JHPCN第13回シンポジウム, online, 2021/07/09

格子量子色力学に基づく 初期宇宙の諸性質の 精密数值解析

北澤正清(大阪大学) 金谷和至、 柳原良亮、白銀瑞樹、若林直輝 司、 jh200049-NAH

5.5 5

5.0

4.5

0.3

0.2

0.1

0.0

1.0

1.5

Yang-Mills

素粒子階層の相転移現象

温度を上げていくと …

真空

クォーク・グルーオン・ プラズマ(QGP)

ハドロンを構成するクォークが溶け出す相転移 量子色力学(QCD)が記述する物性現象

Q C D の相図

相転移の次数

QCDの非摂動的性質を探る現状唯一の手段

ハドロンスペクトルの計算例

熱力学量の計算例

本研究の目的

格子QCD大規模数値計算により、初期宇宙を満 たしていた超高密度物質の性質を調べる。 WHOT-QCD, FlowQCD共同研究の連携による、ユニークな研究

三つの研究課題

① 相転移温度近傍におけるクォーク間相互 作用変質の解析

Yanagihara+, PL**B789** (2019); Yanagihara, MK, PTEP**2020** (2020); Yanagihara+, PR**D102** (2020)

2 重クオーク領域における QCD 相構造の 精密解析

Ejiri+, PR**D101** (2020); Shirogane+, PTEP**2021** (2021); Kiyohara+, in prep.

③ 境界条件を課した系における非等方圧
 力の測定
 MK+, PRD99 (2019)

JHPCN:

2019年度 格子量子色力学に基づく初期宇宙の諸性質の数値解析 2020年度 格子量子色力学に基づく初期宇宙の諸性質の精密数値解析

Stress = Force per Unit Area

Pressure

Generally, F and n are not parallel

Maxwell Stress

(in Maxwell Theory)

$$\sigma_{ij} = \varepsilon_0 E_i E_j + \frac{1}{\mu_0} B_i B_j - \frac{1}{2} \delta_{ij} \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)$$

$$\vec{E} = (E, 0, 0)$$
$$T_{ij} = \begin{pmatrix} -E^2 & 0 & 0 \\ 0 & E^2 & 0 \\ 0 & 0 & E^2 \end{pmatrix}$$

Parallel to field: Pulling
 Vertical to field: Pushing

Maxwell Stress

(in Maxwell Theory)

Definite physical meaning

Distortion of field, line of the field

Propagation of the force as local interaction

Quark-Anti-quark System

Formation of the flux tube \rightarrow confinement

Previous Studies on Flux Tube

 Potential
 Action density
 Color-electric field so many studies...

Cea+ (2012)

Stress Tensor in $Q\overline{Q}$ System

FlowQCD, PLB (2019)

Lattice simulation SU(3) Yang-Mills a=0.029 fm R=0.69 fm t/a²=2.0

pulling

pushing

Definite physical meaning
Distortion of field, line of the field
Propagation of the force as local interaction
Manifestly gauge invariant

SU(3) YM vs Maxwell

SU(3) Yang-Mills (quantum)

Maxwell (classical)

Propagation of the force is clearly different in YM and Maxwell theories!

Yanagihara+, PLB (2019)

□ゲージ不変な物理量によるフラックスチューブ形成の 確認

- □ チューブ内部の応力構造の可視化
 - Maxwell理論には存在しない各チャンネル縮退の破れの確認
 - チューブ端の定量的効果
 - 保存則の確認
- ■有効模型による応力構造解析 Yanagihara, MK (2019)
- □ 今後の課題:有限温度への拡張など

A Static Quark

T < *T_c*: Heavy-light meson
EMT distribution in the meson

 $\Box T \approx T_c$ • Confinement transition

- $\Box T > T_c$: Single charge
- Screening
- Running coupling

This study: $T > T_c$ in pure YM

Stress Tensor Around a Quark T=1.44T_c

Suppression at large distanceSeparation of different channels

Yanagihara+, PRD (2020)

□ 非閉じ込め相(T > T_c)における静的クォーク周辺のエ ネルギー密度・応力構造の測定

■ Running couplingの測定
 ■ 遮蔽質量の測定
 ■ 摂動論との比較

□ 今後の課題
 □ T < T_cでの測定
 □ ハドロン構造の研究

① 相転移温度近傍におけるクォーク間相互 作用変質の解析

Yanagihara+, PL**B789** (2019); Yanagihara, MK, PTEP**2020** (2020); Yanagihara+, PR**D102** (2020)

Ejiri+, PR**D101** (2020); Shirogane+, PTEP**2021** (2021); Kiyohara+, in prep.

③ 境界条件を課した系における非等方圧
 カの測定
 MK+, PRD99 (2019)

JHPCN:

2019年度 格子量子色力学に基づく初期宇宙の諸性質の数値解析 2020年度 格子量子色力学に基づく初期宇宙の諸性質の精密数値解析

0

 $|\mu_c|$

 10^{15} g/cm³

<u>化学ポテンシャル</u>

本研究の目的 重クォーク領域の一次相転移・臨界点の性質を 精密測定する

00

m_{u.d}

===>

⊿ st

orde

nd order

重クオークQCD相図

Ejiri+, 2021

□ 準安定状態の熱力学量測定
 □ 高温相に強い体積依存性
 □ 潜熱の測定 Δε/T⁴ = 1.117(40),

Finite-size Scaling 1: Binder Cumulant analysis

 $\begin{array}{c|c} B_4 & \nu \\ \hline \text{Heavy QCD} & 1.630(26) & 0.614(51) \\ \hline \text{3d-Ising} & 1.604 & 0.630 \end{array}$

Z₂ Universality confirmed!

Finite-size Scaling 2: Scaling of Distribution Func.

 $V(\Omega) = -\ln p(\Omega)$

Gap bw/ two minima

FSS on the CP $V(\Omega, L) = \tilde{V}((\Omega - \Omega_0)(LT)^{3-y_h})$

Z₂ Universality confirmed!

Ejiri+, PR**D101** (2020); Shirogane+, PTEP**2021** (2021); Kiyohara+, in prep.

■重クォーク領域の一次相転移、臨界点に関する多様な 研究成果

- ヒステリシス曲線
 潜熱の測定
 臨界点の位置精密測定
 - $N_t = 4$: (Kiyohara+, in prep.)
 - $N_t = 6$: (Ejiri+, 2020)
- Z(2)普遍類有限サイズスケーリングの確認

■ 今後の課題
 ■ 格子間隔依存性の精査、連続極限

まとめ

1 相転移温度近傍におけるクォーク間相互作用変 質の解析 Yanagihara+, PLB789 (2019);

Yanagihara, MK, PTEP**2020** (2020); Yanagihara+, PR**D102** (2020)

Ejiri+, PR**D101** (2020); Shirogane+, PTEP**2021** (2021); Kiyohara+, in prep.

③ 境界条件を課した系における非等方圧力の測定

MK+, PR**D99** (2019)

□三つの研究課題で着実な研究成果 □JHPCNの計算資源が有効活用できた

backup

Lattice Setup

FlowQCD, PLB (2019)

SU(3) Yang-Mills (Quenched)
 Wilson gauge action
 Clover operator

EMT around Wilson LoopAPE smearing / multi-hit

fine lattices (a=0.029-0.06 fm)
 continuum extrapolation

□ Simulation: bluegene/Q@KEK $\langle O(x) \rangle_{Q\bar{Q}} = \lim_{T \to \infty} \frac{\langle \delta O(x) \delta W(R,T) \rangle}{\langle W(R,T) \rangle}$

β	$a [\mathrm{fm}]$	$N_{ m size}^4$	$N_{\rm conf}$		R/a	
6.304	0.058	48^{4}	140	8	12	16
6.465	0.046	48^{4}	440	10	—	20
6.513	0.043	48^{4}	600	_	16	_
6.600	0.038	48^{4}	1,500	12	18	24
6.819	0.029	64^{4}	$1,\!000$	16	24	32
		$R \; [\mathrm{fm}]$		0.46	0.69	0.92

Lattice Setup

Ω: Polyakov loop

SU(3) Yang-Mills (Quenched)
Wilson gauge action
Clover operator

Analysis above Tc
 Simulation on a Z₃ minimum
 EMT around a Polyakov loop

 $\langle O(x) \rangle_{\mathbf{Q}} = \frac{\langle \delta O(x) \delta \Omega(0) \rangle}{\langle \Omega(0) \rangle}$

continuum extrapolation

T/T_c	N_s	N_{τ}	β	$a [\mathrm{fm}]$	$N_{\rm conf}$
1.20	40	10	6.336	0.0551	500
	48	12	6.467	0.0460	650
	56	14	6.581	0.0394	840
	64	16	6.682	0.0344	$1,\!000$
	72	18	6.771	0.0306	$1,\!000$
1.44	40	10	6.465	0.0461	500
	48	12	6.600	0.0384	650
	56	14	6.716	0.0329	840
	64	16	6.819	0.0288	$1,\!000$
	72	18	6.910	0.0256	$1,\!000$
2.00	40	10	6.712	0.0331	500
	48	12	6.853	0.0275	650
	56	14	6.973	0.0236	840
	64	16	7.079	0.0207	$1,\!000$
	72	18	7.173	0.0184	$1,\!000$
2.60	40	10	6.914	0.0255	500
	48	12	7.058	0.0212	650
	56	14	7.182	0.0182	840
	64	16	7.290	0.0159	$1,\!000$
	72	18	7.387	0.0141	1,000

Casimir Effect

Brown, Maclay 1969

Pressure Anisotropy @ T≠o

MK, Mogliacci, Kolbe, Horowitz, PRD(2019)

Free scalar field $\Box L_2 = L_3 = \infty$ \Box Periodic BC Mogliacci+, 1807.07871

Lattice result

Periodic BC
 Only t→0 limit
 Error: stat.+sys.

Medium near T_c is remarkably insensitive to finite size!

Pressure Anisotropy @ T≠o

MK, Mogliacci, Kolbe, Horowitz, PRD(2019)

Free scalar field $\Box L_2 = L_3 = \infty$ \Box Periodic BC Mogliacci+, 1807.07871

Lattice result

Periodic BC
 Only t→0 limit
 Error: stat.+sys.

Medium near T_c is remarkably insensitive to finite size!

Lattice Setup

FlowQCD, PLB (2019)

SU(3) Yang-Mills (Quenched)
 Wilson gauge action
 Clover operator

EMT around Wilson LoopAPE smearing / multi-hit

fine lattices (a=0.029-0.06 fm)
 continuum extrapolation

□ Simulation: bluegene/Q@KEK $\langle O(x) \rangle_{Q\bar{Q}} = \lim_{T \to \infty} \frac{\langle \delta O(x) \delta W(R,T) \rangle}{\langle W(R,T) \rangle}$

β	$a [\mathrm{fm}]$	$N_{ m size}^4$	$N_{\rm conf}$		R/a	
6.304	0.058	48^{4}	140	8	12	16
6.465	0.046	48^{4}	440	10	—	20
6.513	0.043	48^{4}	600	_	16	_
6.600	0.038	48^{4}	1,500	12	18	24
6.819	0.029	64^{4}	$1,\!000$	16	24	32
		$R \; [\mathrm{fm}]$		0.46	0.69	0.92

Stress Distribution on Mid-Plane

From rotational symm. & parity

EMT is diagonalized in Cylindrical Coordinates

$$T_{cc'}(r) = \begin{pmatrix} T_{rr} \\ T_{\theta\theta} \\ T_{zz} \\ T_{44} \end{pmatrix}$$

 $T_{rr} = \vec{e}_r^T T \vec{e}_r$ $T_{\theta\theta} = \vec{e}_{\theta}^T T \vec{e}_{\theta}$

Degeneracy in Maxwell theory

 $\vec{e_r}$

 $T_{rr} = T_{\theta\theta} = -T_{zz} = -T_{44}$

Mid-Plane

Degeneracy: T₄₄ ~ T_{zz}, T_{rr} ~ T_{\thetaθ}
 Separation: T_{zz} ≠ T_{rr}
 Nonzero trace anomaly $\sum T_{cc} \neq 0$

Mid-Plane

Degeneracy: T₄₄ ~ T_{zz}, T_{rr} ~ T_{θθ}
 Separation: T_{zz} ≠ T_{rr}
 Nonzero trace anomaly $\sum T_{cc} \neq 0$

Momentum Conservation

Yanagihara, MK, PTEP2019

In cylindrical coordinats,

$$\partial_i T_{ij} = 0 \longrightarrow \partial_r (rT_{rr}) = T_{\theta\theta} - r\partial_z T_{rz}$$

For infinitely-long flux tube

$$\partial_r(rT_{rr}) = T_{\theta\theta}$$

 T_{rr} and $T_{\theta\theta}$ must separate!

Effect of boundaries is important for the flux tube at R=0.92fm

