Machine Learning Topological Sector of SU(3) Yang-Mills Theory

Masakiyo Kitazawa (Osaka University) with Takuya Matsumoto, Yasuhiro Kohno

MK, Kohno, Matsumoto, PTEP 2020, accepted for publication [arXiv:1909.06238 [hep-lat]]

Is machine learning technique meaningfully applicable to theoretical physics?

□ ML does not provide us with "understanding".

Theoretical physicists must have a better solution for problems that ML can deal with.

□ 100% accuracy is never reached by the ML.

Topological Charge in YM Theory

$$Q = \int d^4 x q(x) \quad : \text{integer}$$
$$q(x) = -\frac{1}{32\pi^2} \text{tr}[F_{\mu\nu}\tilde{F}_{\mu\nu}]$$

Interests / applications

Instantons
Axial U(1) anomaly
Axion cosmology
Topological freezing

q(x) in SU(3) YM, β =5.8, 8⁴, t/a²=2.0

Topology

Topology

properties of an object that are preserved under continuous deformations

from Wikipedia

Topology

Example: 1-dim. space

 θ

Topology

properties of an object that are preserved under continuous deformations

from Wikipedia

 θ

n=0

winding number n=1

Sine-Gordon Model in 1+1D

 $\mathcal{L} = rac{1}{2} (\partial_\mu \phi)^2 - (1 - \cos \phi)$

"kink" solution

$$\phi(x) = 4\tan^{-1}\exp(x - x_0)$$

winding number n=1
nonzero energy
topologically stable

$$n = \int dx \partial_x \phi$$

multi-"kink" solution is also possible.

Lattice Theory & Topology

$$\mathcal{L} = \sum_{\mathbf{n}} \sum_{\mu} \frac{1}{2} \left(\left(\phi_{\mathbf{n}-\hat{\mu}} - 2\phi_{\mathbf{n}} + \phi_{\mathbf{n}+\hat{\mu}} \right) - \sum_{\mathbf{n}} \left(1 - \cos \phi_{\mathbf{n}} \right) \right)$$

 $n = \int dx \partial_x \phi$ $n = \sum_{x+1}^{\infty} (\phi_{x+1} - \phi_x)$

Different *n* are connected continuously.
"Topological sector" becomes obscure on the lattice.
Topological sectors recover in the continuum limit.

Topology in 4D YM Theory

□ SU(2) gauge field on $|r| \rightarrow \infty$ sphere in Euclid space

□ Mapping: S_3 (4D sphere) → S_3 (Gauge Tr. U(x)) □ S_3 → S_3 has a non-trivial topology

> topological charge $Q = \int d^4x q(x), \quad q(x) = \frac{1}{64\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr}[F_{\mu\nu}F_{\rho\sigma}]$

Instanton

$$q(x) = \frac{6}{\pi^2} \frac{\rho^4}{((x - x_0)^2 + \rho^2)^4}$$

classical solution of YM
winding number n = 1
nonzero action

Topology on the Lattice

A naïve definition of *Q*

 $Q = \int d^4 x q(x), \quad q(x) = \frac{1}{4} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr}[F_{\mu\nu}F_{\rho\sigma}]$

Q is not an integer, but distributes continuously.

Distinct topological sectors on sufficiently fine lattices Luscher, 1981

Topology on the Lattice

Definitions of Q on the lattice:

fermionic: Atiyah-Singer index theorem
gluonic: q(x) after smoothing
cooling, smearing
gradient flow
Luscher, Weisz, 2011

Good agreement b/w various definitions
 Faster algorithm is desirable!

q(x) at Nonzero Flow Time

t/

$$t/a^2 = 0.1$$

$$a^2 = 0.2$$
 $t/a^2 = 0.3$

Field becomes smoother for larger t.

Topological Freezing

□ Lattice Monte-Carlo simulation → gauge update
 □ Auto-correlation length of *Q* becomes longer as lattice spacing becomes finer.

Fig. 3. History of the topological charge in three-flavour QCD on a 36×24^3 lattice with SF (black line) and open-SF (grey line) boundary conditions, plotted as a function of the simulation time in units of molecular-dynamics time (see subsect. 5.2 for further details).

M. Lüscher.(2014)

Input: q(x)

4-dimensional field

Capture "instanton"-like structure?Acceleration of the analysis of Q?

Cost to Measure Q with GF

□ Frequent measurements shorter than τ_Q is effective in reducing statistical errors.

Approximate arbitrary functions

• Supervised Learning:

Evaluate errors b/w outputs of NN and y(x)

Tune parameters in the NN to minimize the error \rightarrow "Good" function y(x) is obtained.

Mechanism

slide by T. Matsumoto

2017/2/5 Coffee Talk

Convolutional NN (CNN)

• Example: number 2

Input: q(x)

4-dimensional field

Capture "instanton"-like structure?Acceleration of the analysis of Q?

Input: q(x)

4-dimensional field

Capture "instanton"-like structure?Acceleration of the analysis of Q?

Input: q(x)

4-dimensional field

\Box Why q(x) rather than link variables?

to reduce the input data
 to skip teaching SU(N) and gauge invariance

Lattice Setting

SU(3) Yang-Mills Wilson gauge action **2** 2 lattice spacings with **same** physical volume $\Box LT_{c} \sim 0.63$ $\Box \langle Q^{2} \rangle \simeq 1.1$

Gradient flow for smoothing

β	ľ	V ⁴	N _{conf}
6.2	1	l6 ⁴	20,000
6.5	2	24 ⁴	20,000
afe in total	112. 111 LULAI	Training	g: 10,000
		Validati	on: 5,000
0006	70'07	Test: 5,0	000

distribution of Q

Q	-5	-4	-3	-2	-1	0	1	2	3	4	5
$\beta = 6.2$	2	17	235	1325	4571	7474	4766	1352	240	18	0
$\beta = 6.5$	0	5	105	1080	4639	8296	4621	1039	202	13	0

R-CCS Seminar, Kobe, Dec. 2, 2020

Neural Network Setting

convolutional neural network by CHAINER framework
 supervised learning
 convolutional layer: 4-dim., periodic BC
 regression analysis / round off to obtain integer
 activation: logistic

answer of *Q Q(t)* @ *t/a*² = 4.0
 round off

Trial 1: Topol. Charge Density

Input: q(x) in 4-dim space Data reduction to 8⁴ (average pooling)

layer	filter size	output size	activation
input	-	$8^d \times N_{\rm ch}$	-
convolution	3^d	$8^d \times 5$	logistic
convolution	3^d	$8^d \times 5$	logistic
convolution	3^d	$8^d \times 5$	logistic
global average pooling	8^d	1×5	-
full connect	-	5	logistic
full connect	-	1	-

GAP=Global Average Pooling Translational invariance is respected in this NN.

Trial 1: Topol. Charge Density

Input: q(x) in 4-dim space
 Data reduction to 8⁴ (average pooling)

\Box Result: best accuracy for $\beta = 6.2$: **37.0%**

Accuracy of each topological sector (%)

Q	-4	-3	-2	-1	0	1	2	3	4	total
t/a ² =0	0	0	0	0	37.2	0	0	0	0	37.0

Trial 2: Topol. Density @ t > 0

Input: q(x, t) in 4-dim space at nonzero flow time
 Data reduction to 8⁴ (average pooling)

Accuracy of each topological sector (%)

Q	-4	-3	-2	-1	0	1	2	3	4	total
t/a ² =0	0	0	0	0	37.2	0	0	0	0	37.0
t/a ² =0.1	0	0	31.6	39.1	41.4	38.9	19.0	0	0	40.1
t/a ² =0.2	0	40.0	46.4	53.8	55.9	52.3	48.1	50.0	0	55.2
t/a ² =0.3	0	91.3	72.9	76.3	79.0	74.8	68.1	70.0	50.0	77.6

Benchmark **\Box** Simple estimator from Q(t)

1 Naïve: $Q = \operatorname{round}[Q(t)]$ **2)** Improved: $Q = \operatorname{round}[cQ(t)]$ c>1: optimization param. Q = 0

3) zero:

Distribution of Q(t)

Comparison: NN vs Benchmark

accuracy at $\beta = 6.2$

	ML (Trial 2)	naïve	improved
t/a ² =0	37.0	27.3	27.3
t/a ² =0.1	40.1	38.3	38.3
t/a ² =0.2	55.2	54.0	54.6
t/a ² =0.3	77.6	69.8	77.3

Machine learning cannot exceed the benchmark value.
 NN would be trained to answer the "improved" value.
 No useful local structures found by the NN.

Trial 3: Multi-Channel Analysis

□ Input: q(x, t) in 4-dim. space **at t/a²=0.1, 0.2, 0.3**

Trial 3: Multi-Channel Analysis

Input: q(x, t) in 4-dim. space **at t/a²=0.1, 0.2, 0.3**

Result machir	ne learning	benchmark @ t/a²=0.3
β=6.2	93.8	77.3
β=6.5	94.1	71.3

non-trivial improvement from the benchmark!!

Is this a non-trivial result?

We can estimate the answer from Q(t) by our eyes...

\Box High accuracy can be obtained only from Q(t)

Using different flow times

t/a ²	β=6.2	β=6.5
0.3, 0.25, 0.2	95.9(2)	99.0(2)
0.3, 0.2, 0.1	94.1(2)	95.7(2)
0.25, 0.2, 0.15	93.9(3)	95.0(2)
0.2, 0.15, 0.1	86.4(3)	83.1(4)
0.2, 0.1, 0	74.1(5)	68.2(4)
0.15, 0.1, 0.05	69.2(4)	64.7(8)
0.1, 0.05, 0	53.8(5)	49.9(3)

t/a²=0.3, 0.25, 0.2 gives the best accuracy.
 Better accuracy on the finer lattice.
 More than three input data do not improve accuracy.
 error: variance in 10 independent trainings

Trivial Check

beta=6.5100 samples

 $\bar{Q}(t) = Q(t) - \mathcal{Q}$

99% accuracy is difficult by simple prescriptions.

Reducing the Training Data

Smaller training data will reduce numerical cost for the training.

Training data	10,000	5,000	1,000	500	100
β=6.2	95.9(2)	95.9(2)	95.9(2)	95.5(3)	90.3(7)
β=6.5	99.0(2)	99.0(2)	98.9(2)	98.9(1)	90.2(8)

1000 configurations are enough to train the NN successfully!
 Numerical cost for the training is small.

Robustness Test

Analyze configurations with a different parameter set

		analyzed data						
		β=6.2	β=6.5					
ning ta	β=6.2	95.9(2)	98.6(2)					
train da	β=6.5	=6.5 95.6(2)						
	both	95.8(1)	98.9(2)					

NNs trained for β=6.2 and 6.5 can be used for another parameter successfully.
 Universal NN would be developed!
 Note: same physical volume

Untrained Answers

standard training

training w/o |Q|=4,5

CNN can make accurate predictions even for untrained values of Q.

Trial 5: Dimensional Reduction

Optimal dimension between d=0 and 4?
 d-dimensional CNN
 Input: q_d(x) after dimensional reduction
 3-channel analysis: t/a²=0.1, 0.2, 0.3

 $\beta = 6.5$

 $\beta = 6.2$

0.96

accuracy P

0.93

 $q_{3}(x, y, z) = \int d\tau q(x)$ $q_{2}(x, y) = \int d\tau dz q(x)$

3

dimension d

Summary and Outlook

Topological charge can be estimated with high accuracy from Q(t) at 0.2 < t/a² < 0.3 with the aid of the machine learning technique.
 On the finer lattices, the better accuracy.
 Applications: checking topological freezing, etc.

No local structures in multi-dim. space captured by NN
 No "Instanton"-like structure? Or too noisy data?

Future Study

Continuum limit / volume dependence
 High T configurations where DIGA is valid

Is machine learning technique meaningfully applicable to theoretical physics?

□ ML does not provide us with "understanding".

Theoretical physicists must have a better solution for problems that ML can deal with.

□ 100% accuracy is never reached by the ML.

Search for 4-dim Features

Subtracting the average (normalization)

□ Large flow time
 □ Nonzero *T* configurations → DIGA

D New numerical analysis @ $T = 1.43T_c$

β	N ⁴	N _{conf}
6.3	36 ⁴ x8	2,000

 $\mathbf{q}(\mathbf{x},t)$

 $q_t(oldsymbol{x}) = \int d au q_t(oldsymbol{x}, au)$

Q = -1

0.286 -0.286 -0.857 $t/a^2 = 1.0$ 0.286 -0.286 -0.857 $t/a^2 = 4.0$

Q = 2

Clear local objects at large t

0.00 + -6.66e-16

R-CCS Seminar, Kobe, Dec. 2, 2020

-3.55e-15 2.22e-16

Results

\Box t/a²=4.0 (3D CNN, normalized)

Q	-2	-1	0	1	2	total					
accuracy	1.000	1.000	0.991	1.000	0.981	0.995					
t/a ² =1.0 (normalized)											
□ 3D-CN	N										
Q	-2	-1	0	1	2	total					
accuracy	0.556	0.638	0.697	0.700	0.698	0.658					
□ 4D-CNN											
Q	-2	-1	0	1	2	total					
accuracy	0.667	0.670	0.770	0.663	0.679	0.693					

Multi-dim. features can be captured at sufficiently large *t*.
 Non-trivial feature in 4D space captured?

Gauge Fixing (Coulomb or Landau)

Standard algorithm: local updates with over relaxation
 Slow convergence for several initial conditions
 Convergence is extremely slow sometimes

U(1) Gauge Fixing

SU(3) YM

U(1) gauge theory

U(1) gauge fixing has similar behavior as SU(3) YM

Numerical Results: 2D-Coulomb

Initial: trivial configuration + random gauge rotations

□ Manifestation of "Dirac string" \rightarrow prevent convergence

Numerical Results: 3D-Coulomb

Initial: trivial configuration + random gauge rotations

□ Manifestation of "Dirac string" \rightarrow prevent convergence

backup

Topological Charge Density

$$t/a^2 = 0.1$$

$$t/a^2 = 0.2$$
 $t/a^2 =$

0.3

No isolated instanton structure...

