Topological Charge on the lattice studied by Neural Network

<u>Masakiyo Kitazawa</u>, Takuya Matsumoto, Yasuhiro Kohno (Osaka University)

MK, Kohno, Matsumoto, arXiv:1909.06238 [hep-lat]

Topological Charge in YM Theory

 $Q = \int d^4x q(x)$: integer

 $q(x) = -\frac{1}{32\pi^2} \operatorname{tr}[F_{\mu\nu}\tilde{F}_{\mu\nu}]$

Interests / applications

Instantons
Axial U(1) anomaly
Axion cosmology
Topological freezing

q(x) in SU(3) YM, β =5.8, 8⁴, t/a²=2.0

Topology

Topology

properties of an object that are preserved under continuous deformations

from Wikipedia

Topology

Topology

properties of an object that are preserved under continuous deformations

Example: 1-dim. space

 θ

from Wikipedia

 θ

Sine-Gordon Model in 1+1D

 $\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - (1 - \cos \phi)$

"kink" solution

$$\phi(x) = 4 \tan^{-1} \exp(x - x_0)$$

winding number *n*=1
nonzero energy
topologically stable

 $n = \int dx \partial_x \phi$

multi-"kink" solution is also possible.

Lattice Theory & Topology

$$\mathcal{L} = \sum_{\mathbf{n}} \sum_{\mu} \frac{1}{2} ((\phi_{\mathbf{n}-\hat{\mu}} - 2\phi_{\mathbf{n}} + \phi_{\mathbf{n}+\hat{\mu}}) - \sum_{\mathbf{n}} (1 - \cos\phi_{\mathbf{n}})$$

$$n = \int dx \partial_x \phi$$

$$n = \sum_x (\phi_{x+1} - \phi_x)$$

Different *n* are connected continuously.
 "Topological sector" becomes obscure on the lattice.
 Topological sectors recover in the continuum limit.

Topology in 4D YM Theory

□ SU(2) gauge field on $|r| \rightarrow \infty$ sphere in Euclid space

□ Mapping: S_3 (4D sphere) → S_3 (Gauge Tr. U(x)) □ S_3 → S_3 has a non-trivial topology

> topological charge $Q = \int d^4x q(x), \quad q(x) = \frac{1}{64\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr}[F_{\mu\nu}F_{\rho\sigma}]$

Instanton

$$q(x) = \frac{6}{\pi^2} \frac{\rho^4}{((x - x_0)^2 + \rho^2)^4}$$

classical solution of YM
winding number n=1
nonzero action

Topology on the Lattice

A naïve definition of Q

 $Q = \int d^4x q(x), \quad q(x) = \frac{1}{4} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr}[F_{\mu\nu}F_{\rho\sigma}]$

Q is not an integer, but distributes continuously.

Distinct topological sectors on sufficiently fine lattices

Luscher, 1981

Topology on the Lattice

Definitions of Q on the lattice:
 fermionic: Atiyah-Singer index theorem
 gluonic: q(x) after smoothing
 cooling, smearing
 gradient flow
 Luscher, Weisz, 2011

Good agreement b/w various definitions
 Faster algorithm is desirable!

q(x) at Nonzero Flow Time

 $t/a^2 = 0.1$

 $t/a^2 = 0.2$

 $t/a^2 = 0.3$

Field becomes smoother for larger t.

Topological Freezing

□ Lattice Monte-Carlo simulation → gauge update
 □ Auto-correlation length of Q becomes longer as lattice spacing becomes finer.

Fig. 3. History of the topological charge in three-flavour QCD on a 36×24^3 lattice with SF (black line) and open-SF (grey line) boundary conditions, plotted as a function of the simulation time in units of molecular-dynamics time (see subsect. 5.2 for further details).

M. Lüscher.(2014)

Input: q(x)

4-dimensional field

Output

topological charge

Capture "instanton"-like structure?Acceleration of the analysis of Q?

Approximate arbitrary functions

• Supervised Learning:

Evaluate errors b/w outputs of NN and y(x)

Tune parameters in the NN to minimize the error \rightarrow "Good" function y(x) is obtained.

Mechanism

slide by T. Matsumoto

Convolutional NN (CNN)

• Example: number 2

Input: q(x)

4-dimensional field

Output

topological charge

Capture "instanton"-like structure?Acceleration of the analysis of Q?

Input: q(x)

4-dimensional field

Capture "instanton"-like structure?Acceleration of the analysis of Q?

 $\overline{\mathbf{O}}$

Input: q(x)

4-dimensional field

Output

topological charge

Why q(x) rather than link variables?

to reduce the input data
 to skip teaching SU(N) and gauge invariance

Lattice Setting

SU(3) Yang-Mills Wilson gauge action **2** 2 lattice spacings with **same** physical volume $\Box LT_{\rm c} \sim 0.63$ $\Box \langle Q^2 \rangle \simeq 1.1$

Gradient flow for smoothing

β	N ⁴	N _{conf}
6.2	164	20,000
6.5	24 ⁴	20,000

20,000 confs. in total Training: 10,000 Validation: 5,000

Test: 5,000

distribution of Q

Q	-5	-4	-3	-2	-1	0	1	2	3	4	5
$\beta = 6.2$	2	17	235	1325	4571	7474	4766	1352	240	18	0
$\beta = 6.5$	0	5	105	1080	4639	8296	4621	1039	202	13	0

Neural Network Setting

convolutional neural network by CHAINER framework
 supervised learning
 convolutional layer: 4-dim., periodic BC
 regression analysis / round off to obtain integer
 activation: logistic

```
    answer of Q
    Q(t) @ t/a<sup>2</sup>=4.0
    round off
```


Trial 1: Topol. Charge Density

Input: q(x) in 4-dim space
 Data reduction to 8⁴ (average pooling)

layer	filter size	output size	activation
input	-	$8^d \times N_{\rm ch}$	-
convolution	3 ^d	$8^d \times 5$	logistic
convolution	3^d	$8^d \times 5$	logistic
convolution	3^d	$8^d \times 5$	logistic
global average pooling	8^d	1×5	-
full connect	-	5	logistic
full connect	-	1	-

GAP=Global Average Pooling Translational invariance is respected in this NN.

Trial 1: Topol. Charge Density

Input: q(x) in 4-dim space
 Data reduction to 8⁴ (average pooling)

D Result: best accuracy for $\beta = 6.2$: **37.0%**

Accuracy of each topological sector (%)

Q	-4	-3	-2	-1	0	1	2	3	4	total
t/a ² =0	0	0	0	0	37.2	0	0	0	0	37.0

Trial 2: Topol. Density @ t>0

Input: q(x,t) in 4-dim space at nonzero flow time
 Data reduction to 8⁴ (average pooling)

Accuracy of each topological sector (%)

Q	-4	-3	-2	-1	0	1	2	3	4	total
t/a ² =0	0	0	0	0	37.2	0	0	0	0	37.0
t/a ² =0.1	0	0	31.6	39.1	41.4	38.9	19.0	0	0	40.1
t/a ² =0.2	0	40.0	46.4	53.8	55.9	52.3	48.1	50.0	0	55.2
t/a ² =0.3	0	91.3	72.9	76.3	79.0	74.8	68.1	70.0	50.0	77.6

Benchmark Simple estimator from Q(t)

1) Naïve: $Q = \operatorname{round}[Q(t)]$ **2)** Improved: $Q = \operatorname{round}[cQ(t)]$
c>1: optimization param.

3) zero:

Q = 0

Distribution of Q(t)

Comparison: NN vs Benchmark

accuracy at $\beta = 6.2$

	ML (Trial 2)	naïve	improved
t/a ² =0	37.0	27.3	27.3
t/a ² =0.1	40.1	38.3	38.3
t/a ² =0.2	55.2	54.0	54.6
t/a ² =0.3	77.6	69.8	77.3

Machine learning cannot exceed the benchmark value.
 NN would be trained to answer the "improved" value.
 No useful local structures found by the NN.

Trial 3: Multi-Channel Analysis

□ Input: q(x,t) in four-dimensional space **at t/a²=0.1**, **0.2**, **0.3**

Trial 3: Multi-Channel Analysis

Input: q(x,t) in four-dimensional space at t/a²=0.1, 0.2, 0.3

Result machin	e learning	benchmark @ t/a ² =0.3
β=6.2	93.8	77.3
β=6.5	94.1	71.3

non-trivial improvement from the benchmark!!

Is this a non-trivial result?

We can estimate the answer from Q(t) by our eyes...

Good accuracy can be obtained only from Q(t)

95.7

β=6.5

RCNP Theory Group Seminar, Osaka, Dec. 2, 2019

94.1

71.3

Using different flow times

t/a ²	β=6.2	β=6.5	4
0.3, 0.25, 0.2	95.9(2)	99.0(2)	$\beta = 0.5$
0.3, 0.2, 0.1	94.1(2)	95.7(2)	2
0.25, 0.2, 0.15	93.9(3)	95.0(2)	
0.2, 0.15, 0.1	86.4(3)	83.1(4)	
0.2, 0.1, 0	74.1(5)	68.2(4)	-2
0.15, 0.1, 0.05	69.2(4)	64.7(8)	
0.1, 0.05, 0	53.8(5)	49.9(3)	$-4 \frac{4}{0.0 \ 0.1 \ 0.2 \ 0.3 \ 0.5 \ 1.0 \ 1.5 \ 2.0 \ 4 \ 6 \ 8 \ 10 \ 12}{4/2}$
0.1, 0.05, 0	53.8(5)	49.9(3)	$-4 \frac{4}{t/a^2} \frac{1}{t/a^2} \frac$

t/a²=0.3, 0.25, 0.2 gives the best accuracy.
 Better accuracy on the finer lattice.
 More than three input data do not improve accuracy.
 error: variance in 10 independent trainings

Trivial Check

beta=6.5100 samples

$\bar{Q}(t) = Q(t) - \mathcal{Q}$

 $ar{Q}(t)/ar{Q}(0.2)$

99% accuracy is difficult to obtain by a simple prescription.

Reducing the Training Data

Smaller training data will reduce numerical cost for the training.

Training data	10,000	5,000	1,000	500	100
β=6.2	95.9(2)	95.9(2)	95.9(2)	95.5(3)	90.3(7)
β=6.5	99.0(2)	99.0(2)	98.9(2)	98.9(1)	90.2(8)

1000 configurations are enough to train the NN successfully!
 Numerical cost for the training is small.

Robustness

Analyze configurations with a different parameter set

	TAK	analyzed data							
		β=6.2	β=6.5						
ning ta	β=6.2	95.9(2)	98.6(2)						
train da	β =6.5	95.6(2)	99.0(2)						

NNs trained for β=6.2 and 6.5 can be used for another parameter successfully.
 Universal NN would be developed!
 Note: same physical volume

Trial 5: Dimensional Reduction

Optimal dimension between d=0 and 4?
 d-dimensional CNN
 Input: q_d(x) after dimensional reduction
 3-channel analysis: t/a²=0.1, 0.2, 0.3

 No d dependence
 Failed in finding features in multi-dim. space.
 No instanton-like local structure in QCD vacuum?

 $q_3(x,y,z) = \int d\tau q(x)$

 $q_2(x,y) = \int d\tau dz q(x)$

RCNP Theory Group Seminar, Osaka, Dec. 2, 2019

Summary and Outlook

Topological charge can be estimated with high accuracy from Q(t) at 0.2<t/a²<0.3 with the aid of the machine learning technique.
 On the finer lattices, the better accuracy.
 Applications: checking topological freezing, etc.

No local structures in multi-dim. space captured by NN
 No "Instanton"-like structure? Or too noisy data?

Future Study
 Continuum limit / volume dependence
 High T configurations where DIGA is valid

backup

Topological Charge Density

 $t/a^2 = 0.1$

 $t/a^2 = 0.2$

 $t/a^2 = 0.3$

No isolated instanton structure...

