GPD and Related Topics at J-PARC, 2022/12/22, KEK (online)

Gravitational Form Factors from Lattice QCD

Masakiyo Kitazawa (Osaka U.)

Thanks to: H. Ito, R. Yanagihara & FlowQCD/WHOT-QCD Collaborations

Energy-Momentum Tensor

All components are important physical observables!

Gravitational Form Factors

$$\langle p'|T^a_{\mu\nu}(0)|p\rangle = \bar{u}' \left[A^a(t) \frac{P_\mu P_\nu}{M} + J^a(t) \frac{iP_{\{\mu}\sigma_{\nu\}\rho}\Delta^{\rho}}{2M} + D^a(t) \frac{\Delta_\mu \Delta_\nu - g_{\mu\nu}\Delta^2}{4M} + M\bar{c}^a(t)g_{\mu\nu} \right]$$

(partially) accessible with hard exclusive processes

Mechanical structure of hadrons
 D-term: the last global unknown
 Mass decomposition

Polyakov(2003); Kumano, Song, Teryaev (2018); Ji (1995); Locre (2018); Hatta, Rajan, Tanaka (2018);

Pressure distribution inside proton

Burkert+, Nature 557, 396 (2018)

GFF from Lattice

Mass decomposition

- Nucleon σ term, $\langle x_q \rangle$, $\langle x_g \rangle$, ...
- Trace anomaly: difficult to measure

cf: Alexandrou+ (2020); (2020)

Mechanical structure

- Distribution of EMT
- Momentum space \rightarrow Coordinate

cf: Shanahan, Detmold (2019)

Contents

Constructing EMT
 SFtX method via gradient flow

2. EMT distribution around Flux Tube2-1 Lattice result

FlowQCD, PL**B789**, 210 (2019)

2-2 Abelian-Higgs model

Yanagihara, MK, PTEP**2019**, 093B02 (2019)

3. GFF of soliton in 1+1d ϕ^4 model

Ito, MK, in preparation

4. Single-quark system

FlowQCD, PRD102, 114522 (2020)

$\mathcal{T}_{\mu\nu} : \text{nontrivial observable} \\ \text{on the lattice}$

Definition of the operator is nontrivial because of the explicit breaking of translational invariance

ex:
$$T_{\mu\nu} = F_{\mu\rho}F_{\nu\rho} - \frac{1}{4}\delta_{\mu\nu}FF$$

 $F_{\mu\nu} =$

2 Its measurement is extremely noisy due to high dimensionality and etc.

Yang-Mills Gradient Flow

diffusion equation in 4-dim space
diffusion distance d ~ \sqrt{8t}
"continuous" cooling/smearing
No UV divergence at t > 0

Gradient Flow for Fermions

$$\partial_t \psi(t, x) = D_\mu D_\mu \psi(t, x)$$
$$\partial_t \bar{\psi}(t, x) = \psi(t, x) \overleftarrow{D}_\mu \overleftarrow{D}_\mu$$
$$D_\mu = \partial_\mu + A_\mu(t, x)$$

Luscher, 2013 Makino, Suzuki, 2014 Taniguchi+ (WHOT) 2016~

Not "gradient" flow but a "diffusion"-type equation.

Energy-momentum tensor from SFtX Makino, Suzuki, 2014

Small Flow-Time Expansion

Luescher, Weisz, 2011 Suzuki, 2013

 $\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i \to 0} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$

an operator at t > 0

 $\mathcal{O}(t,x)$

 $t \rightarrow 0$ limit

remormalized operators of original theory

original 4-dim theory

Constructing EMT 1 Suzuki, 2013 $\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$ $\tilde{\mathcal{O}}(t,x)$ Gauge-invariant dimension 4 operators $\int U_{\mu\nu}(t,x) = G_{\mu\rho}(t,x)G_{\nu\rho}(t,x) - \frac{1}{4}\delta_{\mu\nu}G_{\rho\sigma}(t,x)G_{\rho\sigma}(t,x)$ $E(t,x) = \frac{1}{4}G_{\rho\sigma}(t,x)G_{\rho\sigma}(t,x)$

Constructing EMT 2 Suzuki, 2013

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T^R_{\mu\nu}(x) - \frac{1}{4} \delta_{\mu\nu} T^R_{\rho\rho}(x) \right] + \mathcal{O}(t)$$
$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T^R_{\rho\rho}(x) + \mathcal{O}(t)$$
vacuum subtr

Remormalized EMT

$$T^{R}_{\mu\nu}(x) = \lim_{t \to 0} \left[c_1(t) U_{\mu\nu}(t, x) + \delta_{\mu\nu} c_2(t) E(t, x)_{\text{subt.}} \right]$$

"SF*t*X method" (Small Flow *t*ime eXpansion)

EMT in QCD

Makino, Suzuki (2014) Harlander+ (2018)

$$T_{\mu\nu}(t,x) = c_1(t)U_{\mu\nu}(t,x) + c_2(t)\delta_{\mu\nu} \left(E(t,x) - \langle E \rangle_0 \right) + c_3(t) \left(O_{3\mu\nu}(t,x) - 2O_{4\mu\nu}(t,x) - \text{VEV} \right) + c_4(t) \left(O_{4\mu\nu}(t,x) - \text{VEV} \right) + c_5(t) \left(O_{5\mu\nu}(t,x) - \text{VEV} \right)$$

$$T_{\mu\nu}(x) = \lim_{t \to 0} T_{\mu\nu}(t, x)$$

Perturbative Coefficients

\Box Choice of the scale of g^2

 $c_1(t) = c_1\left(g^2(\mu(t))\right)$

Previous: $\mu_d(t) = 1/\sqrt{8t}$ Improved: $\mu_0(t) = 1/\sqrt{2e^{\gamma_E}t}$

Harlander+ (2018)

Iritani, MK, Suzuki, Takaura, PTEP 2019

Existence of "linear window" at intermediate t

Double Extrapolation

Method A: $a \rightarrow 0, t \rightarrow 0$

Method B: $t \to 0, a \to 0$

t

Consistency check

Iatent heat & pressure gap

B Me

Method A

Consistent result for two methods

Iritani, MK, Suzuki, Takaura, PTEP 2019 Suzuki, Takaura 2021

Range-1

Range-2

Range-3

0.025

0.030

Φ

Existence of "linear window" at intermediate t \Box Stable t \rightarrow 0 extrapolation Systematic errors: fit range, uncertainty of Λ (\pm 3%), ...

T Dependence: Comparison

Systematic error: μ_0 or μ_d , Λ , t $\rightarrow 0$ function, fit range

Good agreement with other methods!
 Smaller statistics thanks to smearing by the flow

2+1 QCD EoS from SFtX Method

WHOT-QCD, PR**D96** (2017); PR**D102** (2020)

Agreement with integral method
 Substantial suppression of statistical errors

Physical mass: Kanaya+ (WHOT-QCD), 1910.13036

m_{PS}/m_V ≈0.63

Contents

Constructing EMT

 SFtX method via gradient flow

2. EMT distribution around Flux Tube2-1 Lattice result

FlowQCD, PL**B789**, 210 (2019)

2-2 Abelian-Higgs model

Yanagihara, MK, PTEP**2019**, 093B02 (2019)

3. GFF of soliton in 1+1d ϕ^4 model

Ito, MK, in preparation

4. Single-quark system

FlowQCD, PRD102, 114522 (2020)

Force

Local interaction

Faraday 1839

Maxwell Stress

(in Maxwell Theory)

$$\sigma_{ij} = \varepsilon_0 E_i E_j + \frac{1}{\mu_0} B_i B_j - \frac{1}{2} \delta_{ij} \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)$$

$$\vec{E} = (E, 0, 0)$$
$$T_{ij} = \begin{pmatrix} -E^2 & 0 & 0 \\ 0 & E^2 & 0 \\ 0 & 0 & E^2 \end{pmatrix}$$

Parallel to field: Pulling
 Vertical to field: Pushing

(in Maxwell Theory)

Definite physical meaning

Distortion of field, line of the field

Propagation of the force as local interaction

Quark-Anti-quark System

Formation of the flux tube \rightarrow confinement

Previous Studies on Flux Tube

 Potential
 Action density
 Color-electric field so many studies...

Cardoso+ (2013)

Stress Tensor in $Q\overline{Q}$ System

FlowQCD, PLB (2019)

Lattice simulation SU(3) Yang-Mills a=0.029 fm R=0.69 fm t/a²=2.0

pulling

pushing

Definite physical meaning
Distortion of field, line of the field
Propagation of the force as local interaction
Manifestly gauge invariant

SU(3) YM vs Maxwell

SU(3) Yang-Mills (quantum)

Maxwell (classical)

Propagation of the force is clearly different in YM and Maxwell theories!

Stress Distribution on Mid-Plane

From rotational symm. & parity

EMT is diagonalized in Cylindrical Coordinates

$$T_{cc'}(r) = \begin{pmatrix} T_{rr} \\ T_{\theta\theta} \\ T_{zz} \\ T_{44} \end{pmatrix}$$

 $T_{rr} = \vec{e}_r^T T \vec{e}_r$ $T_{\theta\theta} = \vec{e}_{\theta}^T T \vec{e}_{\theta}$

Degeneracy in Maxwell theory

 $\vec{e_r}$

Q

 $T_{rr} = T_{\theta\theta} = -T_{zz} = -T_{44}$

Mid-Plane

Degeneracy: T₄₄ ~ T_{zz}, T_{rr} ~ T_{\thetaθ}
 Separation: T_{zz} ≠ T_{rr}
 Nonzero trace anomaly $\sum T_{cc} \neq 0$

Mid-Plane

Degeneracy: T₄₄ ~ T_{zz}, T_{rr} ~ T_{\thetaθ}
 Separation: T_{zz} ≠ T_{rr}
 Nonzero trace anomaly $\sum T_{cc} \neq 0$

Momentum Conservation

Yanagihara, MK, PTEP2019

In cylindrical coordinats,

$$\partial_i T_{ij} = 0 \longrightarrow \partial_r (rT_{rr}) = T_{\theta\theta} - r\partial_z T_{rz}$$

For infinitely-long flux tube

$$\partial_r(rT_{rr}) = T_{\theta\theta}$$

 T_{rr} and $T_{\theta\theta}$ must separate!

Effect of boundaries is not negligible at R=0.92fm

Force from Stress

 $F_{\rm stress} = \int_{\rm mid.} d^2 x T_{zz}(x)$

Newton 1687 **31**

Faraday 1839

Contents

- Constructing EMT

 SFtX method via gradient flow
- 2. EMT distribution around Flux Tube2-1 Lattice result

FlowQCD, PL**B789**, 210 (2019)

2-2 Abelian-Higgs model

Yanagihara, MK, PTEP2019, 093B02 (2019)

3. GFF of soliton in 1+1d ϕ^4 model

Ito, MK, in preparation

4. Single-quark system

FlowQCD, PRD102, 114522 (2020)

Dual Superconductor Picture

Nambu, 1970 Nielsen, Olesen, 1973 t 'Hooft, 1981

Abelian-Higgs Model

Yanagihara, MK, 2019

Abelian-Higgs Model

 $\mathcal{L}_{AH} = -\frac{1}{4}F_{\mu\nu}^2 + |(\partial_{\mu} + igA_{\mu})\phi|^2 - \lambda(\phi^2 - v^2)^2$

GL parameter: $\kappa = \sqrt{\lambda}/g$ **U** type-I: $\kappa < 1/\sqrt{2}$ **U** type-II: $\kappa > 1/\sqrt{2}$ **D** Bogomol'nyi bound : $\kappa = 1/\sqrt{2}$

Infinitely long tube degeneracy $T_{zz}(r) = T_{44}(r)$ Luscher, 1981 momentum conservation $\frac{d}{dr}(rT_{rr}) = T_{\theta\theta}$

Stress Tensor in AH Model infinitely-long flux tube

■ No degeneracy bw $T_{rr} \& T_{\theta\theta}$ ■ $T_{\theta\theta}$ changes sign Inconsistent with lattice result $T_{rr} \simeq T_{\theta\theta}$
Flux Tube with Finite Length

Yanagihara, MK (2019)

R

 AH model can reproduce lattice results qualitatively by tuning parameters.
 But, quantitatively all parameters are rejected.

Contents

- Constructing EMT
 SFtX method via gradient flow
- 2. EMT distribution around Flux Tube2-1 Lattice result

FlowQCD, PL**B789**, 210 (2019)

2-2 Abelian-Higgs model

Yanagihara, MK, PTEP**2019**, 093B02 (2019)

3. GFF of soliton in 1+1d ϕ^4 model

Ito, MK, in preparation

4. Single-quark system

FlowQCD, PRD102, 114522 (2020)

Soliton in 1+1d

$$\phi^4$$
 Theory $\mathcal{L} = \frac{1}{2} (\partial_\mu \phi)^2 - V(\phi), \quad V(\phi) = \frac{\lambda}{4} \left(\phi^2 - \frac{m^2}{\lambda} \right)^2$

Giliton (kink)

$$\phi_{\rm cl}(x) = \frac{m}{\sqrt{\lambda}} \tanh \frac{m(x-a)}{\sqrt{2}}$$

$\Box \text{ EMT around a soliton (classical)}$ $T_{00}^{cl}(x) = \lambda m \left(\frac{m^2}{\lambda} - \phi_{cl}(x)^2\right)^2 \implies M_{cl} = \int dx T_{00}^{cl}(x) = \frac{2\sqrt{2}}{3} \frac{m^3}{\lambda}$ $T_{01}^{cl}(x) = T_{11}^{cl}(x) = 0$ How is the EMT distribution modified by the quantum effect?

cf) energy density: Goldhaber+ (2003)

Quantum Correction

Fluctuations around $\phi_{cl}(x)$

$$\phi(x) = \phi_{cl}(x) + \eta(x)$$

$$V(\phi) = V(\phi_{cl}) + \frac{1}{2}\eta \left(-\partial_x^2 - m^2 + 3m^2 \tanh^2\left(mx/\sqrt{2}\right)\right)\eta$$
Eigenmodes: $\psi_0(x) = \partial_x \phi_{cl}(x)$ $\omega_0 = 0$
 $\psi_1(x)$ $\omega_1 = \sqrt{3/2}m$
 $\psi_k(x)$:continuum
$$\omega_1^2 = \frac{3}{2}m^2$$
 $\omega_0^2 = 0$

n

$$\square$$
 Total Energy: $E = E_{cl} + \sum \omega_n$

Dashen, Hasslacher, Neveu (1974)

Quantum Correction to Total Energy

 $E = E_{\rm cl} + \sum_n \omega_n$

Vacuum subtraction

- finite box with length *L*
- fixed mode number
- $L \rightarrow \infty$ at the end

Renormalization

mass renorm. only $m^2 \rightarrow m^2 + \delta m^2$

Dashen, Hasslacher, Neveu (1974) Gervais, Gevicki, Sakita (1975)

Rebhan, Nieuwenhuizen (1997) Shifman, Vainshtein, Voloshin (1999) Goldhaber, Litvinsev, Nieuwenhuizen (2003)

Final $E = \frac{2\sqrt{2}}{3} \frac{m^3}{\lambda} + m\left(\frac{1}{6} \frac{\sqrt{3}}{\sqrt{2}} - \frac{3}{\pi\sqrt{2}}\right) + \mathcal{O}(\lambda)$ result: $\frac{1}{2} \frac{1}{2} \frac{1}{2$

Collective Coordinate Method

Eliminate translational zero mode in favor of the collective coordinate \hat{X}

Gervais, Jevicki, Sakita (1975) Goldstone and Jackiw (1975) Tomboulis (1975) Christ, Lee (1975)

$$\phi(x) = \sum_{n=0}^{\infty} \hat{c}_n \psi_n(x)$$
$$\longrightarrow \phi(x) = \phi_{\rm cl}(x - \hat{X}) + \sum_{n=1}^{\infty} \hat{c}_n \psi_n(x - \hat{X})$$

Elimination of the zero mode
 Obvious translational symmetry
 Lorentz symmetry

EMT Conservation $\partial_{\mu}T^{\mu\nu} = 0$ For static systems $\partial_{1}T^{11} = 0$

Matrix element

 $\langle P'|\hat{T}_{\mu\nu}(0)|P\rangle = T^{\rm com}_{\mu\nu}(x)e^{-i(P'-P)x}$

EMT Distr. at 1-loop Order

DFinite EMT Correction

Ito, MK, in prep.

EMT conservation (analytic) $\partial_x T_{11}(x) = 0$

Subtlety: appearance of spatially uniform component

$$T_{00}(x) = \frac{(\text{const.})}{L} + T_{00}(x)_{L \to \infty}$$
$$T_{11}(x) = \frac{(\text{const.})}{L}$$

L: length of box (anti-pBC)

Contents

- Constructing EMT
 SFtX method via gradient flow
- 2. EMT distribution around Flux Tube2-1 Lattice result

FlowQCD, PL**B789**, 210 (2019)

2-2 Abelian-Higgs model

Yanagihara, MK, PTEP2019, 093B02 (2019)

3. GFF of soliton in 1+1d ϕ^4 model

Ito, MK, in preparation

4. Single-quark system

FlowQCD, PRD102, 114522 (2020)

Stress Tensor around a Quark

Stress Tensor around a Quark

Deconfined phase This study

- screening property
- running coupling

Vacuum

- heavy-light meson
- $\Box T \sim T_c$
 - dissociation of heavy-light meson

$$V(r) \sim g \frac{e^{-m_D r}}{r}$$

Pressure inside Hadrons EMT distribution inside hadrons now accessible??

Pressure @ proton

EMT distribution @ pion

Kumano, Song, Teryaev (2018)

Nature, 557, 396 (2018) Shanahan, Detmold (2019)

EMT Around a Static Q

$$\langle T_{\mu\nu}(x) \rangle_{\mathbf{Q}} = \frac{\langle T_{\mu\nu}(x) \operatorname{Tr}\Omega(0) \rangle}{\langle \operatorname{Tr}\Omega(0) \rangle} - \langle T_{\mu\nu}(x) \rangle$$

EMT-Polyakov loop correlation
 Gauge invariant
 Z₃ symmetry has to be broken

EMT by SFtX method

Ω: Polyakov loop

Lattice Setup

Ω: Polyakov loop

SU(3) Yang-Mills (Quenched)
 Wilson gauge action
 Clover operator

Analysis above Tc
 Simulation on a Z₃ minimum
 EMT around a Polyakov loop

 $\langle O(x) \rangle_{\mathrm{Q}} = rac{\langle \delta O(x) \delta \Omega(0) \rangle}{\langle \Omega(0) \rangle}$

continuum extrapolation

T/T_c	N_s	N_{τ}	β	$a [\mathrm{fm}]$	$N_{\rm conf}$
1.20	40	10	6.336	0.0551	500
	48	12	6.467	0.0460	650
	56	14	6.581	0.0394	840
	64	16	6.682	0.0344	$1,\!000$
	72	18	6.771	0.0306	$1,\!000$
1.44	40	10	6.465	0.0461	500
	48	12	6.600	0.0384	650
	56	14	6.716	0.0329	840
	64	16	6.819	0.0288	$1,\!000$
	72	18	6.910	0.0256	$1,\!000$
2.00	40	10	6.712	0.0331	500
	48	12	6.853	0.0275	650
	56	14	6.973	0.0236	840
	64	16	7.079	0.0207	$1,\!000$
	72	18	7.173	0.0184	$1,\!000$
2.60	40	10	6.914	0.0255	500
	48	12	7.058	0.0212	650
	56	14	7.182	0.0182	840
	64	16	7.290	0.0159	$1,\!000$
	72	18	7.387	0.0141	1,000

Spherical Coordinates

EMT is diagonalized in Spherical Coordinates

• Maxwell theory $T_{44} = T_{rr} = -T_{\theta\theta} = -\frac{|\boldsymbol{E}|^2}{2} = -\frac{\alpha}{8\pi} \frac{1}{r^4}$

Stress Tensor Around a Quark

 $T=1.44T_{c}$

Suppression at large distance
 Separation of different channels
 |T₄₄| > |T_{rr}| ~ |T_{θθ}|

Stress Tensor Around a Quark

Perturbative Analysis

M. Berwein, private comm.

Perturbation

Lattice

Perturbation: Combination of NLO pert. + NLO EQCD □ |T₄₄| > |T_{rr}| is reproduced by perturbation.
 □ Hierarchy of T_{rr}, T_{θθ} does not match?

r Dependence

Increase at short r / suppression at larger r
 T dependence is suppressed at r < 1/T
 Too noisy at large r for extracting screening mass m_D

 $r \, [\mathrm{fm}]$

Running Coupling

D Estimate of α_s

$$\left|\frac{\langle T_{\mu\mu}\rangle}{\langle \mathcal{T}_{44,rr,\theta\theta}(r)\rangle}\right| = \frac{11}{2\pi}\alpha_s + \mathcal{O}(g^3),$$

 at the leading-order perturbation theory
 channel dependent

 All results are approximately consistent with the estimate from QQ potential

Kaczmarek, Karsch, Zantow, 2004

Summary

- EMT is an important observable for investigating local systems in QFT. Experimental measurement of GFF of hadrons are ongoing.
- SFtX (small flow-time expansion) method based on the gradient flow provides us with powerful method to carry out the measurement of EMT on the lattice.
 - Flux tube
 - □ single-Q system
- Corresponding model analyses of EMT are also interesting.
- Numerical analysis of the single-quark system will give us insights into heavy-light mesons.

Double Extrapolation $t \rightarrow 0, a \rightarrow 0$

$$\langle T_{\mu\nu}(t) \rangle_{\text{latt}} = \langle T_{\mu\nu}(t) \rangle_{\text{phys}} + \begin{bmatrix} C_{\mu\nu}t \\ D_{\mu\nu}(t) \frac{a^2}{t} \end{bmatrix}$$

O(t) terms in SFTE lattice discretization

Continuum extrapolation $\langle T_{\mu\nu}(t) \rangle_{\text{cont}} = \langle T_{\mu\nu}(t) \rangle_{\text{lat}} + C(t)a^2$

Small t extrapolation $\langle T_{\mu\nu} \rangle = \langle T_{\mu\nu}(t) \rangle + C't$

EMT on the Lattice: Conventional

 $\begin{aligned} & \text{Lattice EMT Operator}_{\text{Caracciolo+, 1990}} \\ & T_{\mu\nu} = Z_6 T_{\mu\nu}^{[6]} + Z_3 T_{\mu\nu}^{[3]} + Z_1 \left(T_{\mu\nu}^{[1]} - \left\langle T_{\mu\nu}^{[1]} \right\rangle \right) \\ & T_{\mu\nu}^{[6]} = (1 - \delta_{\mu\nu}) F_{\mu\rho}^a F_{\nu\rho}^a, \ T_{\mu\nu}^{[3]} = \delta_{\mu\nu} \left(F_{\mu\rho}^a F_{\nu\rho}^a - \frac{1}{4} F_{\rho\sigma}^a F_{\rho\sigma}^a \right), \ T_{\mu\nu}^{[1]} = \delta_{\mu\nu} F_{\rho\sigma}^a F_{\rho\sigma}^a \end{aligned}$

Determination of Zs

 Fit to thermodynamics: Z₃, Z₁
 Shifted-boundary method: Z₆, Z₃
 Full QCD with fermions
 Giusti, Meyer, 2011; 2013; Giusti, Pepe, 2014~; Borsanyi+, 2018
 Brida, Giusti, Pepe, 2020

SFtX Method

Fermion Propagator $S(t, x; s, y) = \langle \chi(t, x) \overline{\chi}(s, y) \rangle$ $= \sum_{v, w} K(t, x; 0, v) S(v, w) K(s, y; 0, w)^{\dagger}$

$$\left(\partial_t - D_\mu D_\mu\right) K(t, x) = 0$$

- propagator of flow equation
- Inverse propagator is needed

N_f=2+1 QCD Thermodynamics

Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017)

- N_f=2+1 QCD, Iwasaki gauge + NP-clover
- m_{PS}/m_V ≈0.63 / almost physical s quark mass
- T=0: CP-PACS+JLQCD (ß=2.05, 28³x56, a≈0.07fm)
- T>0: 32³xN_t, N_t = 4, 6, ..., 14, 16):
- T≈174-697MeV
- $t \rightarrow o$ extrapolation only (No continuum limit)

Numerical Setup

SU(3)YM theoryWilson gauge action

 $N_t = 16, 12$ $N_z/N_t = 6$ $2000 \sim 4000$ confs.
Even N_x

No Continuum extrap.

Same Spatial volume

- 12X72²X12 ~ 16X96²X16
- 18x72²x12 ~ 24x96²x16

T/T_c	β	N_z	$N_{ au}$	N_x	$N_{\rm vac}$
1.12	6.418	72	12	12, 14, 16, 18	64
	6.631	96	16	16, 18, 20, 22, 24	- 96
1.40	6.582	72	12	12, 14, 16, 18	64
	6.800	96	16	16, 18, 20, 22, 24	128
1.68	6.719	72	12	12, 14, 16, 18, 24	64
	6.719	96	12	14, 18	64
	6.941	96	16	16, 18, 20, 22, 24	- 96
2.10	6.891	72	12	12, 14, 16, 18, 24	72
	7.117	96	16	16, 18, 20, 22, 24	128
2.69	7.086	72	12	12, 14, 16, 18	-
$\simeq 8.1$	8.0	72	12	12, 14, 16, 18	-
$\simeq 25$	9.0	72	12	12, 14, 16, 18	-

Simulations on OCTOPUS/Reedbush

Extrapolations $t \rightarrow 0, a \rightarrow 0$ $\langle T_{\mu\nu}(t)\rangle_{\text{latt}} = \langle T_{\mu\nu}(t)\rangle_{\text{phys}} + C_{\mu\nu}t + \left[D_{\mu\nu}(t)\frac{a^2}{t}\right]$ O(t) terms in SFTE lattice discretization FlowQCD2016 **This Study** ②Small t extrapol. 1 Continuum strong strong discretization discretization effect effect

Lattice Setup

FlowQCD, PLB (2019)

SU(3) Yang-Mills (Quenched)
 Wilson gauge action
 Clover operator

EMT around Wilson LoopAPE smearing / multi-hit

fine lattices (a=0.029-0.06 fm)
 continuum extrapolation

□ Simulation: bluegene/Q@KEK $\langle O(x) \rangle_{Q\bar{Q}} = \lim_{T \to \infty} \frac{\langle \delta O(x) \delta W(R,T) \rangle}{\langle W(R,T) \rangle}$

 $N_{\rm size}^4$ $N_{\rm conf}$ R/a[fm] a6.304 0.058 48^{4} 8 12140166.465 0.046 48^{4} 440 1020____ 6.513 0.043 48^{4} 600 16___ 48^{4} 6.600 0.038 1.500121824 64^{4} 6.819 0.029 1.00016 2432 R [fm] $0.46 \ 0.69 \ 0.92$

Continuum Extrapolation at mid-point

 \Box a \rightarrow 0 extrapolation with fixed t

t→0 Extrapolation at mid-point

□ $a \rightarrow 0$ extrapolation with fixed t □ Then, t $\rightarrow 0$ with three ranges

Double Extrapolation $t \rightarrow 0, a \rightarrow 0$

$$\langle T_{\mu\nu}(t) \rangle_{\text{latt}} = \langle T_{\mu\nu}(t) \rangle_{\text{phys}} + C_{\mu\nu}t + \left[D_{\mu\nu}(t) \frac{a^2}{t} \right]$$

O(t) terms in SFTE lattice discretization

Continuum extrapolation

$$\langle T_{\mu\nu}(t) \rangle_{\text{cont}} = \langle T_{\mu\nu}(t) \rangle_{\text{lat}} + C(t)a^2$$

Small t extrapolation $\langle T_{\mu\nu} \rangle = \langle T_{\mu\nu}(t) \rangle + C't$

Stress = Force per Unit Area

Pressure

 $\vec{P} = P\vec{n}$

Stress = Force per Unit Area

Pressure

Generally, F and n are not parallel

Stress Tensor in AH Model infinitely-long flux tube

Bogomol'nyi bound : $\kappa = 1/\sqrt{2}$

 $T_{rr}=T_{ heta heta}=0$ de Vega, Schaposnik, PR**D14**, 1100 (1976).

Stress Tensor in AH Model infinitely-long flux tube

No degeneracy bw T_{rr} & T_{θθ}
T_{θθ} changes sign

conservation law $\frac{d}{dr}(rT_{rr}) = T_{\theta\theta}$