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Topological Charge in YM Theory

 Instantons
 Axial U(1) anomaly
 Axion cosmology
 Topological freezing

 Interests / applications

: integer
q(x) in SU(3) YM, 
b=5.8, 84, t/a2=2.0
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Topology
Topology

 properties of an object that are preserved 
under continuous deformations

from Wikipedia
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Topology
Topology

 properties of an object that are preserved 
under continuous deformations

from Wikipedia
Example: 1-dim. space
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S1 S1

winding number
n=0

winding number
n=1
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Sine-Gordon Model in 1+1D

 “kink” solution
 winding number n=1
 nonzero energy
 topologically stable

 multi-“kink” solution is also possible.
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Lattice Theory & Topology

 Different n are connected continuously.
 “Topological sector” becomes obscure on the lattice.
 Topological sectors recover in the continuum limit.
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Topology in 4D YM Theory

 SU(2) gauge field on |r|∞ sphere in Euclid space

Mapping: S3 (4D sphere)S3 (Gauge Tr. U(x))
 S3S3 has a non-trivial topology

topological charge

Instanton

 classical solution of YM
 winding number n=1
 nonzero action
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Topology on the Lattice

 A naïve definition of Q

Q is not an integer, 
but distributes 
continuously.

 Distinct topological sectors on sufficiently fine lattices

Luscher, 1981
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Topology on the Lattice

 Definitions of Q on the lattice:
 fermionic: Atiyah-Singer index theorem
 gluonic: q(x) after smoothing
 cooling, smearing
 gradient flow

 Good agreement b/w 
various definitions

 Faster algorithm is 
desirable!

Luscher, Weisz, 2011
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q(x) at Nonzero Flow Time

Field becomes smoother for larger t. 
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Topological Freezing

M. Lüscher.(2014)

 Lattice Monte-Carlo simulation  gauge update
 Auto-correlation length of Q becomes longer as lattice 

spacing becomes finer.
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Neural Network

Capture “instanton”-like structure?

Acceleration of the analysis of Q?

Input: q(x)

4-dimensional field

Q

Output

topological
charge



Neural Network
• Approximate arbitrary functions

2019/12/25 14

NNԦ𝑥 Ԧ𝑦(𝑥)

• Supervised Learning:

Evaluate errors b/w outputs of NN and y(x)

Tune parameters in the NN to minimize the error
 “Good” function y(x) is obtained.

slide by
T. Matsumoto
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Mechanism
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bias

適切な重みWとバイアスbがあれば、
任意の関数yを表現できる！
（NNの普遍性定理）

𝑓(𝑥)：activation func. 𝑓 𝑥 =
1

1 + 𝑒−𝑥

sigmoid

𝑓 𝑥 = ቊ
𝑥 𝑓𝑜𝑟 𝑥 > 0
0 𝑓𝑜𝑟 𝑥 ≤ 0

ReLU

slide by
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Convolutional NN (CNN)

• Example: number 2

2017/2/5  Coffee Talk 16

0 1 1 1 0 0

1 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 1 1 1 1 0

0 0 1

0 1 0

1 0 0

filter

1 1 0 2

0 0 3 0

0 3 0 0

3 1 1 1

フィルターとどれだけ
似ているかの度合いを

抽出している

畳み込み層の出力 CNNではフィ

ルターのパラ
メータを更新
していく

slide by
T. Matsumoto
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Neural Network

Capture “instanton”-like structure?

Acceleration of the analysis of Q?

Input: q(x)

4-dimensional field

Q

Output

topological
charge
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Neural Network

Capture “instanton”-like structure?

Acceleration of the analysis of Q?

Input: q(x)

4-dimensional field

Q

Output

topological
charge
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Neural Network
Input: q(x)

4-dimensional field

Q

Output

topological
charge

Why q(x) rather than link variables?

 to reduce the input data
 to skip teaching SU(N) and gauge invariance
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Lattice Setting
b N4 Nconf

6.2 164 20,000

6.5 244 20,000

 SU(3) Yang-Mills
Wilson gauge action
 2 lattice spacings with same 

physical volume
 LTc~0.63


 Gradient flow for smoothing

distribution of Q

Test: 5,000

Training: 10,000

Validation: 5,000
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Neural Network Setting

 convolutional neural network by CHAINER framework
 supervised learning
 convolutional layer: 4-dim., periodic BC
 regression analysis / round off to obtain integer
 activation: logistic

 answer of Q 
 Q(t) @ t/a2=4.0
 round off
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Trial 1: Topol. Charge Density
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 Input: q(x) in 4-dim space
 Data reduction to 84 (average pooling)

Q

Fu
ll 

co
n

n
e

ct

Fu
ll 

co
n

n
e

ct

G
A

P

C
o

n
vo

lu
ti

o
n

C
o

n
vo

lu
ti

o
n

C
o

n
vo

lu
ti

o
n

In
p

u
t

GAP=Global Average Pooling
Translational invariance is 

respected in this NN.
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Trial 1: Topol. Charge Density
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 Input: q(x) in 4-dim space
 Data reduction to 84 (average pooling)
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Result: best accuracy for b=6.2: 37.0%

Q -4 -3 -2 -1 0 1 2 3 4 total

t/a2=0 0 0 0 0 37.2 0 0 0 0 37.0

Accuracy of each topological sector (%)
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Trial 2: Topol. Density @ t>0
 Input: q(x,t) in 4-dim space at nonzero flow time
 Data reduction to 84 (average pooling)

Accuracy of each topological sector (%)
Q -4 -3 -2 -1 0 1 2 3 4 total

t/a2=0 0 0 0 0 37.2 0 0 0 0 37.0

t/a2=0.1 0 0 31.6 39.1 41.4 38.9 19.0 0 0 40.1

t/a2=0.2 0 40.0 46.4 53.8 55.9 52.3 48.1 50.0 0 55.2

t/a2=0.3 0 91.3 72.9 76.3 79.0 74.8 68.1 70.0 50.0 77.6
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Benchmark

c>1: optimization param.

Simple estimator from Q(t)

1) Naïve:

2) Improved:

3) zero:

Distribution of Q(t)
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Comparison: NN vs Benchmark

ML (Trial 2) naïve improved

t/a2=0 37.0 27.3 27.3

t/a2=0.1 40.1 38.3 38.3

t/a2=0.2 55.2 54.0 54.6

t/a2=0.3 77.6 69.8 77.3

accuracy at b=6.2

Machine learning cannot exceed the benchmark value.
 NN would be trained to answer the “improved” value.
 No useful local structures found by the NN.
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Trial 3: Multi-Channel Analysis
 Input: q(x,t) in four-dimensional space at t/a2=0.1, 0.2, 0.3

Q
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Trial 3: Multi-Channel Analysis
 Input: q(x,t) in four-dimensional space at t/a2=0.1, 0.2, 0.3

Result

b=6.2 93.8

b=6.5 94.1

77.3

71.3

machine learning benchmark @ t/a2=0.3

 non-trivial improvement from the benchmark!!

Q
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Is this a non-trivial result?
input answer

We can estimate the answer from Q(t) by our eyes…
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Trial 4: Feed Q(t) [0-dim]
 Input: Q(t) at t/a2=0.1, 0.2, 0.3
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b=6.2 94.1

b=6.5 95.7

77.3

71.3

Q(t) benchmark

93.8

94.1

Result

 Good accuracy can be obtained only from Q(t)

Trial 3 (4dim)
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Using different flow times

 t/a2=0.3, 0.25, 0.2 gives the best accuracy.
 Better accuracy on the finer lattice.
More than three input data do not improve accuracy.

t/a2 b=6.2 b=6.5

0.3, 0.25, 0.2 95.9(2) 99.0(2)

0.3, 0.2, 0.1 94.1(2) 95.7(2)

0.25, 0.2, 0.15 93.9(3) 95.0(2)

0.2, 0.15, 0.1 86.4(3) 83.1(4)

0.2, 0.1, 0 74.1(5) 68.2(4)

0.15, 0.1, 0.05 69.2(4) 64.7(8)

0.1, 0.05, 0 53.8(5) 49.9(3)

 error: variance in 10 independent trainings
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Trivial Check

 99% accuracy is difficult to obtain by a simple prescription.

 beta=6.5
 100 samples
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Reducing the Training Data

Training data 10,000 5,000 1,000 500 100

b=6.2 95.9(2) 95.9(2) 95.9(2) 95.5(3) 90.3(7)

b=6.5 99.0(2) 99.0(2) 98.9(2) 98.9(1) 90.2(8)

 1000 configurations are enough to train the NN 
successfully!

 Numerical cost for the training is small.

 Smaller training data will reduce numerical cost 
for the training.
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Robustness

 Analyze configurations with a different parameter set

b=6.2 b=6.5

b=6.2 95.9(2) 98.6(2)

b=6.5 95.6(2) 99.0(2)

tr
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d

at
a

analyzed data

 NNs trained for b=6.2 and 6.5 can be used for 
another parameter successfully.

 Universal NN would be developed!
 Note: same physical volume
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Trial 5: Dimensional Reduction
 Optimal dimension between d=0 and 4?
 d-dimensional CNN
 Input: qd(x) after dimensional reduction
 3-channel analysis: t/a2=0.1, 0.2, 0.3

 No d dependence
 Failed in finding 

features in multi-dim. 
space.

 No instanton-like 
local structure in 
QCD vacuum?
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Summary and Outlook

 No local structures in multi-dim. space captured by NN
 No “Instanton”-like structure? Or too noisy data?

 Topological charge can be estimated with high 
accuracy from Q(t) at 0.2<t/a2<0.3 with the aid 
of the machine learning technique.

 On the finer lattices, the better accuracy.
 Applications: checking topological freezing, etc.

Future Study
 Continuum limit / volume dependence
 High T configurations where DIGA is valid
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backup
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Topological Charge Density

No isolated instanton structure…
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