Critical Fluctuations in Heavy-Ion Collisions

Masakiyo Kitazawa (Osaka U.)

Workshop on QCD in the Nonperturbative Regime TIFR, Mumbai, India, 18/Nov./2019

Beam-Energy Scan Program in Heavy-Ion Collisions

Event-by-Event Fluctuations

Review: Asakawa, MK, PPNP **90** (2016)

Structure of distribution reflects microscopic properties

Cumulants:
$$\langle \delta N_p^2 \rangle, \langle \delta N_p^3 \rangle, \langle \delta N_p^4 \rangle_c$$

A Coin Game

Same expectation value.

A Coin Game

Same expectation value. But, different fluctuation.

Fluctuations in HIC: 2nd Order

Search for QCD CP Onset of QGP

Fluctuation **increases**

Fluctuation decreases

Stephanov, Rajagopal, Shuryak, 1998; 1999

Asakawa, Heinz, Muller, 2000; Jeon, Koch, 2000

Higher-order Cumulants

Asakawa, MK, PPNP 90, 299 (2016)

Non-Gaussian Fluctuations

Onset of QGP

Fluctuation decreases

Ejiri, Karsch, Redlich, 2006

Search for QCD CP

Fluctuation increases

Stephanov, 2009

Sign of Higher-order Cumulants

Higher order cumulants can change sign near CP.

Asakawa, Ejiri, MK, 2009

Stephanov, 2011;

Friman, Karsch, Redlich, Skokov, 2011; ...

Higher-Order Cumulants

Non-zero non-Gaussian cumulants have been established!

General Review: Asakawa, MK, PPNP (2016)

2nd Order @ ALICE

Net charge fluctuation

D-measure $D \simeq 4 \frac{\langle \delta N_{\rm Q}^2 \rangle}{\langle \delta N_{\rm Q}^2 \rangle_{\rm HRG}}$

2nd Order @ ALICE

Net charge fluctuation Net proton fluctuation Skellam 0-5% ALICE Preliminary, Pb-Pb $\sqrt{s_{_{NN}}}$ = 2.76 TeV 20-30% 0.6 , centrality 0-5%3.5 40-50% Function Erf ratio, stat. uncert. Extrapolation syst. uncert. 3 HIJING ALICE, PRL2013 e 2.5 0.9 2 Rustamov, 2017 0.5 1.5 2 2.5 3 3.5 D 1 0.5 1.5

Net-charge fluctuation has a suppression,

but net-proton fluctuation does not. Why??

 $<\delta N_{\rm B}^2>$ and $<\delta N_{\rm D}^2>$ @ LHC ?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$

should have different $\Delta \eta$ dependence.

MK, presentations GSI, Jan. 2013 Berkeley, Sep. 2014 FIAS, Jul. 2015 GSI, Jan. 2016

. . .

Baryon # cumulants are experimentally observable! MK, Asakawa, 2012

Message

Understand 2nd-order fluctuations @ LHC & top-RHIC

1. Problems in experimental analysis

- proper correction of detector's property
- 1. Dynamics of non-Gaussian fluctuations
- 2. A suggestion: chiB/chiQ

Detector-Response Correction

Correction assuming a binomial response

Bialas, Peschanski (1986); MK, Asakawa (2012); Bzdak, Koch (2012);

But, the response of the detector is not binomial...

Slot Machine Analogy

Extreme Examples

Reconstructing Total Coin Number

 $P_{\textcircled{0}}(N_{\textcircled{0}}) = \sum_{A} P_{\textcircled{0}}(N_{\textcircled{0}})B_{1/2}(N_{\textcircled{0}};N_{\textcircled{0}})$

 $B_p(k;N) = p^k (1-p)^{N-k} {}_k C_N$:binomial distr. func.

Proton vs Baryon Cumulants

MK, Asakawa, 2012; 2012

□ Clear difference b/w these cumulants.

D Isospin randomization justifies the reconstruction of $\langle N_B^n \rangle_c$ via the binomial model.

□ Similar problem on the **momentum cut**...

Fragile Higher Orders

Higher orders are more seriously affected by efficiency loss.

Non-Binomial Correction

20

0

0

20

Response matrix

$$\tilde{P}(n) = \sum_{N} \mathcal{R}(n; N) P(N)$$

Reconstruction for any R(n;N) with moments of R(n;N)

$$\langle n^m \rangle_R = \sum_n n^m \mathcal{R}(n;N)$$

40

60

10

Nonaka, MK, Esumi (2018)

Caveats:

- \square R(n;N) describes the property of the detector.
- Detailed properties of the detector have to be known.
- Multi-distribution function can be handled.
- □ Huge numerical cost would be required.
- □ Truncation is required in general: another systematics?

Result in a Toy-Model

Message

Understand 2nd-order fluctuations @ LHC & top-RHIC

- 1. Problems in experimental analysis
 - proper correction of detector's property

1. Dynamics of non-Gaussian fluctuations

2. A suggestion: chiB/chiQ

Why Conserved Charges?

Direct comparison with theory / lattice
 Strong constraint from lattice
 Ignorance on spatial volume of medium
 Slow time evolution

Why Conserved Charges?

Direct comparison with theory / lattice
 Strong constraint from lattice
 Ignorance on spatial volume of medium
 Slow time evolution

AHM-JK (2000)

D-measure $D \sim \frac{\langle \delta N_{\rm Q}^2 \rangle}{S}$

S is model dependent

Ejiri-Karsch-Redlich

Ratio of cumulants

$$\frac{\langle N_{\rm Q}^4 \rangle_c}{\langle N_{\rm Q}^2 \rangle_c}, \quad \frac{\langle N_{\rm B}^4 \rangle_c}{\langle N_{\rm B}^2 \rangle_c}$$

Experimentally difficult

Time Evolution of Fluctuations

achieved only through diffusion. \Box the s

the slower diffusion

Blast wave squeezes the distribution in rapidity space

• flat freezeout surface

blast wave

$\Delta\eta$ Dependence

Ohnishi, MK, Asakawa, PRC (2016)

Initial condition (before blurring) no e-v-e fluctuations

Cumulants after blurring can take nonzero values

At $\Delta y=1$, the effect is **not** well suppressed

$$w = \frac{m}{T}$$

$$\begin{cases} \bullet \text{ pions } w \simeq 1.5 \\ \bullet \text{ nucleons } w \simeq 9 \end{cases}$$

Very Low Energy Collisions

Large contribution of global charge conservationViolation of Bjorken scaling

Careful treatment is required to interpret fluctuations at low beam energies! Many information should be encoded in $\Delta\eta$ dep.

Evolution of Conserved-Charge Fluctuations

Equations describing transport of *n*:

 \blacksquare Diffusion Equation $\frac{\partial n}{\partial t} = D \nabla^2 n$

Stochastic Diffusion Equation (SDE)

$$\frac{\partial n}{\partial t} = D\nabla^2 n + \nabla \xi(x,t)$$

□ SDE with non-linear terms

$$\frac{\partial n}{\partial t} = \kappa \nabla^2 \frac{\delta \mathcal{F}}{\delta n} + \frac{\partial}{\partial x} \xi(x, t)$$

$$\langle \xi(1)\xi(2) \rangle$$

= $2D\chi_2\delta(1-2)$

t

Density

enhancement

$$\mathcal{F} = \int dx \left(a\Delta n^2 + c(\nabla n)^2 + \lambda_3 \Delta n^3 + \cdots \right)$$

Evolution of baryon number density **Stochastic Diffusion Equation**

$$\partial_t n = D(t) \partial_x^2 n + \partial_x \xi$$

$$\langle \xi(x_1, t_1)\xi(x_2, t_2) \rangle = \frac{2D\chi_2}{\delta^{(2)}(1-2)}$$

 $D(t), \ \chi_2(t)$:parameters characterizing criticality

□ Analytic solution is obtained.

□ Study 2nd order cumulant & correlation function.

Parametrizing $D(\tau)$ and $\chi(\tau)$

Critical behavior

- 3D Ising (r,H)
- model H

Berdnikov, Rajagopal (2000) Stephanov (2011); Mukherjee+(2015)

□Temperature dep.

r > 0 r = 0 (critical point)

 $- - - T_{\rm c} = 160 \, [{\rm MeV}]$

 $T_{\rm f} = 100 \left[{\rm MeV} \right]$

STAR(2014)

>μ_Β

 $T \cdot \cdot \cdot \cdot T_0 = 220 \; [\text{MeV}]$

Ð

Crossove

Signal of the critical enhancement can be clearer on a path away from the CP.

Away from the CP \rightarrow Weaker critical slowing down

Extension to Higher-order Cumulants

Analyses with

- 1. Stochastic diffusion equation
- 2. Diffusion master equation

Baryons in Hadronic Phase

time

(Non-Interacting) Brownian Particle Model

(Non-Interacting) Brownian Particle Model

4th Order Cumulant

MK+ (2014) MK (2015)

4th Order Cumulant

MK+ (2014) MK (2015)

□ Cumulant at small $\Delta \eta$ is modified toward a Poisson value. **□** Non-monotonic behavior can appear.

Time Evolution of Fluctuations

Is non-monotonic Δη dependence already observed?
 Different initial conditions give rise to different characteristic Δη dependence. → Study initial condition

Finite volume effects: Sakaida+, PRC90 (2015)

SDE with Non-Linear Terms

Higher order cumulants

Nahrgang, Bluhm, Schaefer, Bass, PRD (2019); Pihan, Touroux, Nahrgang, Bluhm, Sami, MK, in prep.

> Time evolution of 4th cumulant can be described.

1st order transition

Domain formation and peak structure in the correlation function are found.

Message

Understand 2nd-order fluctuations @ LHC & top-RHIC

- 1. Problems in experimental analysis
 - proper correction of detector's property
- 1. Dynamics of non-Gaussian fluctuations
- 2. A suggestion: chiB/chiQ

2nd Order @ ALICE

Net charge fluctuation Net proton fluctuation Skellam 0-5% ALICE Preliminary, Pb-Pb $\sqrt{s_{_{NN}}}$ = 2.76 TeV 20-30% 0.6 , centrality 0-5%3.5 40-50% Function Erf ratio, stat. uncert. Extrapolation syst. uncert. 3 HIJING ALICE, PRL2013 e 2.5 0.9 2 Rustamov, 2017 0.5 1.5 2 2.5 3 3.5 D 1 0.5 1.5

Net-charge fluctuation has a suppression,

but net-proton fluctuation does not. Why??

 $<\delta N_{\rm B}^2>$ and $<\delta N_{\rm D}^2>$ @ LHC ?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$

should have different $\Delta \eta$ dependence.

MK, presentations GSI, Jan. 2013 Berkeley, Sep. 2014 FIAS, Jul. 2015 GSI, Jan. 2016

. . .

Baryon # cumulants are experimentally observable! MK, Asakawa, 2012

A Suggestion

Construct $\langle \delta N_B^2 \rangle (\langle \delta N_N^2 \rangle), \langle \delta N_Q^2 \rangle$

Then, take ratio $\langle \delta N_B^2 \rangle / \langle \delta N_Q^2 \rangle$

Compare it with lattice

✓ linear T dependence near Tc !!
 ✓ only 2nd order: reliable !!

Prediction

Δη dependence for tracing back the history!

Summary

- Large ambiguity in the experimental analysis of higherorder cumulants.
- Fluctuations observed in HIC are not in equilibrium.
 Plenty of information encoded in rapidity window dependences
- 2nd-order cumulant (correlation function) already contains interesting information.

□ Future

- Evolution of higher-order cumulants around the critical point / 1st transition
- combination to momentum (model-H)
- □ more realistic model (dimension, Y dependence, ...)

Resonance Decay

Resonance Decay

