Critical Fluctuation in a Dynamically Expanding Heavy-Ion Collisions

Marlene Nahrgang, Marcus Bluhm,
Masakiyo Kitazawa, Grégoire Pihan, Nathan Touroux

XXVIII International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (QM2019)
Wanda Reign Hotel, Wuhan, China, 5/Nov./2019
Search for QCD Phase Structure

- Possible existence of
 - 1st order transition
 - QCD critical point

Diagram:
- Quark-Gluon Plasma
- Hadron Phase (confined)
- Color SC
- QCD Critical Point

Axes:
- T (temperature)
- μ (chemical potential)
- ~10^{15} g/cm^3
Search for QCD Phase Structure

Possible existence of
- 1st order transition
- QCD critical point

Beam-energy scan
- RHIC-BES-I 2010～
- RHIC-BES-II 2019～
- Future: FAIR, NICA, J-PARC-HI, HADES, ...
Event-by-Event Fluctuations

Cumulants

\[
\langle N^2 \rangle_c = \langle \delta N^2 \rangle = \sigma^2
\]

\[
\langle N^3 \rangle_c = S \sigma^3
\]

\[
\langle N^4 \rangle_c = \kappa \sigma^4
\]

General Review:
Asakawa, MK, PPNP (2016)
Event-by-Event Fluctuations

Net-proton number cumulants

- Non-zero non-Gaussian cumulants have been established experimentally!
- Are they the signal of the QCD-CP?
- Note: Baryon number cumulants are actually needed! MK, Asakawa, 2012;2012
Time Evolution of Fluctuations

Distributions in ΔY and Δy are different due to “thermal blurring”.

Ohnishi, MK, Asakawa, PRC(2016)

Fluctuations in ΔY continue to change until kinetic f.o.
Evolution of Conserved-Charge Fluct.

Equations describing the transport of n:
Evolution of Conserved-Charge Fluct.

Equations describing the transport of n:

- **Diffusion Equation**
 \[
 \frac{\partial n}{\partial t} = D \nabla^2 n
 \]

- **Stochastic Diffusion Equation (SDE)**
 \[
 \frac{\partial n}{\partial t} = D \nabla^2 n + \nabla \xi(x, t) \quad \langle \xi(1) \xi(2) \rangle = 2D \chi_2 \delta(1 - 2)
 \]

- **SDE with non-linear terms**
 \[
 \frac{\partial n}{\partial t} = \kappa \nabla^2 \frac{\delta \mathcal{F}}{\delta n} + \frac{\partial}{\partial x} \xi(x, t)
 \]

 \[
 \mathcal{F} = \int dx \left(a \Delta n^2 + c (\nabla n)^2 + \lambda_3 \Delta n^3 + \cdots \right)
 \]
Fluctuations of \(\sigma \) and \(n_B \) are coupled around the CP!

\[
\delta \sigma \simeq \delta n_B
\]

To a first approximation, SDE describes the soft mode of the CP.

Coupling to \(\sigma \) & \(T_{\mu\nu} \) has to be included for more accurate description.
1. **CrossOver with SDE (Gaussian)**
 - 2nd cumulant/correlation func.
 Sakaida, Asakawa, Fujii, MK, PRC95 (2017)

2. **CrossOver with Non-Linear SDE**
 - higher-order cumulants
 Nahrgang, Bluhm, Schaefer, Bass PRD99 (2019);
 Pihan, Touroux, Nahrgang, Bluhm, Sami, MK, in prep.

3. **1st-Order with Non-Linear SDE**
 Nonaka, MK, et al., in prep.
Stochastic Diffusion Equation (Gaussian)

\[\partial_t n = D(t) \partial_x^2 n + \partial_x \xi \]

\[\langle \xi(x_1, t_1) \xi(x_2, t_2) \rangle = 2D \chi_2 \delta^{(2)}(1 - 2) \]

- \(D(t), \chi_2(t) \): parameters characterizing evolution of the medium

☐ Analytic solution is obtained.
☐ Study 2nd order cumulant & correlation function.
Evolution of Parameters

Critical behavior
- 3D Ising (r,H)
- model H

Berdnikov, Rajagopal (2000)
Stephanov (2011); Mukherjee+ (2015)

Temperature dependence
- $D(T)$
 - critical slowing down
- $\chi(T)$
 - critical enhancement

$T > 0, r = 0$ (critical point)
$T_0 = 220 \text{ [MeV]}$
$T_c = 160 \text{ [MeV]}$
$T_r = 100 \text{ [MeV]}$
STAR (2014)
Time Evolution

Cumulant: $K(\Delta y) = \langle \delta Q^2 \rangle / \langle \delta Q^2 \rangle_{eq}$

Corr. Func.: $C(\bar{y}) = \langle \delta n(\bar{y}) \delta n(0) \rangle / \chi_H$

Non-monotonic rapidity dependence

Analytic property

$C(\Delta y)$ non-monotonic \Rightarrow $\chi(\tau)$ non-monotonic

See also, Kapusta, Torres-Rincon, PRC86 (2012); Wu, Song, Chin. Phys. C43 (2019)
1. **CrossOver** with SDE (Gaussian)
 - 2nd cumulant/correlation func.

 Sakaida, Asakawa, Fujii, MK, PRC95 (2017)

2. **CrossOver** with Non-Linear SDE
 - higher-order cumulants

 Nahrgang, Bluhm, Schaefer, Bass PRD99 (2019);
 Pihan, Touroux, Nahrgang, Bluhm, Sami, MK, in prep.

3. **1st-Order** with Non-Linear SDE

 Nonaka, MK, et al., in prep.
Introducing Non-Linear Terms

\[
\frac{\partial n}{\partial t} = \kappa \nabla^2 \frac{\delta F}{\delta n} + \frac{\partial}{\partial x} \xi(x, t)
\]

\[
F[n] = T \int d^3r \left(\frac{m^2}{2n_c^2} \Delta n^2 + \frac{K}{2n_c^2} (\nabla n)^2 + \frac{\lambda_3}{3n_c^3} \Delta n^3 + \frac{\lambda_4}{4n_c^4} \Delta n^4 + \frac{\lambda_6}{6n_c^6} \Delta n^6 \right)
\]

- Diffusive dynamics of **higher order** cumulants can be described.
- No analytic solution. Need numerical analysis.
- Parameters: \(\kappa, m, K, \lambda_3, \lambda_4, \lambda_6 \)
 - Hubble expansion, Ising universality
Cumulants in Equilibrium

2nd: σ^2

3rd: S_σ

4th: $\kappa \sigma^2$

- Simulation with fixed T.
- Spatial length $L=20$fm
- Weaker criticality due to the finite volume effects
- Shape of S_σ can be explained by the finite volume effects

M. Agah Nouhou+, arXiv:1906.02647; Bluhm, SQM2019
Evolution with Bjorken Expansion

Milne coordinates

\[\partial_{\tau} n = \frac{\kappa(t)}{\tau^2} \partial_y^2 \frac{\delta F}{\delta n} + \frac{1}{\tau} \partial_y \xi - \frac{n}{\tau} \]

- Critical Point: T=150 MeV, \(\mu = 390 \) MeV
- Initial temperature: T=200 MeV
- \(\mu = 50, 200, 300, 350 \) MeV
- Cumulants on a single cell
- Compare results with & without NL terms

Evolution of \(C(y, \tau) \)

(Gaussian)
Numerical Result

- Gaussian (without nonlinear terms)
 - $\langle N_B^2 \rangle_c$

- Full Non-linear model
 - $\langle N_B^2 \rangle_c$
 - $\langle N_B^3 \rangle_c$
 - $\langle N_B^4 \rangle_c$

- 2nd cumulant in Gaussian model has a peak at the CP.
- But, this behavior is washed out by the effect of the non-linear terms.
- Need further investigation.

Pihan, Touroux, Nahrgang, Bluhm, Sami, MK, in prep.
1. **CrossOver** with SDE (Gaussian)
 - 2nd cumulant/correlation func.
 Sakaida, Asakawa, Fujii, MK, PRC95 (2017)

2. **CrossOver** with Non-Linear SDE
 - higher-order cumulants
 Nahrgang, Bluhm, Schaefer, Bass PRD99 (2019);
 Pihan, Touroux, Nahrgang, Bluhm, Sami, MK, in prep.

3. **1st-Order** with Non-Linear SDE
 Nonaka, MK, et al., in prep.
1st-Order Transition

- Domain formation
- Non-uniform system

Herold, Nahrgang, et al. (2011~); Steinheimer, Randrup (2012; 2013)
Free Energy

- **At 1st transition point**

\[f(n) = \frac{1}{2}a(n - n_s)^2 + \frac{1}{4}b(n - n_s)^4 + c(\tau)n + k(\partial_Y n)^2 \]

- **Large and small n**

\[\chi(n) = \frac{\partial^2 f}{\partial n^2} \rightarrow \chi_{\text{QGP}} \ (n \rightarrow \infty) \]
\[\rightarrow \chi_{\text{hadron}} \ (n \rightarrow 0) \]

\[\text{Poisson} \]

- **κ**: positive
- adjust κ and A to reproduce the behavior of D at small and large n

\[\tilde{D} = \Gamma\left(\frac{\partial^2 f}{\partial n^2} + X\right) \quad A = 2D\chi_2 \]
Dynamical domain formation
- Domains survive even after 1st transition
Correlation Function

\[C(\bar{y}) = \langle \delta n(\bar{y}) \delta n(0) \rangle / \chi_{\text{hadron}} \]

- Domain leads to a peak structure in \(C(y) \).
- The peak can survive even in the final state.
Diffusive dynamics is important in describing fluctuations in heavy-ion collisions. We studied dynamical evolution near the QCD-CP and at the 1st transition in stochastic diffusion equation with and without non-linear terms.

Future: coupling with sigma & momentum / more realistic space-time evolution