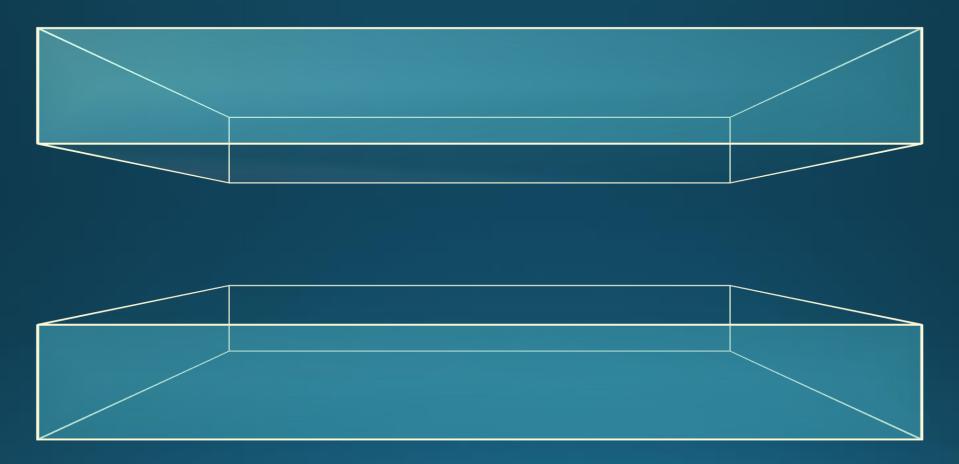
# Anisotropic pressure induced by finite-size effects at nonzero temperature in SU(3)YM theory

Masakiyo Kitazawa

(Osaka U.)

with S. Mogliacci, I. Kolbe, W.A. Horowitz

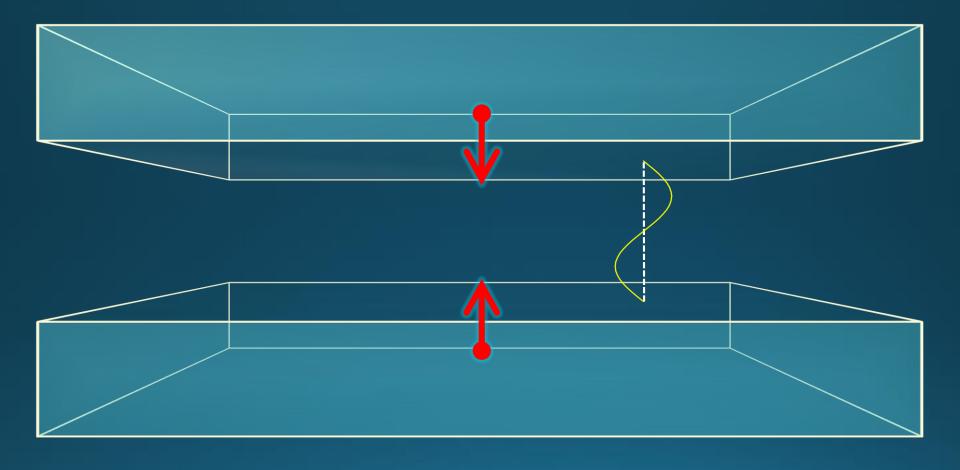
MK, Mogliacci, Kolbe, Horowitz, Phys.Rev.D 99 (2019) 094507 [arXiv:1904.00241[hep-lat]]



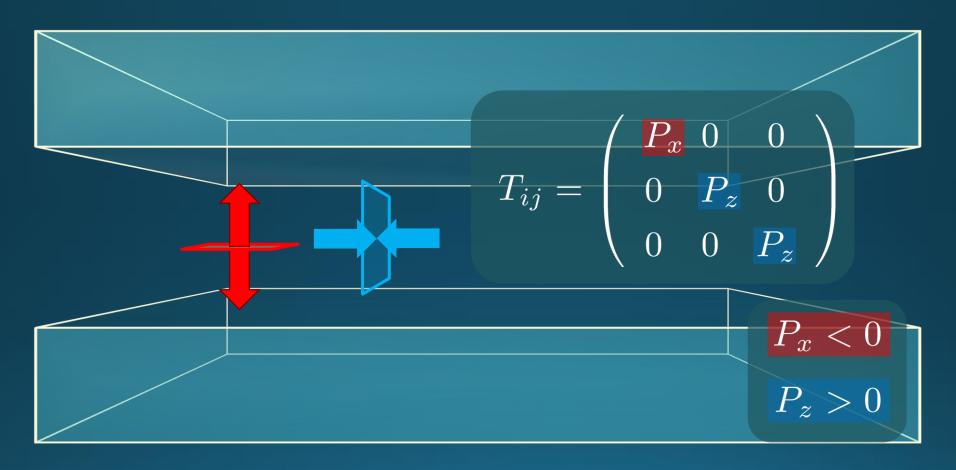
attractive force between two conductive plates

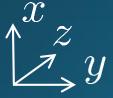


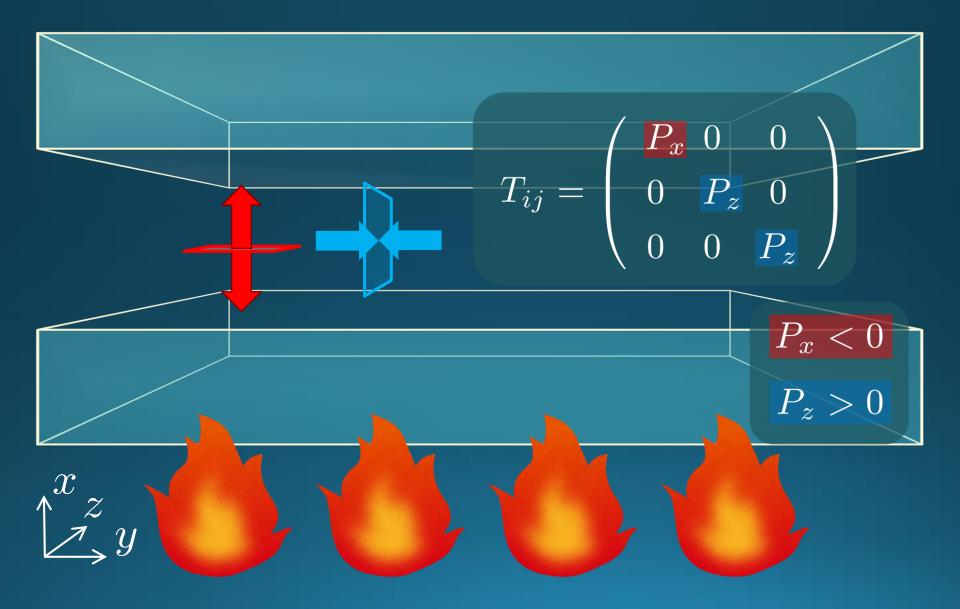
attractive force between two conductive plates

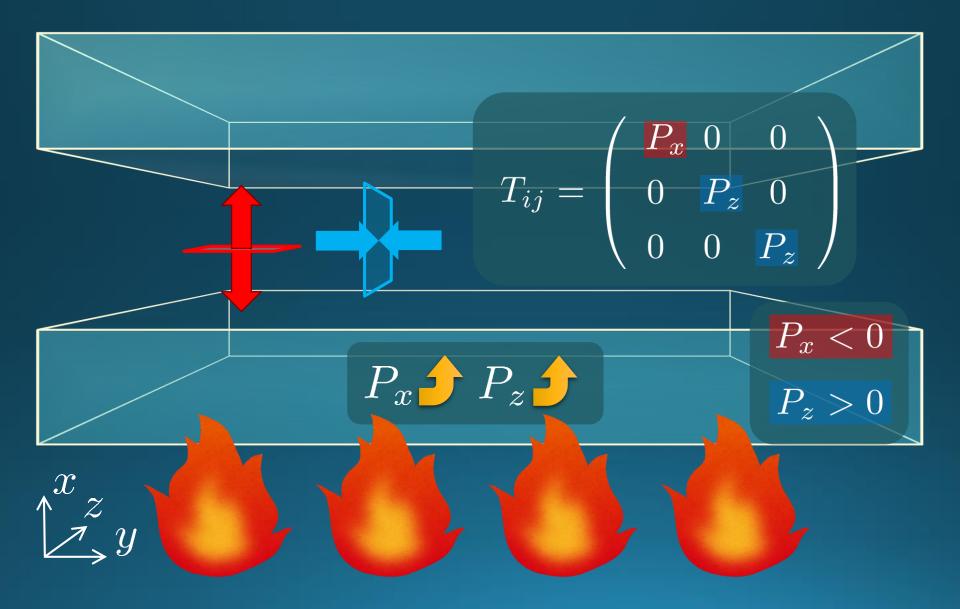


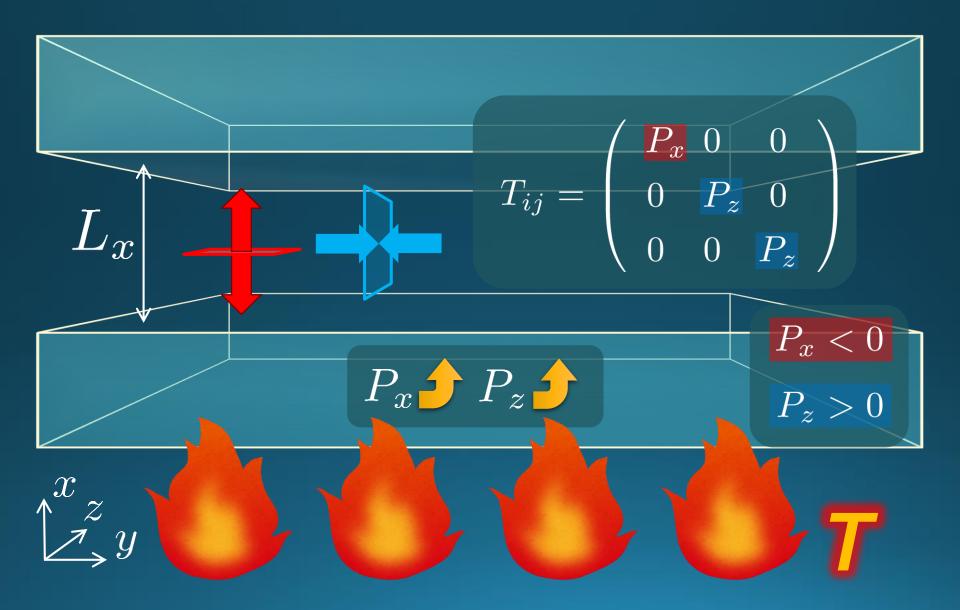
attractive force between two conductive plates



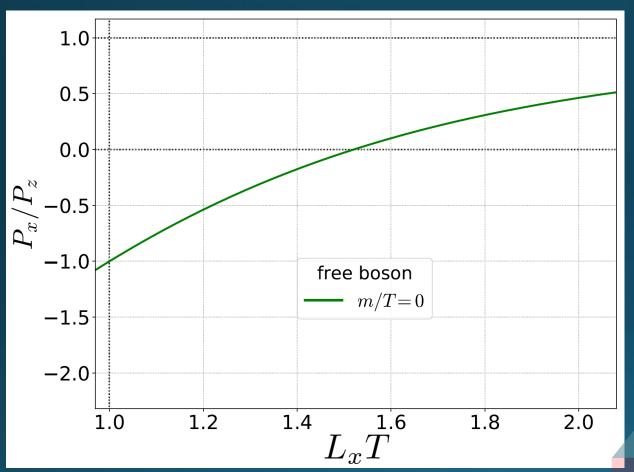








## Pressure Anisotropy @ T≠o



MK, Mogliacci, Kolbe, Horowitz, PRD(2019)

#### Free scalar field

- $\square$   $L_2 = L_3 = \infty$
- ☐ Periodic BC

Mogliacci+, 1807.07871

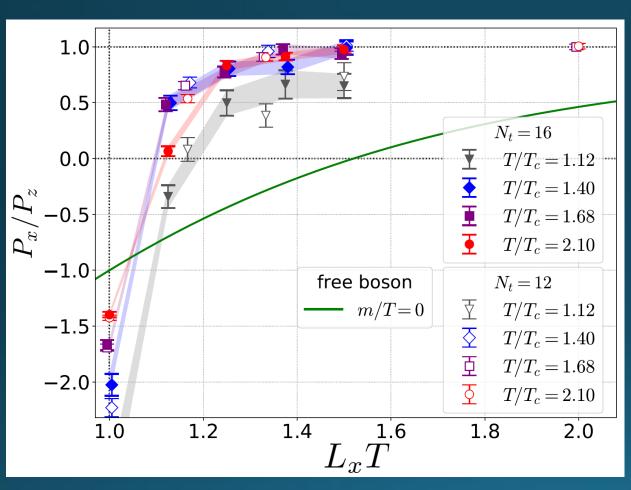
$$P_x = T_{11}$$

$$P_x = T_{11}$$

$$P_z = T_{22} = T_{33}$$

 $L_{x}$ 

## Pressure Anisotropy @ T≠o



MK, Mogliacci, Kolbe, Horowitz, PRD(2019)

#### Free scalar field

- $\square$   $L_2 = L_3 = \infty$
- ☐ Periodic BC

Mogliacci+, 1807.07871

#### Lattice result

- ☐ Periodic BC
- □ Only t→0 limit
- ☐ Error: stat.+sys.

Medium near T<sub>c</sub> is remarkably insensitive to finite size!

## Thermodynamics on the Lattice

#### **Various Methods**

- □ Integral, differential, moving frame, non-equilibrium, ...
- $\blacksquare$  rely on thermodynamic relations valid in  $V \rightarrow \infty$

$$P = \frac{T \ln Z}{V}$$
 $sT = \varepsilon + P$ 
Not applicable to anisotropic systems

## Thermodynamics on the Lattice

#### **Various Methods**

- □ Integral, differential, moving frame, non-equilibrium, ...
- $\blacksquare$  rely on thermodynamic relations valid in  $V \rightarrow \infty$

$$P = \overline{V} \ln Z$$

$$sT = \varepsilon + P$$
Not applicable to anisotropic systems

☐We employ **Gradient Flow Method** 

$$\varepsilon = \langle T_{00} \rangle \quad P = \langle T_{11} \rangle$$

Components of EMT are directly accessible!

## Yang-Mills Gradient Flow

$$\frac{\partial}{\partial t} A_{\mu}(t, x) = -\frac{\partial S_{\text{YM}}}{\partial A_{\mu}}$$

Luscher 2010 Narayanan, Neuberger, 2006 Luscher, Weiss, 2011

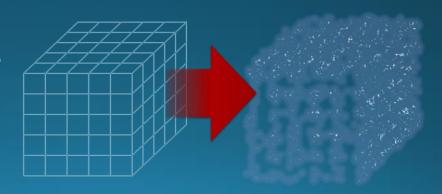
$$A_{\mu}(0,x) = A_{\mu}(x)$$

t: "flow time" dim:[length<sup>2</sup>]



$$\partial_t A_{\mu} = D_{\nu} G_{\mu\nu} = \partial_{\nu} \partial_{\nu} A_{\mu} + \cdots$$

- ☐ diffusion equation in 4-dim space
- $lue{}$  diffusion distance  $d \sim \sqrt{8t}$
- "continuous" cooling/smearing
- No UV divergence at t>0



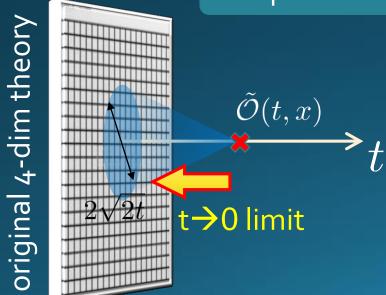
## Small Flow-Time Expansion

Luescher, Weisz, 2011 Suzuki, 2013

$$\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$$

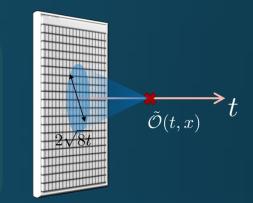
an operator at t>0

remormalized operators of original theory



$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[ T_{\mu\nu}^R(x) - \frac{1}{4} \delta_{\mu\nu} T_{\rho\rho}^R(x) \right] + \mathcal{O}(t)$$

$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T_{\rho\rho}^R(x) + \mathcal{O}(t)$$



vacuum subtr.

#### Remormalized EMT

$$T_{\mu\nu}^{R}(x) = \lim_{t\to 0} \left[ c_1(t) U_{\mu\nu}(t,x) + \delta_{\mu\nu} c_2(t) E(t,x)_{\text{subt.}} \right]$$

#### Perturbative coefficient:

Suzuki (2013); Makino, Suzuki (2014); Harlander+ (2018); Iritani, MK, Suzuki, Takaura (2019)

### Perturbative Coefficients



|          | LO        | <b>1</b> -loop | 2-loop | 3-loop |
|----------|-----------|----------------|--------|--------|
| $c_1(t)$ | O         | O              | 0      |        |
| $c_2(t)$ | X<br>zero | O              | 0      | O      |

Suzuki, PTEP 2013, 083B03 Harlander+, 1808.09837 Iritani, MK, Suzuki, Takaura, PTEP 2019

Iritani, MK, Suzuki, Takaura, 2019

Suzuki (2013) Harlander+(2018)

#### Choice of the scale of g<sup>2</sup>

$$c_1(t) = c_1 \left( g^2 \left( \mu(t) \right) \right)$$

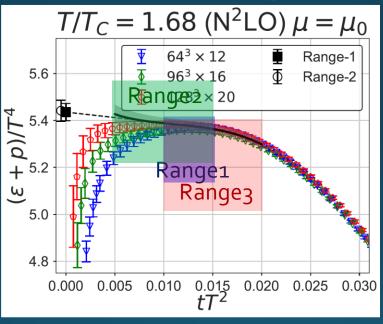
Previous:  $\mu_d(t) = 1/\sqrt{8t}$ 

Improved:  $\mu_0(t) = 1/\sqrt{2e^{\gamma_E}t}$ 

Harlander+ (2018)

## $t \rightarrow 0$ Extrapolation: $\varepsilon + p$

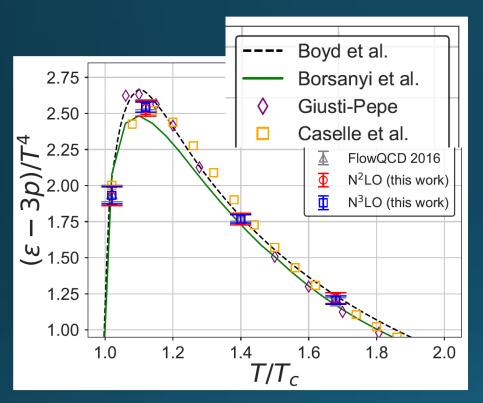
#### N<sup>2</sup>LO (2-loop)



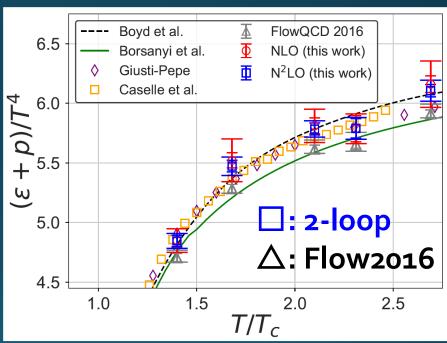
Iritani, MK, Suzuki, Takaura, PTEP 2019

- $\square$  Stable t $\rightarrow 0$  extrapolation with higher order coeff.
- $\blacksquare$  Systematic error: fit range,  $\mu_o$  or  $\mu_d$ , uncertaintyof  $\Lambda$  ( $\pm 3\%$ )
- $\square$  Extrapolation func: linear, higher order term in  $c_1$  (~g<sup>6</sup>)

# Effect of Higher-Order Coeffs.



Iritani, MK, Suzuki, Takaura, 2019



Systematic error:  $\mu_0$  or  $\mu_d$ ,  $\Lambda$ ,  $t \rightarrow 0$  function, fit range

More stable extrapolation with higher order c<sub>1</sub> & c<sub>2</sub> (pure gauge)

## Numerical Setup

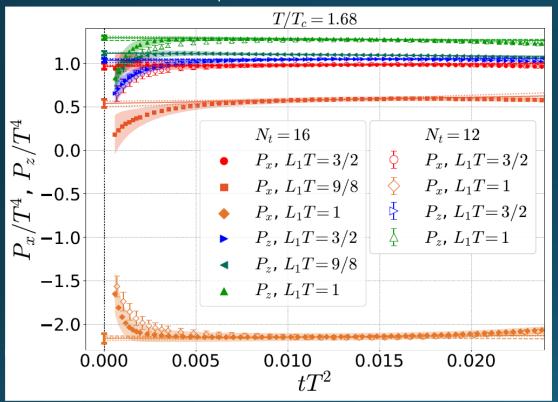
- SU(3) YM theory
- Wilson gauge action
- $\square$  N<sub>+</sub> = 16, 12
- $\square$  N<sub>7</sub>/N<sub>+</sub>=6
- 2000~4000 confs.
- $\square$  Even  $N_x$
- No Continuum extrap.
- ☐ Same Spatial volume
- $12X72^2X12 \sim 16X96^2X16$
- $18x72^2x12 \sim 24x96^2x16$

| $T/T_c$      | $\beta$ | $N_z$ | $N_{	au}$ | $N_x$              | $N_{ m vac}$ |  |
|--------------|---------|-------|-----------|--------------------|--------------|--|
| 1.12         | 6.418   | 72    | 12        | 12, 14, 16, 18     | 64           |  |
|              | 6.631   | 96    | 16        | 16, 18, 20, 22, 24 | 96           |  |
| 1.40         | 6.582   | 72    | 12        | 12, 14, 16, 18     | 64           |  |
|              | 6.800   | 96    | 16        | 16, 18, 20, 22, 24 | 128          |  |
| 1.68         | 6.719   | 72    | 12        | 12, 14, 16, 18, 24 | 64           |  |
|              | 6.719   | 96    | 12        | 14, 18             | 64           |  |
|              | 6.941   | 96    | 16        | 16, 18, 20, 22, 24 | 96           |  |
| 2.10         | 6.891   | 72    | 12        | 12, 14, 16, 18, 24 | 72           |  |
|              | 7.117   | 96    | 16        | 16, 18, 20, 22, 24 | 128          |  |
| 2.69         | 7.086   | 72    | 12        | 12, 14, 16, 18     | -            |  |
| $\simeq 8.1$ | 8.0     | 72    | 12        | 12, 14, 16, 18     | -            |  |
| $\simeq 25$  | 9.0     | 72    | 12        | 12, 14, 16, 18     | -            |  |
|              |         |       |           |                    |              |  |

Simulations on OCTOPUS/Reedbush

## Small-t Extrapolation

 $T/T_c = 1.68$ 



• 
$$P_x$$
, •  $P_z$ ,  $L_1T = 3/2$ 
•  $P_x$ , •  $P_z$ ,  $L_1T = 9/8$ 
•  $P_x$ , •  $P_z$ ,  $L_1T = 1$ 

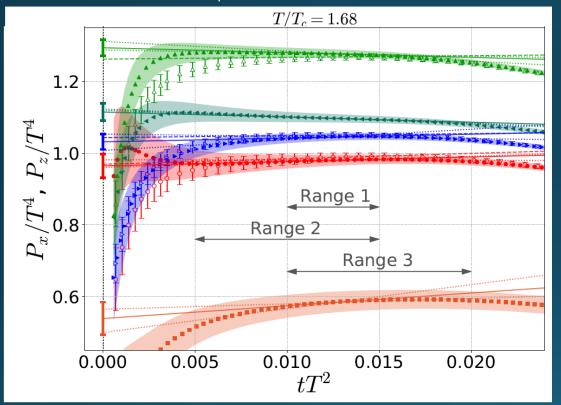
Filled:  $N_t=16$  / Open:  $N_t=12$ 

#### **Small-t extrapolation**

- Solid: N<sub>t</sub>=16, Range-1
- Dotted: N<sub>t</sub>=16, Range-2,3
- Dashed: N<sub>t</sub>=12, Range-1
- ☐ Stable small-t extrapolation
- $\square$  No N<sub>t</sub> dependence within statistics for L<sub>x</sub>T=1, 1.5

## Small-t Extrapolation

$$T/T_c = 1.68$$



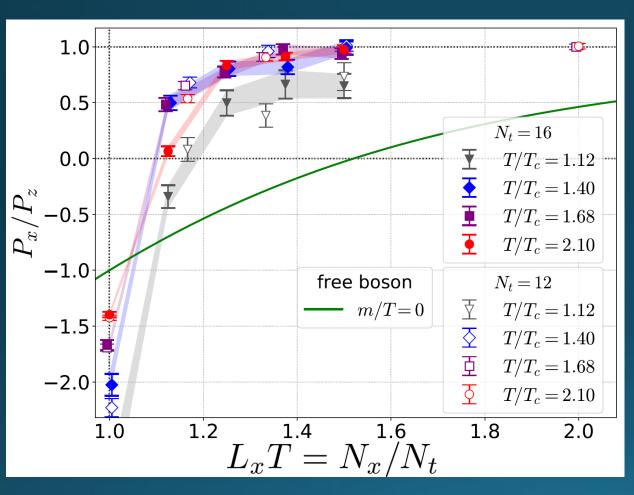
• 
$$P_x$$
, •  $P_z$ ,  $L_1T = 3/2$ 
•  $P_x$ , •  $P_z$ ,  $L_1T = 9/8$ 
•  $P_x$ , •  $P_z$ ,  $L_1T = 1$ 

Filled:  $N_t=16$  / Open:  $N_t=12$ 

#### **Small-t extrapolation**

- Solid: N<sub>t</sub>=16, Range-1
- Dotted: N<sub>t</sub>=16, Range-2,3
- Dashed: N<sub>t</sub>=12, Range-1
- Stable small-t extrapolation
- $\square$  No N<sub>t</sub> dependence within statistics for L<sub>x</sub>T=1, 1.5

## Pressure Anisotropy @ T≠o



MK, Mogliacci, Kolbe, Horowitz, PRD(2019)

#### Free scalar field

- $\Box$   $L_2 = L_3 = \infty$
- ☐ Periodic BC

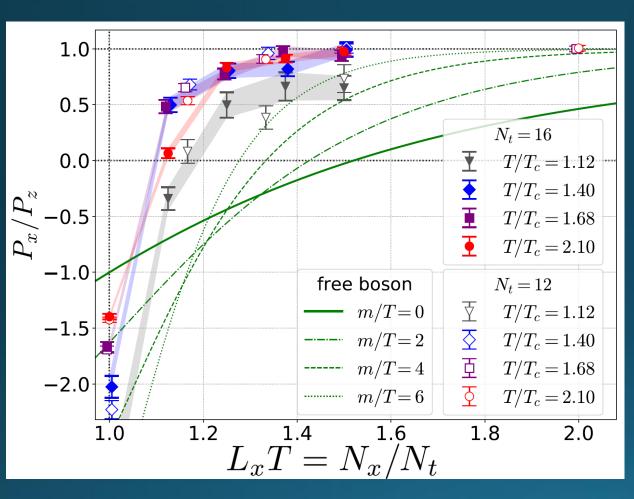
Mogliacci+, 1807.07871

#### Lattice result

- ☐ Periodic BC
- □ Only t→0 limit
- ☐ Error: stat.+sys.

Medium near T<sub>c</sub> is remarkably insensitive to finite size!

## Pressure Anisotropy @ T≠o



MK, Mogliacci, Kolbe, Horowitz, PRD(2019)

#### Free scalar field

- $\square$   $L_2 = L_3 = \infty$
- Periodic BC

Mogliacci+, 1807.07871

#### Lattice result

- ☐ Periodic BC
- □ Only t→0 limit
- ☐ Error: stat.+sys.

Medium near T<sub>c</sub> is remarkably insensitive to finite size!

## HigherT

High-T limit: massless free gluons
How does the anisotropy approach this limit?

#### **Difficulties**

- Vacuum subtraction requires large-volume simulations.
- $\square$  Lattice spacing not available  $\rightarrow c_1(t)$ ,  $c_2(t)$  are not determined.

# HigherT

High-T limit: massless free gluons
How does the anisotropy approach this limit?

#### **Difficulties**

- Vacuum subtraction requires large-volume simulations.
- □ Lattice spacing not available  $\rightarrow$  c<sub>1</sub>(t), c<sub>2</sub>(t) are not determined.

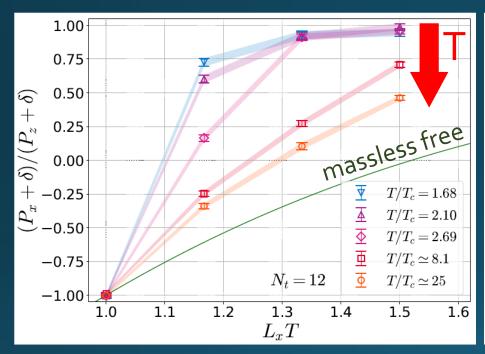


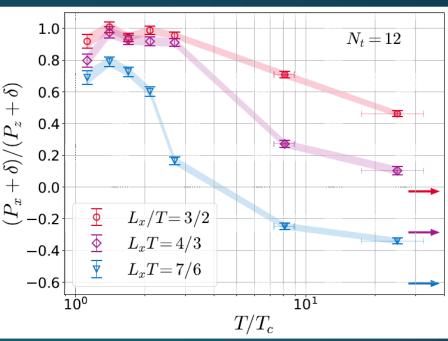
$$\frac{P_x + \delta}{P_z + \delta}$$

$$\delta = -\frac{1}{4} \sum_{\mu} T_{\mu\mu}^{\rm E}$$

No vacuum subtr. nor Suzuki coeffs. necessary!

$$\frac{P_x + \delta}{P_z + \delta}$$





 $T/T_c \cong 8.1 (\beta=8.0) / T/T_c \cong 25 (\beta=9.0)$ 

- ☐ Ratio approaches the asymptotic value.
- $\blacksquare$  But, large deviation exists even at T/T<sub>c</sub>~25.

Summary

 $T/T_c = 2.10$ 

free boson

First numerical simulation of anisotropic pressure in SU(3) YM with periodic BC.

Medium at 1.4<T/T<sub>c</sub><2.1 is remarkably insensitive to the existence of boundary.

#### **Future**

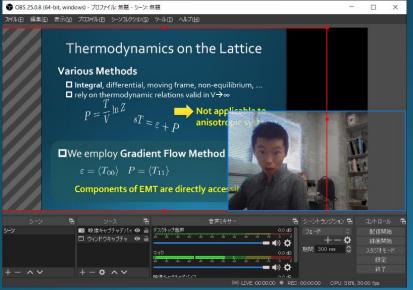
Anti-periodic / Dirichlet BCs BC for two directions, magnetic field, below  $T_c$ , ...

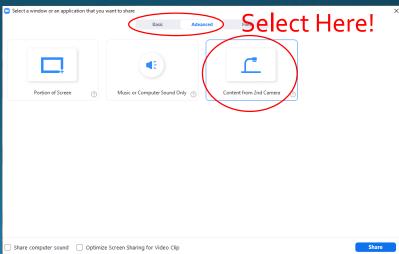
And, many other problems related to EMT!!

# backup

## Tips for Presentation

- ☐ Install
  - OBS Studio <a href="https://obsproject.com/">https://obsproject.com/</a>
  - OBS VirtualCam <a href="https://github.com/CatxFish/obs-virtual-cam/">https://github.com/CatxFish/obs-virtual-cam/</a>
- Setup
  - □ tools VirtualCam Start
  - ☐ Chroma key composition: Need a green sheet behind you!
- Zoom: Share Screen Advanced Content from 2nd camera

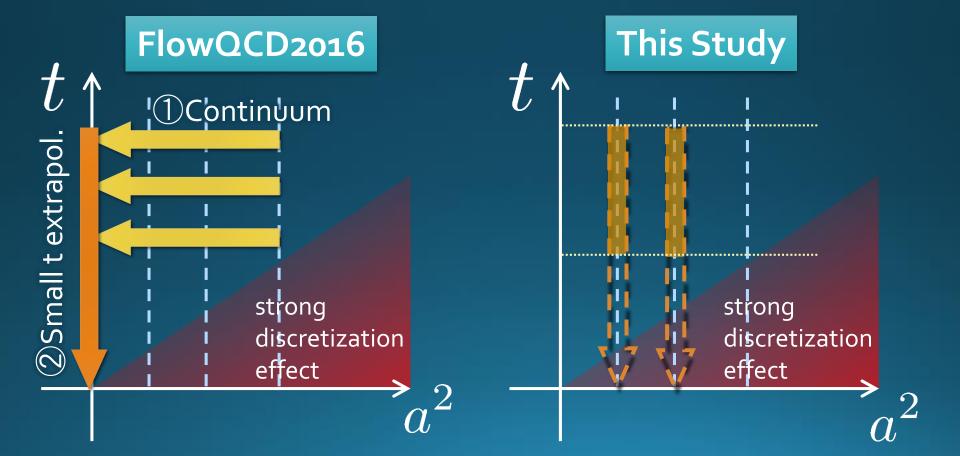




## Extrapolations t>0, a>0

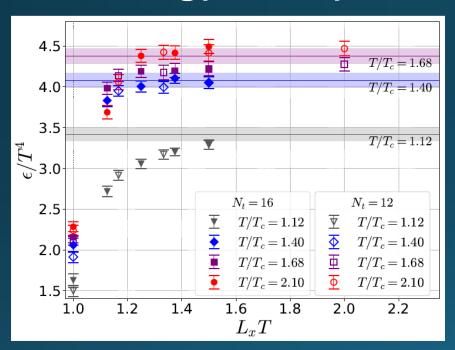
$$\langle T_{\mu\nu}(t)\rangle_{\rm latt} = \langle T_{\mu\nu}(t)\rangle_{\rm phys} + C_{\mu\nu}t + \left[D_{\mu\nu}(t)\frac{a^2}{t}\right]$$

O(t) terms in SFTE lattice discretization

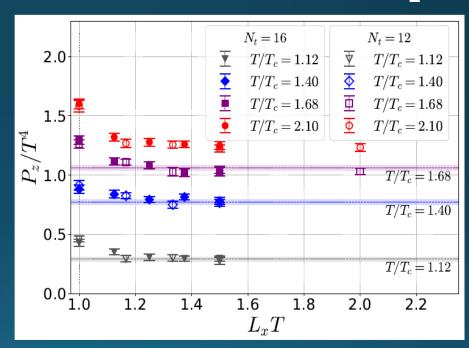


## energy densty / transverse P

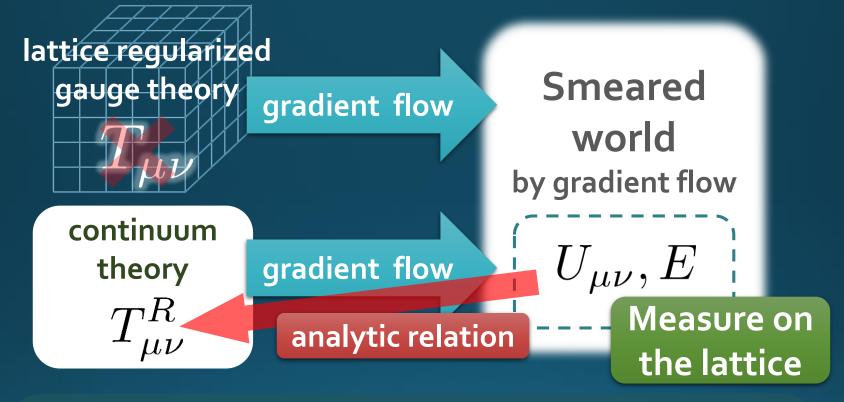
#### **Energy Density**



#### Transverse Pressure P<sub>z</sub>



## **Gradient Flow Method**

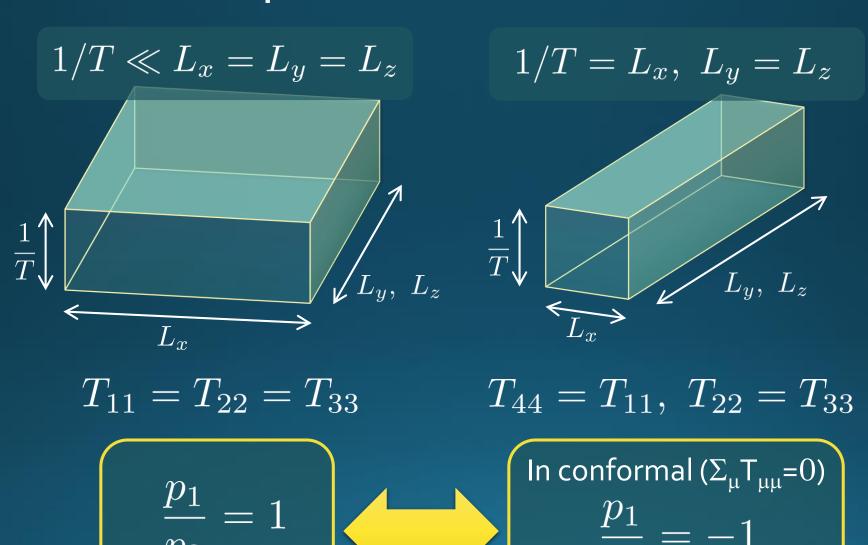


Take Extrapolation  $(t,a) \rightarrow (0,0)$ 

$$\langle T_{\mu\nu}(t)\rangle_{\rm latt} = \langle T_{\mu\nu}(t)\rangle_{\rm phys} + C_{\mu\nu}t + \left[D_{\mu\nu}\frac{a^2}{t}\right] + \cdots$$

O(t) terms in SFTE lattice discretization

## Two Special Cases with PBC



## EMT on the Lattice: Conventional

## Lattice EMT Operator Caracciolo+, 1990

$$T_{\mu\nu} = Z_6 T_{\mu\nu}^{[6]} + Z_3 T_{\mu\nu}^{[3]} + Z_1 \left( T_{\mu\nu}^{[1]} - \langle T_{\mu\nu}^{[1]} \rangle \right)$$

$$T_{\mu\nu}^{[6]} = (1 - \delta_{\mu\nu}) F_{\mu\rho}^a F_{\nu\rho}^a, \ T_{\mu\nu}^{[3]} = \delta_{\mu\nu} \left( F_{\mu\rho}^a F_{\nu\rho}^a - \frac{1}{4} F_{\rho\sigma}^a F_{\rho\sigma}^a \right), \ T_{\mu\nu}^{[1]} = \delta_{\mu\nu} F_{\rho\sigma}^a F_{\rho\sigma}^a$$

- $\blacksquare$  Fit to thermodynamics:  $Z_{3}$ ,  $Z_{1}$
- Shifted-boundary method: Z<sub>6</sub>, Z<sub>3</sub> Giusti, Meyer, 2011; 2013; Giusti, Pepe, 2014~; Borsanyi+, 2018

#### Multi-level algorithm

effective in reducing statistical error of correlator

Meyer, 2007; Borsanyi, 2018; Astrakhantsev+, 2018