Critical Fluctuations in Heavy-Ion Collisions

Masakiyo Kitazawa
(Osaka U.)

Workshop on QCD in the Nonperturbative Regime
TIFR, Mumbai, India, 18/Nov./2019
Beam-Energy Scan Program in Heavy-Ion Collisions

Our Universe

Color SC

Quark-Gluon Plasma

QCD Critical Point

T_{high}

T_{low}

150MeV

$\sim 10^{15}\text{g/cm}^3$

Hadron Phase (confined)
Event-by-Event Fluctuations

Detector

Structure of distribution reflects microscopic properties

Cumulants: $\langle \delta N_p^2 \rangle$, $\langle \delta N_p^3 \rangle$, $\langle \delta N_p^4 \rangle_c$

Review: Asakawa, MK, PPNP 90 (2016)
A Coin Game

① Bet 25 Euro
② You get head coins of

A. 50 x 1 Euro
B. 25 x 2 Euro

Same expectation value.
A Coin Game

① Bet 25 Euro
② You get head coins of

A. 50 x 1 Euro
B. 25 x 2 Euro
C. 1 x 50 Euro

Same expectation value.
But, different fluctuation.
Fluctuations in HIC: 2nd Order

Search for QCD CP

Fluctuation increases

Onset of QGP

Fluctuation decreases

Stephanov, Rajagopal, Shuryak, 1998; 1999

Asakawa, Heinz, Muller, 2000; Jeon, Koch, 2000
Higher-order Cumulants

A. 50 x 1 Euro

\[2 \langle \delta \mathbb{E}^2 \rangle = \langle \delta \mathbb{E}^2 \rangle \]

\[4 \langle \delta \mathbb{E}^3 \rangle = \langle \delta \mathbb{E}^3 \rangle \]

B. 25 x 2 Euro

\[8 \langle \mathbb{E}^4 \rangle_c = \langle \mathbb{E}^4 \rangle_c \]

Asakawa, MK, PPNP 90, 299 (2016)
Non-Gaussian Fluctuations

Onset of QGP

Search for QCD CP

Fluctuation decreases

Fluctuation increases

Ejiri, Karsch, Redlich, 2006

Stephanov, 2009
Sign of Higher-order Cumulants

Higher order cumulants can change sign near CP.

\[\langle \delta N^3 \rangle = T \frac{\partial \langle \delta N^2 \rangle}{\partial \mu} \]

Asakawa, Ejiri, MK, 2009

Stephanov, 2011; Friman, Karsch, Redlich, Skokov, 2011; ...
Higher-Order Cumulants

Non-zero non-Gaussian cumulants have been established!

Net charge fluctuation

\[D \approx 4 \frac{\langle \delta N_Q^2 \rangle}{\langle \delta N_Q^2 \rangle_{HRG}} \]

\[\Delta \eta \]

ALICE, PRL2013
Net-charge fluctuation has a suppression, but net-proton fluctuation does not. Why??
$<\delta N_B^2>$ and $<\delta N_p^2>$ at LHC?

$\langle \delta N_Q^2 \rangle$, $\langle \delta N_B^2 \rangle$, $\langle \delta N_p^2 \rangle$

should have different $\Delta \eta$ dependence.

Baryon # cumulants are experimentally observable! MK, Asakawa, 2012

MK, presentations
GSI, Jan. 2013
Berkeley, Sep. 2014
FIAS, Jul. 2015
GSI, Jan. 2016
...
1. Problems in experimental analysis
 • proper correction of detector’s property

1. Dynamics of non-Gaussian fluctuations

2. A suggestion: chiB/chiQ
Detector-Response Correction

- Correction assuming a binomial response
 - Bialas, Peschanski (1986);
 - MK, Asakawa (2012); Bzdak, Koch (2012);
 - But, the response of the detector is not binomial...

![Diagram showing true distribution, efficiency loss, and observed distribution.](image-url)
Slot Machine Analogy

\[P(N) = N \]

\[P_1(N) = N \]

\[P_2(N) = N \]
Extreme Examples

Fixed # of coins

Constant probabilities

N

N

N

N

N

N
Reconstructing Total Coin Number

\[P(B; N) = \sum P(N) B_{1/2}(N; N) \]

\[B_p(k; N) = p^k (1 - p)^{N-k} \binom{N}{k} \quad \text{binomial distr. func.} \]
Proton vs Baryon Cumulants

MK, Asakawa, 2012; 2012

Experiments
- proton number cumulants
 \(\langle N_p^n \rangle_c \)

- measurement with 50% efficiency loss

Many theories
- baryon number cumulants
 \(\langle N_B^n \rangle_c \)

- Clear difference b/w these cumulants.

- **Isospin randomization** justifies the reconstruction of \(\langle N_B^n \rangle_c \) via the binomial model.

- Similar problem on the **momentum cut**...
Fragile Higher Orders

Ex.: Relation b/w baryon & proton # cumulants
(with approximations)
MK, Asakawa, 2012

\[
\begin{align*}
2\langle (\delta N_p^{\text{net}})^2 \rangle &= \frac{1}{2} \langle (\delta N_B^{\text{net}})^2 \rangle + \frac{1}{2} \langle (\delta N_B^{\text{net}})^2 \rangle_{\text{free}} \\
2\langle (\delta N_p^{\text{net}})^3 \rangle &= \frac{1}{4} \langle (\delta N_B^{\text{net}})^3 \rangle + \frac{3}{4} \langle (\delta N_B^{\text{net}})^3 \rangle_{\text{free}} \\
2\langle (\delta N_p^{\text{net}})^4 \rangle_c &= \frac{1}{8} \langle (\delta N_B^{\text{net}})^4 \rangle + \cdots
\end{align*}
\]

Higher orders are more seriously affected by efficiency loss.

Genuine info. Poisson noise
Non-Binomial Correction

- **Response matrix**
 \[\tilde{P}(n) = \sum_{N} R(n; N)P(N) \]
 Reconstruction for any \(R(n; N) \)
 with moments of \(R(n; N) \)
 \[\langle n^m \rangle_R = \sum_{n} n^m R(n; N) \]

- **Caveats:**
 - \(R(n; N) \) describes the property of the detector.
 - Detailed properties of the detector have to be known.
 - Multi-distribution function can be handled.
 - Huge numerical cost would be required.
 - Truncation is required in general: another systematics?
Result in a Toy-Model

Binomial w/ multiplicity-dependent efficiency

$$\epsilon(N) = \epsilon_0 + (N - N_{ave})\epsilon'$$

Holtzman, Bzdak, Koch (16)

Input $P(N)$: Poisson($\lambda=40$)

$$\epsilon_0 = 0.7$$

Red: true cumulant

Reconstructed cumulants

True cumulants are reproduced within statistics!
Message

Understand 2nd-order fluctuations @ LHC & top-RHIC

1. Problems in experimental analysis
 • proper correction of detector’s property

2. Dynamics of non-Gaussian fluctuations

2. A suggestion: \chi_B/\chi_Q
Why Conserved Charges?

- Direct comparison with theory / lattice
 - Strong constraint from lattice
 - Ignorance on spatial volume of medium
- Slow time evolution
Why Conserved Charges?

- Direct comparison with theory / lattice
- Strong constraint from lattice
- Ignorance on spatial volume of medium
- Slow time evolution

AHM-JK (2000)

\[D \sim \frac{\langle \delta N_Q^2 \rangle}{S} \]

S is model dependent

Ejiri-Karsch-Redlich

Ratio of cumulants

\[\frac{\langle N_Q^4 \rangle_c}{\langle N_Q^2 \rangle_c}, \quad \frac{\langle N_B^4 \rangle_c}{\langle N_B^2 \rangle_c} \]

Experimentally difficult
Time Evolution of Fluctuations

Distributions in ΔY and Δy are different due to "thermal blurring".
Ohnishi, MK, Asakawa, PRC(2016)

Fluctuations in ΔY continue to change until kinetic f.o.
Variation of a conserved charge is achieved only through diffusion. The larger $\Delta \eta$, the slower diffusion.
Thermal distribution in y space

Blast wave squeezes the distribution in rapidity space

- Assume Bjorken picture
- Blast wave
- Flat freezeout surface

Ohnishi, MK, Asakawa, PRC (2016)
$\Delta \eta$ Dependence

Initial condition (before blurring)
no e-v-e fluctuations

Cumulants after blurring

can take nonzero values

At $\Delta y=1$, the effect is not well suppressed

Cumulants after blurring

$w = \frac{m}{T}$

- pions $w \approx 1.5$
- nucleons $w \approx 9$

Ohnishi, MK, Asakawa, PRC (2016)
Very Low Energy Collisions

- Large contribution of global charge conservation
- Violation of Bjorken scaling

Careful treatment is required to interpret fluctuations at low beam energies!
Many information should be encoded in $\Delta \eta$ dep.
Evolution of Conserved-Charge Fluctuations

Equations describing transport of n:

- **Diffusion Equation**
 \[
 \frac{\partial n}{\partial t} = D \nabla^2 n
 \]

- **Stochastic Diffusion Equation (SDE)**
 \[
 \frac{\partial n}{\partial t} = D \nabla^2 n + \nabla \xi(x, t)
 \]

- **SDE with non-linear terms**
 \[
 \frac{\partial n}{\partial t} = \kappa \nabla^2 \frac{\delta F}{\delta n} + \frac{\partial}{\partial x} \xi(x, t)
 \]

\[
\langle \xi(1) \xi(2) \rangle = 2D \chi_2 \delta(1 - 2)
\]

\[
\mathcal{F} = \int dx \left(a \Delta n^2 + c (\nabla n)^2 + \lambda_3 \Delta n^3 + \cdots \right)
\]
Evolution of baryon number density

Stochastic Diffusion Equation

\[
\partial_t n = D(t) \partial_x^2 n + \partial_x \xi
\]

\[
\langle \xi(x_1, t_1)\xi(x_2, t_2) \rangle = 2D\chi_2 \delta^{(2)}(1 - 2)
\]

- Analytic solution is obtained.
- Study 2nd order cumulant & correlation function.
Parametrizing $D(\tau)$ and $\chi(\tau)$

- Critical behavior
 - 3D Ising (r,H)
 - model H

Berdnikov, Rajagopal (2000)
Stephanov (2011); Mukherjee+(2015)

- Temperature dep.
Crossover / Cumulant

\[K(\Delta y) = \frac{\langle \delta Q^2 \rangle}{\langle \delta Q^2 \rangle_{eq.}} \]

- Monotonically decreasing

Analytic result

\[\chi(\tau) \text{ monotonically increasing} \]

\[K(\Delta y) \text{ monotonically decreasing} \]

ALICE PRL 2013
\[K(\Delta y) = \frac{\langle \delta Q^2 \rangle}{\langle \delta Q^2 \rangle_{\text{eq.}}} \]

- non-monotonic \(\Delta y \) dep.

Analytic result: \[K(\Delta y) \] non-monotonic \(\chi(\tau) \) non-monotonic

See also,
Wu, Song
arXiv: 1903.06075
Criticap Point / Correlation Func.

\[C(\bar{y}) = \langle \delta n(\bar{y}) \delta n(0) \rangle / \chi_{\text{hadron}} \]

- non-monotonic \(\Delta y \) dep.

See also, Wu, Song
arXiv: 1903.06075
Away from the CP

\[K(\Delta y) = \frac{\langle \delta Q^2 \rangle}{\langle \delta Q^2 \rangle_{eq}}. \]

- Signal of the critical enhancement can be clearer on a path away from the CP.

Away from the CP → Weaker critical slowing down
Extension to Higher-order Cumulants

Analyses with
1. Stochastic diffusion equation
2. Diffusion master equation
Baryons in Hadronic Phase

hadronize
chem. f.o.

10~20fm

kinetic f.o.

Baryons behave like Brownian pollens in water

\(p, \bar{p} \)
\(n, \bar{n} \)
\(\Delta(1232) \)

mesons
baryons
(Non-Interacting) Brownian Particle Model

Initial condition (uniform)

Cumulants: $\langle \tilde{Q}^2 \rangle_c$, $\langle \tilde{Q}^3 \rangle_c$, $\langle \tilde{Q}^4 \rangle_c$

Random walk

diffusion master equation: MK+, PLB(2014)
probabilistic argument: Ohnishi+, PRC(2016)
(Non-Interacting) Brownian Particle Model

Initial condition (uniform)

ΔY_{drift}

diffusion distance

t $\rightarrow \infty$

Poisson distribution

ΔY

Study ΔY dependence

cumulants: $\langle \tilde{Q}^2 \rangle_c$, $\langle \tilde{Q}^3 \rangle_c$, $\langle \tilde{Q}^4 \rangle_c$

random walk

diffusion master equation: MK+, PLB(2014)

probabilistic argument: Ohnishi+, PRC(2016)
Before the diffusion

\[D_4 = 4, \ D_2 = 1 \]

\[\langle \delta N^4 \rangle_{\text{Skellam}} \]

\[\Delta \eta / \Delta \eta_{\text{drift}} \]

Initial Condition

\[D_4 = \frac{\langle Q_{\text{net}}^4 \rangle_c}{\langle Q_{\text{tot}} \rangle} = 4 \]

\[b = \frac{\langle Q_{\text{net}}^2 Q_{\text{tot}} \rangle_c}{\langle Q_{\text{net}} \rangle} \]

\[c = \frac{\langle Q_{\text{tot}}^2 \rangle_c}{\langle Q_{\text{tot}} \rangle} \]

\[D_2 = \frac{\langle Q_{\text{net}}^2 \rangle_c}{\langle Q_{\text{tot}} \rangle} = 1 \]
4th Order Cumulant

After the diffusion

$D_4 = 4, D_2 = 1$

- Cumulant at small $\Delta \eta$ is modified toward a Poisson value.
- Non-monotonic behavior can appear.
Time Evolution of Fluctuations

As a result of a simple random walk...

After the diffusion

Before the diffusion

$\langle \delta N^4 \rangle / \text{Skellam}$

$\Delta \eta / \Delta \eta_{\text{drift}}$
Rapidity Window Dep.

4th-order cumulant

Initial Conditions

\[D_4 = \frac{\langle Q_{\text{net}}^4 \rangle}{\langle Q_{\text{tot}} \rangle} \quad b = \frac{\langle Q_{\text{net}}^2 Q_{\text{tot}} \rangle}{\langle Q_{\text{net}} \rangle} \]

\[D_2 = \frac{\langle Q_{\text{net}}^2 \rangle}{\langle Q_{\text{tot}} \rangle} \quad c = \frac{\langle Q_{\text{tot}}^2 \rangle}{\langle Q_{\text{tot}} \rangle} \]

Is non-monotonic \(\Delta \eta \) dependence already observed?

Different initial conditions give rise to different characteristic \(\Delta \eta \) dependence. \(\rightarrow \) Study initial condition

Finite volume effects: Sakaida+., PRC90 (2015)
SDE with Non-Linear Terms

Higher order cumulants

Nahrgang, Bluhm, Schaefer, Bass, PRD (2019); Pihan, Touroux, Nahrgang, Bluhm, Sami, MK, in prep.

Time evolution of 4th cumulant can be described.

1st order transition

Domain formation and peak structure in the correlation function are found.
Message

Understand 2^{nd}-order fluctuations @ LHC & top-RHIC

1. Problems in experimental analysis
 • proper correction of detector’s property

1. Dynamics of non-Gaussian fluctuations

2. A suggestion: chiB/chiQ
Net-charge fluctuation has a suppression, but net-proton fluctuation does not. Why??
<$$\delta N_B^2$$> and <$$\delta N_p^2$$> @ LHC?

$$\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$$ should have different $$\Delta \eta$$ dependence.

Baryon # cumulants are experimentally observable! MK, Asakawa, 2012
A Suggestion

Net charge fluctuation

Construct $\langle \delta N_{B}^{2} \rangle / \langle \delta N_{N}^{2} \rangle$, $\langle \delta N_{Q}^{2} \rangle$

Then, take ratio $\langle \delta N_{B}^{2} \rangle / \langle \delta N_{Q}^{2} \rangle$

Compare it with lattice

Net proton fluctuation

HotQCD preliminary

✓ linear T dependence near T_c !!
✓ only 2nd order: reliable !!
Prediction

LATTICE

\[\frac{\langle \delta N^2_B \rangle}{\langle \delta N^2_Q \rangle} \]

ALICE

Primordial Fluctuation

\[\sqrt{s_{NN}} = 5.02 \text{ TeV} \]

2.76 TeV

200 GeV

Resonance decays

HotQCD preliminary before continuum limit

HotQCD preliminary for tracing back the history!

\[\Delta \eta \]

1.6

\[\Delta \eta \] dependence for tracing back the history!
Summary

- Large ambiguity in the experimental analysis of higher-order cumulants.
- Fluctuations observed in HIC are not in equilibrium.
- Plenty of information encoded in rapidity window dependences
- 2nd-order cumulant (correlation function) already contains interesting information.

Future
- Evolution of higher-order cumulants around the critical point / 1st transition
- Combination to momentum (model-H)
- More realistic model (dimension, Y dependence, ...)
Resonance Decay

Neutral Particles

Decay into charged particles

\[\langle \Delta N^2 \rangle \]
Resonance Decay

The larger D_h, the slower diffusion.

Neutral Particles

Decay into charged particles

$\langle \Delta N^2 \rangle$

$\Delta \eta$

The larger $\Delta \eta$, the slower diffusion.