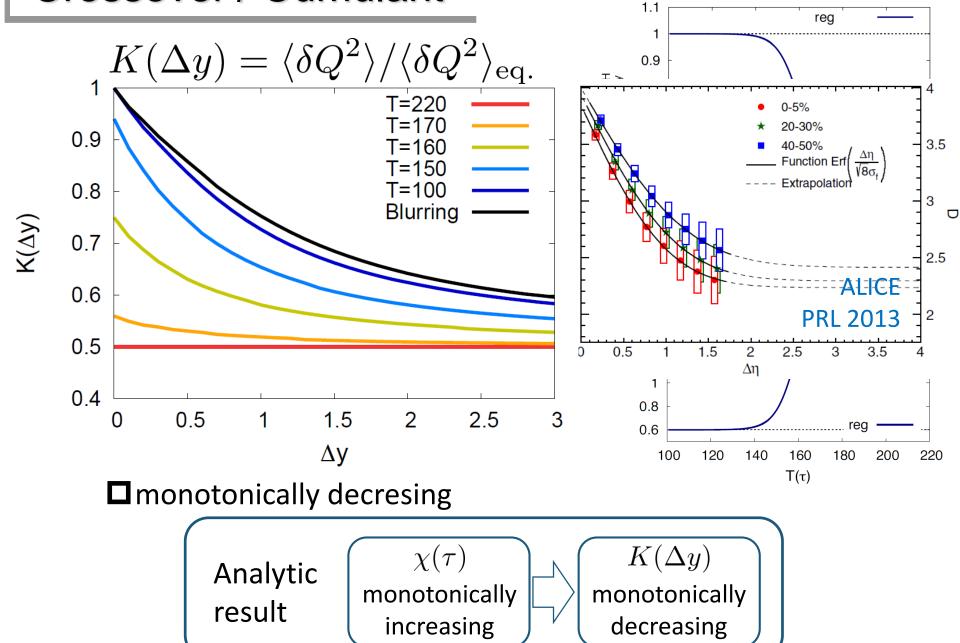
☐Temperature dep.



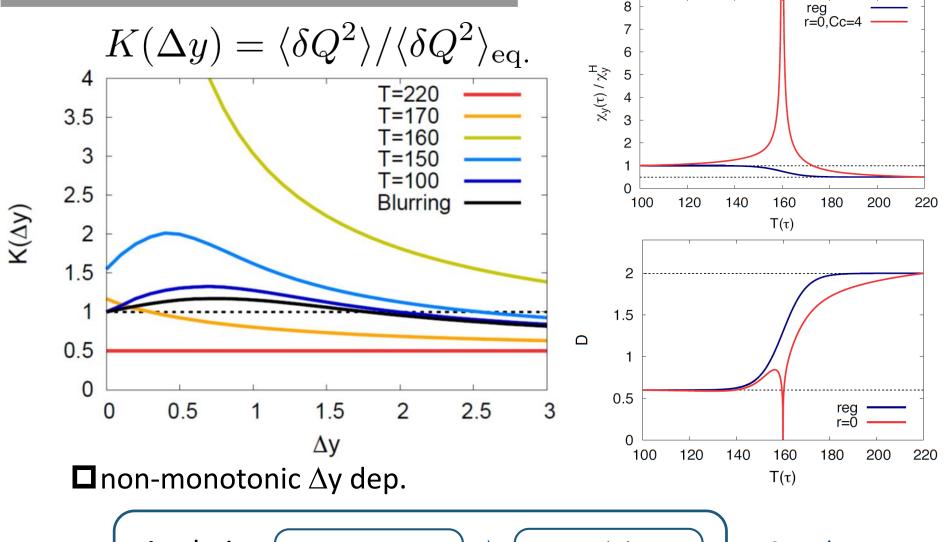




Crossover / Cumulant



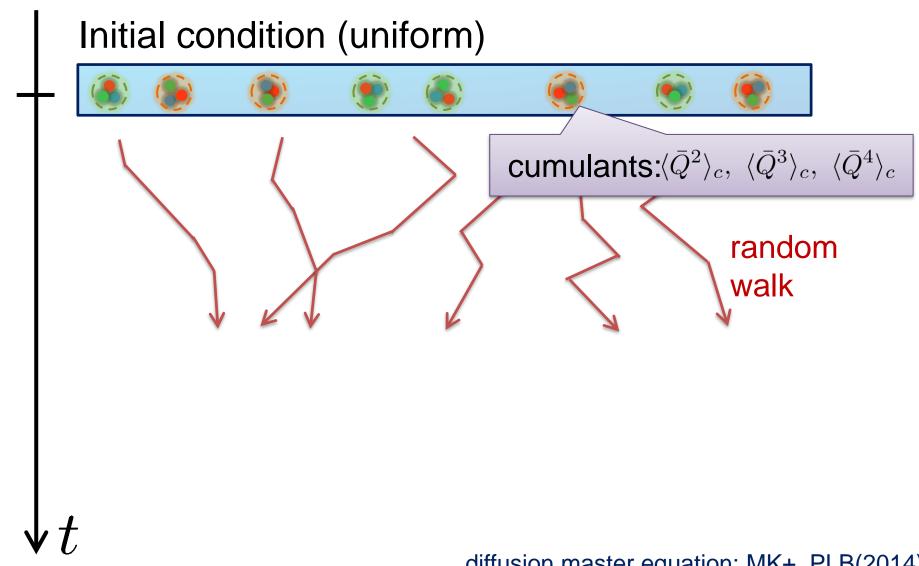
Critical Point / Cumulant



See also, Wu, Song arXiv: 1903.06075

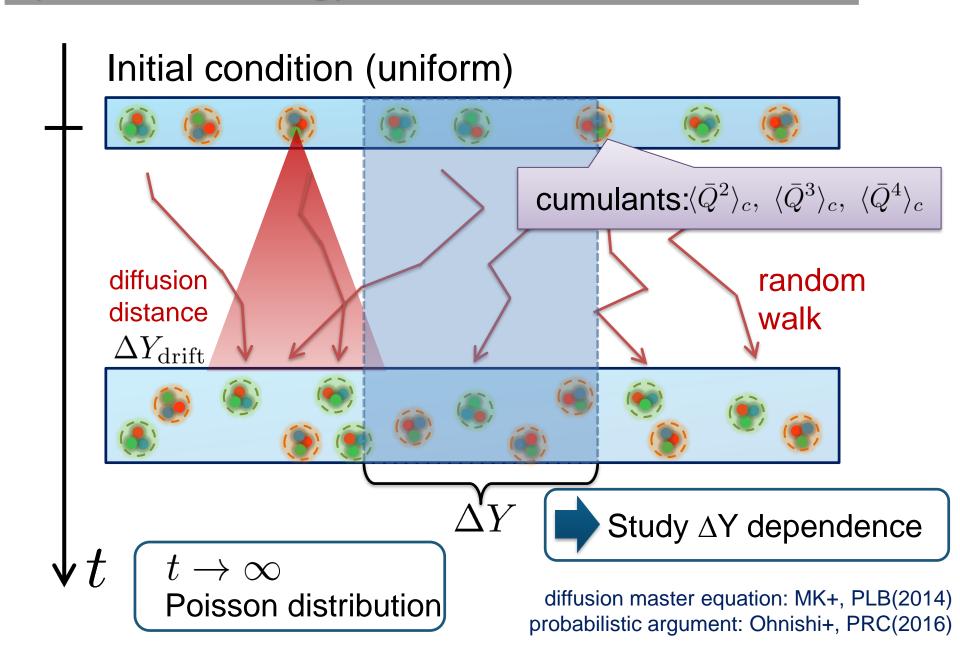
Extension to Higher-order Cumulants

(Non-Interacting) Brownian Particle Model



diffusion master equation: MK+, PLB(2014) probabilistic argument: Ohnishi+, PRC(2016)

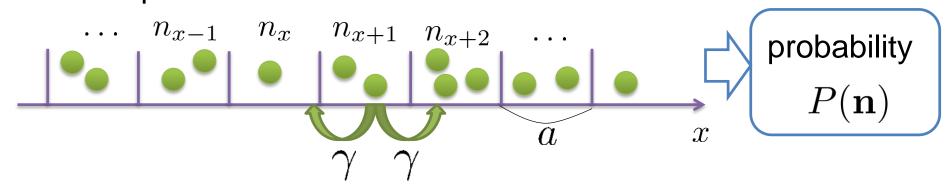
(Non-Interacting) Brownian Particle Model



Diffusion Master Equation

MK, Asakawa, Ono, 2014 MK, 2015

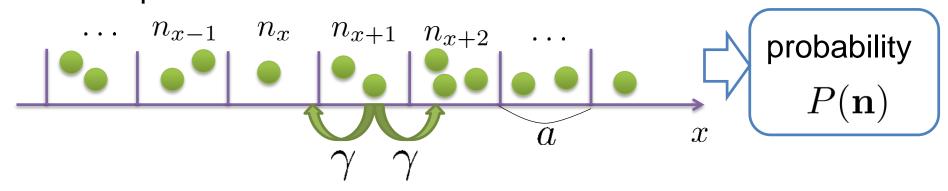
Divide spatial coordinate into discrete cells



Diffusion Master Equation

MK, Asakawa, Ono, 2014 MK, 2015

Divide spatial coordinate into discrete cells

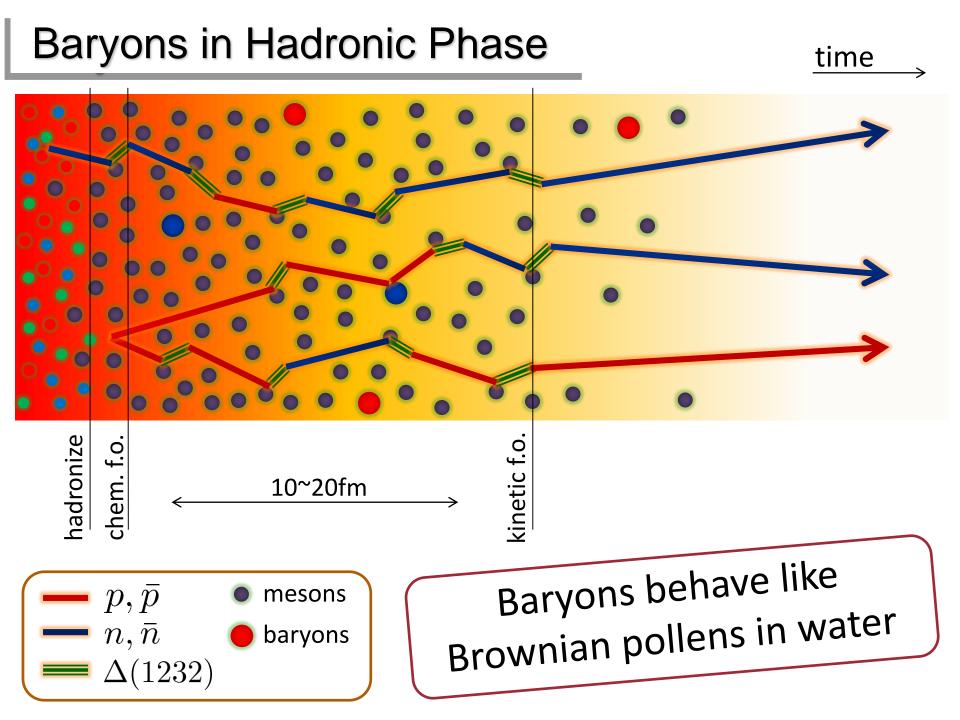


Master Equation for P(n)

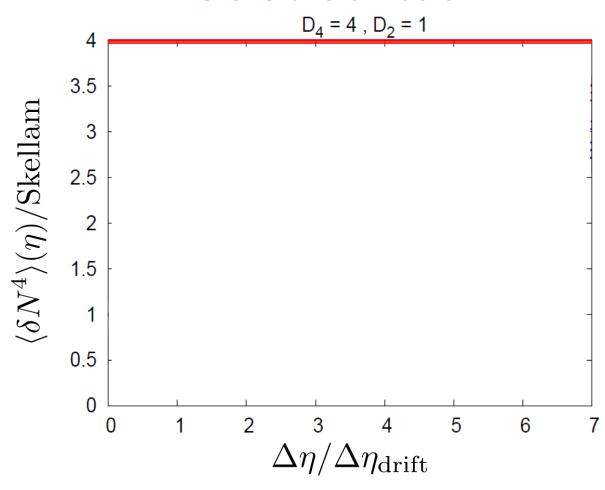
$$\frac{\partial}{\partial t}P(\mathbf{n}) = \gamma \sum_{x} [(n_x + 1) \{P(\mathbf{n} + \mathbf{e}_x - \mathbf{e}_{x+1}) + P(\mathbf{n} + \mathbf{e}_x - \mathbf{e}_{x-1})\}$$
$$-2n_x P(\mathbf{n})]$$

Solve the DME **exactly**, and take $a \rightarrow 0$ limit

No approx., ex. van Kampen's system size expansion



Before the diffusion



Initial Condition

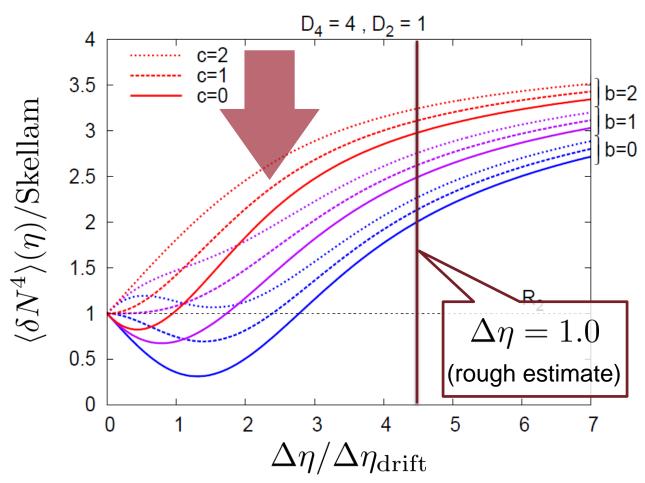
$$D_4 = \frac{\langle Q_{(\text{net})}^4 \rangle_c}{\langle Q_{(\text{tot})} \rangle_c} = 4$$

$$b = \frac{\langle Q_{(\text{net})}^2 Q_{(\text{tot})} \rangle_c}{\langle Q_{(\text{net})} \rangle}$$

$$c = \frac{\langle Q_{(\text{tot})}^2 \rangle_c}{\langle Q_{(\text{tot})} \rangle}$$

$$D_2 = \frac{\langle Q_{(\text{net})}^2 \rangle_c}{\langle Q_{(\text{tot})} \rangle} = 1$$

After the diffusion



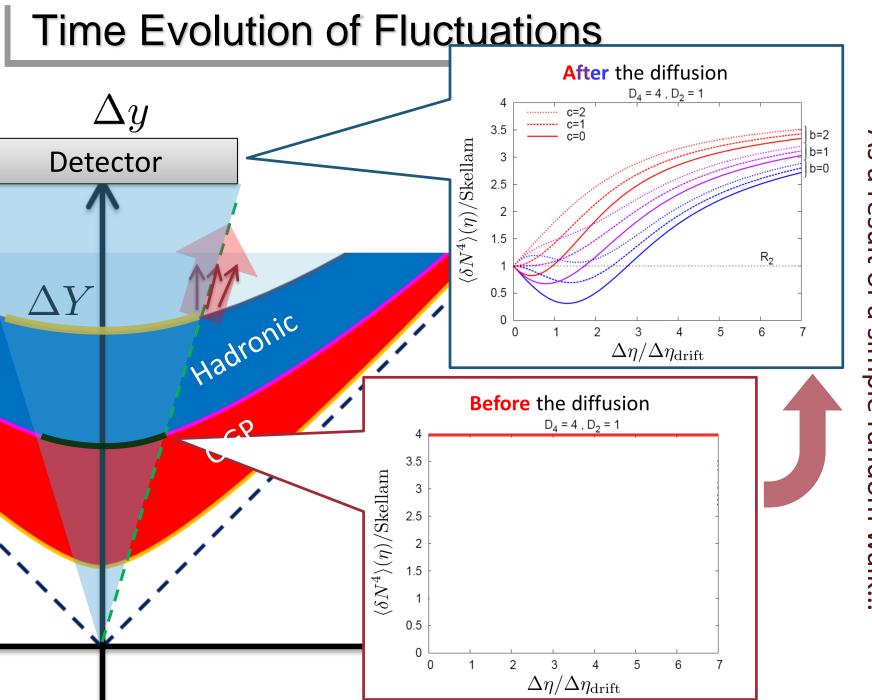
Initial Condition
$$D_4 = \frac{\langle Q_{(\rm net)}^4 \rangle_c}{\langle Q_{(\rm tot)} \rangle} = 4$$

$$b = \frac{\langle Q_{(\rm net)}^2 Q_{(\rm tot)} \rangle_c}{\langle Q_{(\rm net)} \rangle}$$

$$c = \frac{\langle Q_{(\rm tot)}^2 \rangle_c}{\langle Q_{(\rm tot)} \rangle}$$

$$D_2 = \frac{\langle Q_{(\rm net)}^2 \rangle_c}{\langle Q_{(\rm tot)} \rangle} = 1$$

- \Box Cumulant at small $\Delta \eta$ is modified toward a Poisson value.
- Non-monotonic behavior can appear.



AS a result of a simple random walk...

Rapidity Window Dep.

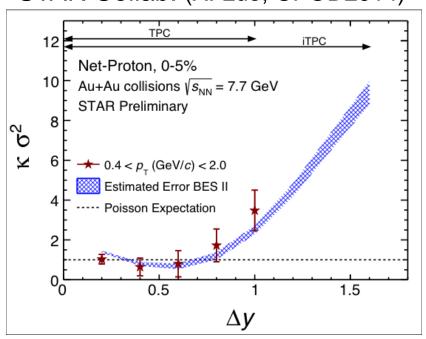
4th-order cumulant

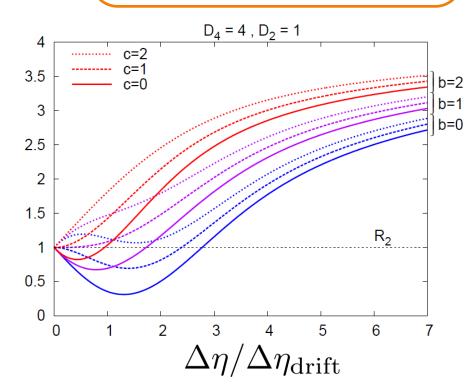
MK+, 2014 MK, 2015

Initial Conditions $Q_4 = rac{\langle Q_{({ m net})}^4 angle_c}{\langle Q_{({ m tot})} angle_c} \quad b = rac{\langle Q_{({ m net})}^2 Q_{({ m tot})} angle_c}{\langle Q_{({ m net})} angle_c} \quad \langle Q_{({ m tot})}^2 angle_c$

$$D_2 = \frac{\langle Q_{(\text{net})}^2 \rangle_c}{\langle Q_{(\text{tot})} \rangle} \quad c = \frac{\langle Q_{(\text{tot})}^2 \rangle_c}{\langle Q_{(\text{tot})} \rangle}$$

STAR Collab. (X. Luo, CPOD2014)



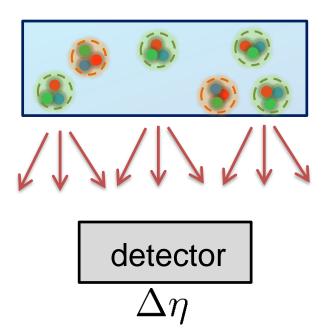


- \blacksquare Is non-monotonic $\Delta\eta$ dependence already observed?
- □ Different initial conditions give rise to different characteristic $\Delta \eta$ dependence. → Study initial condition

Finite volume effects: Sakaida+, PRC90 (2015)

Very Low Energy Collisions

- ☐ Large contribution of global charge conservation
- Violation of Bjorken scaling

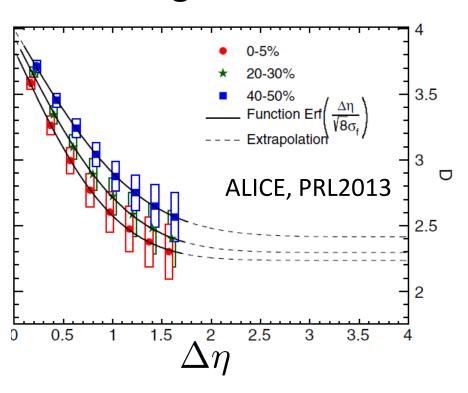


Careful treatment is required to interpret fluctuations at low beam energies!

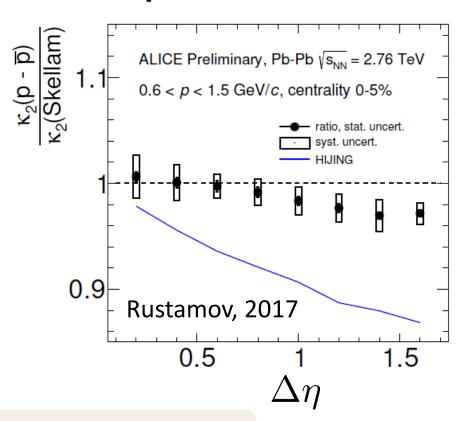
Many information should be encoded in $\Delta \eta$ dep.

2nd Order @ ALICE

Net charge fluctuation



Net proton fluctuation



- Net-charge fluctuation has a suppression,
- but net-proton fluctuation does not. Why??

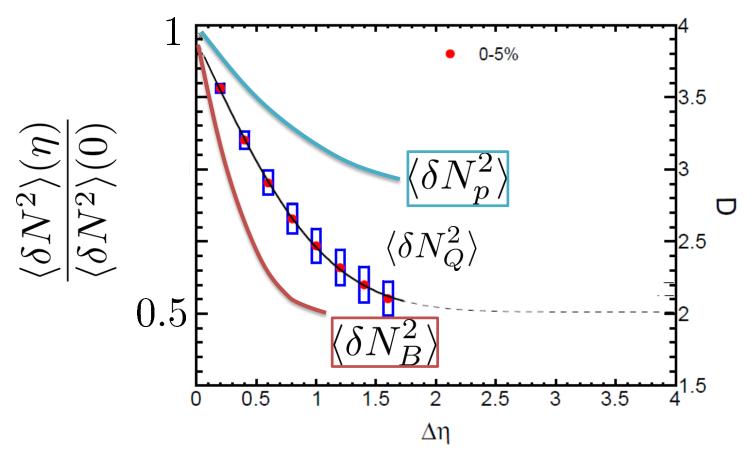
$$<\delta N_{\rm B}^2>$$
 and $<\delta N_{\rm p}^2>$ @ LHC?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$

should have different $\Delta \eta$ dependence.

MK, presentations GSI, Jan. 2013 Berkeley, Sep. 2014 FIAS, Jul. 2015 GSI, Jan. 2016

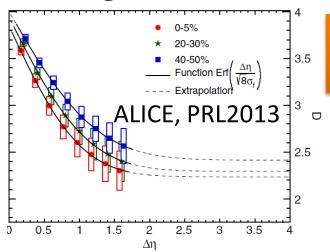
• • •



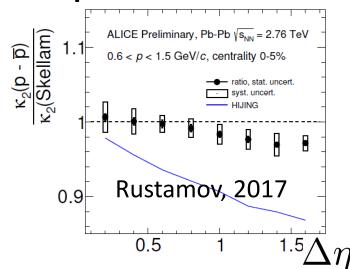
Baryon # cumulants are experimentally observable! MK, Asakawa, 2012

Suggestion

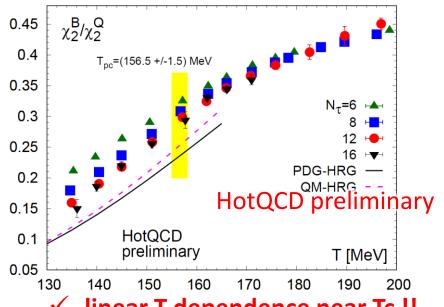
Net charge fluctuation



Net proton fluctuation



- lacksquare Construct $\langle \delta N_B^2 \rangle$ $(\langle \delta N_N^2 \rangle)$, $\langle \delta N_Q^2 \rangle$
- lacksquare Then, take ratio $\langle \delta N_B^2 \rangle / \langle \delta N_Q^2 \rangle$
- ☐ Compare it with lattice

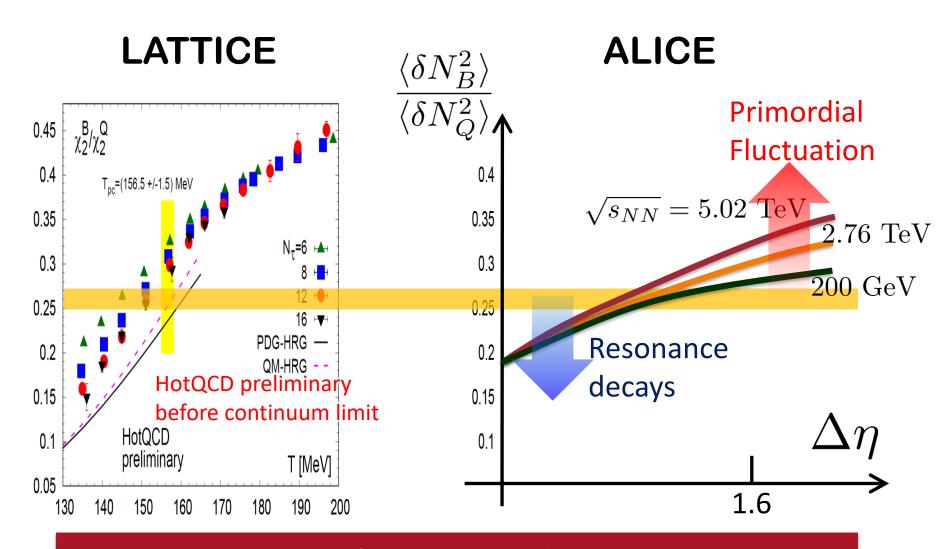


✓ linear T dependence near Tc!!

✓ only 2nd order: reliable !!

First reliable comparison of LAT/HIC

Prediction

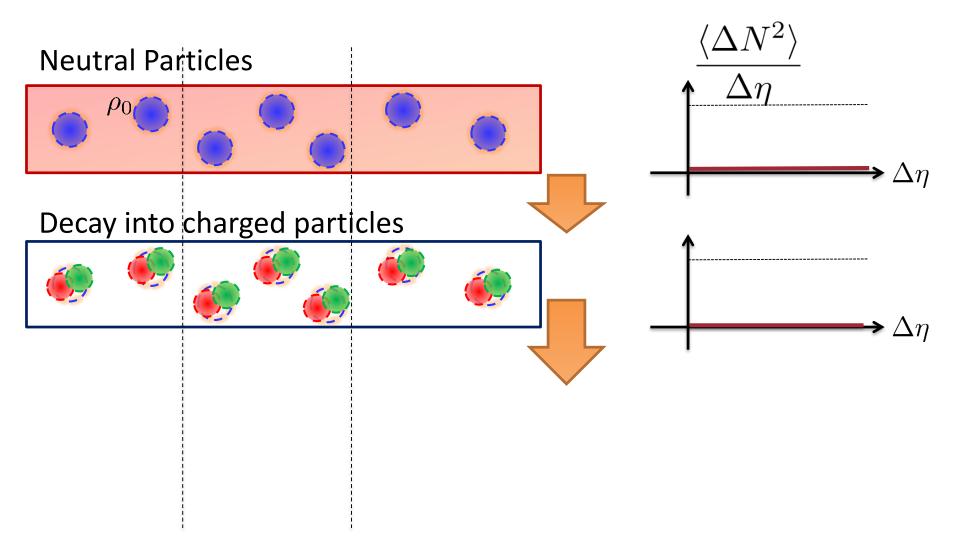


Δη dependence for tracing back the history!

Summary

- ☐ Large ambiguity in the experimental analysis of higher-order cumulants.
- ☐ Fluctuations observed in HIC are not in equilibrium.
- □ Plenty of information encoded in rapidity window dependences
- 2nd-order cumulant (correlation function) already contains interesting information.
- **□** Future
 - Evolution of higher-order cumulants around the critical point / 1st transition
 - combination to momentum (model-H)
 - ☐ more realistic model (dimension, Y dependence, ...)

Resonance Decay



Resonance Decay

