a Effective Field Theory Seminar, TUM, München (Online), 2022/Jan./26

Distribution of Energy-Momentum Tensor in Static-Quark Systems

Masakiyo Kitazawa (Osaka U.)

FlowQCD, PLB **789**, 210 (2019) Yanagihara, MK, PTEP**2019**, 093B02 (2019) FlowQCD, PRD **102**, 114522 (2020)

Energy-Momentum Tensor

The most fundamental quantity in physics.All components are important quantities.

How does EMT behave inside hadrons?

Pressure inside a proton Nature, 557, 396 (2018)

Static-Quark Systems

Fundamental probe to study field theories
 Numerical simulations on the lattice is straightforward!

∎aā

• Flux tube formation

D Single **Q**

- Heavy-light meson (a) $T < T_c$
- Debye screening (a) $T > T_c$

EMT in Static O systems Combine 2 fundamental tools!

Static-Quark Systems

Fundamental probe to study field theories
 Numerical simulations on the lattice is straightforward!

∎ aā

Flux tube formation

- Heavy-light meson (a) $T < T_c$
- Debye screening (a) $T > T_c$

FlowQCD, PLB **789**, 210 (2019)

FlowQCD, PRD **102**, 114522 (2020)

$\mathcal{T}_{\mu\nu} : \text{nontrivial observable} \\ \text{on the lattice}$

Definition of the operator is nontrivial because of the explicit breaking of translational invariance

ex:
$$T_{\mu\nu} = F_{\mu\rho}F_{\nu\rho} - \frac{1}{4}\delta_{\mu\nu}FF$$
$$F_{\mu\nu} =$$

2 Its measurement is noisy due to high dimensionality and etc.

SFtX Method and Gradient Flow

SF*t*X = Small Flow-*t*ime eXpansion

6

Yang-Mills Gradient Flow

diffusion equation in 4-dim space
diffusion distance d ~ \sqrt{8t}
"continuous" cooling/smearing
No UV divergence at t > 0

Small Flow-Time Expansion

Luescher, Weisz, 2011 Suzuki, 2013

 $\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i \to 0} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$

an operator at t>0

t

 $\tilde{\mathcal{O}}(t,x)$

t→0 limit

remormalized operators of original theory

Constructing EMT 1 Suzuki, 2013 $\tilde{\mathcal{O}}(t,x) \xrightarrow[t \to 0]{} \sum_{i \to 0} \sum_{i} c_i(t) \mathcal{O}_i^R(x)$ $\tilde{\mathcal{O}}(t,x)$ Gauge-invariant dimension 4 operators $\int U_{\mu\nu}(t,x) = G_{\mu\rho}(t,x)G_{\nu\rho}(t,x) - \frac{1}{4}\delta_{\mu\nu}G_{\rho\sigma}(t,x)G_{\rho\sigma}(t,x)$ $E(t,x) = \frac{1}{4}G_{\rho\sigma}(t,x)G_{\rho\sigma}(t,x)$

Constructing EMT

Suzuki, 2013

$$U_{\mu\nu}(t,x) = \alpha_U(t) \left[T^R_{\mu\nu}(x) - \frac{1}{4} \delta_{\mu\nu} T^R_{\rho\rho}(x) \right] + \mathcal{O}(t)$$
$$E(t,x) = \langle E(t,x) \rangle + \alpha_E(t) T^R_{\rho\rho}(x) + \mathcal{O}(t)$$
vacuum subtr.

Remormalized EMT

$$T^{R}_{\mu\nu}(x) = \lim_{t \to 0} \left[c_1(t) U_{\mu\nu}(t, x) + \delta_{\mu\nu} c_2(t) E(t, x)_{\text{subt.}} \right]$$

"SF*t*X method" (Small Flow *t*ime eXpansion)

Perturbative Coefficients

Choice of the scale of g²

 $c_1(t) = c_1\left(g^2(\mu(t))\right)$

Previous: $\mu_d(t) = 1/\sqrt{8t}$ Improved: $\mu_0(t) = 1/\sqrt{2e^{\gamma_E}t}$

Harlander+ (2018)

t Dependence

Iritani, MK, Suzuki, Takaura, PTEP 2019

Existence of "linear window" at intermediate t

12

Double Extrapolation $t \rightarrow 0, a \rightarrow 0$

$$\langle T_{\mu\nu}(t) \rangle_{\text{latt}} = \langle T_{\mu\nu}(t) \rangle_{\text{phys}} + \begin{bmatrix} C_{\mu\nu}t \\ D_{\mu\nu}(t) \frac{a^2}{t} \end{bmatrix}$$

O(t) terms in SFTE lattice discretization

Continuum extrapolation $\langle T_{\mu\nu}(t) \rangle_{\text{cont}} = \langle T_{\mu\nu}(t) \rangle_{\text{lat}} + C(t)a^2$

Small t extrapolation $\langle T_{\mu\nu} \rangle = \langle T_{\mu\nu}(t) \rangle + C't$

Iritani, MK, Suzuki, Takaura, PTEP 2019

■ Existence of "linear window" at intermediate t
 ■ Stable t→0 extrapolation
 ■ Systematic errors: fit range, uncertaintyof Λ (±3%), ...

Thermodynamics: $\varepsilon = \langle T_{00} \rangle$, $p = \langle T_{11} \rangle$

Agreement with other methods within 1% level!
 Smaller statistics thanks to smearing by the flow

Alternative Extrapolation Method A: $a \rightarrow 0, t \rightarrow 0$

Method B: $t \to 0, a \to 0$

t

Consistency checkIatent heat & pressure gap

B Method A

Consistent result for two methods

Gradient Flow for Fermions

$$\partial_t \psi(t, x) = D_\mu D_\mu \psi(t, x)$$
$$\partial_t \bar{\psi}(t, x) = \psi(t, x) \overleftarrow{D}_\mu \overleftarrow{D}_\mu$$
$$D_\mu = \partial_\mu + A_\mu(t, x)$$

Luscher, 2013 Makino, Suzuki, 2014 Taniguchi+ (WHOT) 2016~

Not "gradient" flow but a "diffusion"-type equation.

Energy-momentum tensor from SFtX Makino, Suzuki, 2014

EMT in QCD

Makino, Suzuki (2014) Harlander+ (2018)

$$T_{\mu\nu}(t,x) = c_1(t)U_{\mu\nu}(t,x) + c_2(t)\delta_{\mu\nu} \left(E(t,x) - \langle E \rangle_0 \right) + c_3(t) \left(O_{3\mu\nu}(t,x) - 2O_{4\mu\nu}(t,x) - \text{VEV} \right) + c_4(t) \left(O_{4\mu\nu}(t,x) - \text{VEV} \right) + c_5(t) \left(O_{5\mu\nu}(t,x) - \text{VEV} \right)$$

$$T_{\mu\nu}(x) = \lim_{t \to 0} T_{\mu\nu}(t, x)$$

Fermion Propagator $S(t, x; s, y) = \langle \chi(t, x) \overline{\chi}(s, y) \rangle$ $= \sum_{v, w} K(t, x; 0, v) S(v, w) K(s, y; 0, w)^{\dagger}$

$$\left(\partial_t - D_\mu D_\mu\right) K(t, x) = 0$$

- propagator of flow equation
- Inverse propagator is needed

2+1 QCD EoS from Gradient Flow

WHOT-QCD, PR**D96** (2017); PR**D102** (2020)

Agreement with integral method
 Substantial suppression of statistical errors

m_{PS}/m_V ≈0.63

Physical mass: Kanaya+ (WHOT-QCD), 1910.13036

Flux-Tube Formation in QQ System

FlowQCD, PLB **789**, 210 (2019) Yanagihara, MK, PTEP**2019**, 093B02 (2019)

Stress = Force per Unit Area

Stress = Force per Unit Area

Pressure

 $\vec{P} = P\vec{n}$

Stress = Force per Unit Area

Pressure

Generally, F and n are not parallel

Maxwell Stress

(in Maxwell Theory)

$$\sigma_{ij} = \varepsilon_0 E_i E_j + \frac{1}{\mu_0} B_i B_j - \frac{1}{2} \delta_{ij} \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)$$

$$\vec{E} = (E, 0, 0)$$
$$T_{ij} = \begin{pmatrix} -E^2 & 0 & 0 \\ 0 & E^2 & 0 \\ 0 & 0 & E^2 \end{pmatrix}$$

Parallel to field: Pulling
 Vertical to field: Pushing

(in Maxwell Theory)

Definite physical meaning

Distortion of field, line of the field

Propagation of the force as local interaction

Quark-Anti-quark System

Formation of the flux tube \rightarrow confinement

Previous Studies on Flux Tube

Potential
 Action density
 Color-electric field
 so many studies...

Cardoso+ (2013)

Lattice Setup

FlowQCD, PLB (2019)

SU(3) Yang-Mills (Quenched)
 Wilson gauge action
 Clover operator

EMT around Wilson LoopAPE smearing / multi-hit

fine lattices (a=0.029-0.06 fm)
 continuum extrapolation

□ Simulation: bluegene/Q@KEK $\langle O(x) \rangle_{Q\bar{Q}} = \lim_{T \to \infty} \frac{\langle \delta O(x) \delta W(R,T) \rangle}{\langle W(R,T) \rangle}$

β	$a [\mathrm{fm}]$	$N_{ m size}^4$	$N_{\rm conf}$		R/a	
6.304	0.058	48^{4}	140	8	12	16
6.465	0.046	48^{4}	440	10	—	20
6.513	0.043	48^{4}	600	_	16	_
6.600	0.038	48^{4}	1,500	12	18	24
6.819	0.029	64^{4}	1,000	16	24	32
		$R \; [\mathrm{fm}]$		0.46	0.69	0.92

Stress Tensor in $Q\overline{Q}$ System

FlowQCD, PLB (2019)

Lattice simulation SU(3) Yang-Mills a=0.029 fm R=0.69 fm t/a²=2.0

pulling

pushing

Definite physical meaning
Distortion of field, line of field
Propagation of the force as local interaction
Manifestly gauge invariant

SU(3) YM vs Maxwell

SU(3) Yang-Mills (quantum)

Maxwell (classical)

Propagation of the force is clearly different in YM and Maxwell theories!

Stress Distribution on Mid-Plane

From rotational symm. & parity

EMT is diagonalized in Cylindrical Coordinates

$$T_{cc'}(r) = \begin{pmatrix} T_{rr} \\ T_{\theta\theta} \\ T_{zz} \\ T_{44} \end{pmatrix}$$

 $T_{rr} = \vec{e}_r^T T \vec{e}_r$ $T_{\theta\theta} = \vec{e}_{\theta}^T T \vec{e}_{\theta}$

Degeneracy in Maxwell theory

 $\vec{e_r}$

 $T_{rr} = T_{\theta\theta} = -T_{zz} = -T_{44}$

Mid-Plane

Degeneracy: T₄₄ ~ T_{zz}, T_{rr} ~ T_{\thetaθ}
 Separation: T_{zz} ≠ T_{rr}
 Nonzero trace anomaly $\sum T_{cc} \neq 0$

Mid-Plane

Degeneracy: T₄₄ ~ T_{zz}, T_{rr} ~ T_{\thetaθ}
 Separation: T_{zz} ≠ T_{rr}
 Nonzero trace anomaly $\sum T_{cc} \neq 0$

Force from Stress

 $F_{\rm stress} = \int_{\rm mid.} d^2 x T_{zz}(x)$

Newton 1687 **35**

Faraday 1839

Momentum Conservation

Yanagihara, MK, PTEP2019

In cylindrical coordinats,

$$\partial_i T_{ij} = 0 \longrightarrow \partial_r (rT_{rr}) = T_{\theta\theta} - r\partial_z T_{rz}$$

For infinitely-long flux tube

$$\partial_r(rT_{rr}) = T_{\theta\theta}$$

 T_{rr} and $T_{\theta\theta}$ must separate! $T_{\theta\theta}$ must change sign!

Effect of boundaries is important for the flux tube at R=0.92fm

Dual Superconductor Picture

Nambu, 1970 Nielsen, Olesen, 1973 t 'Hooft, 1981

Abelian-Higgs Model

Yanagihara, MK, 2019

Abelian-Higgs Model

 $\mathcal{L}_{AH} = -\frac{1}{4}F_{\mu\nu}^2 + |(\partial_{\mu} + igA_{\mu})\phi|^2 - \lambda(\phi^2 - v^2)^2$

GL parameter: $\kappa = \sqrt{\lambda}/g$ $\begin{cases}
\Box \text{ type-I: } \kappa < 1/\sqrt{2} \\
\Box \text{ type-II: } \kappa > 1/\sqrt{2} \\
\Box \text{ Bogomol'nyi bound: } \\
\kappa = 1/\sqrt{2}
\end{cases}$

Infinitely long tube degeneracy $T_{zz}(r) = T_{44}(r)$ Luscher, 1981 momentum conservation $\frac{d}{dr}(rT_{rr}) = T_{\theta\theta}$

Stress Tensor in AH Model infinitely-long flux tube

No degeneracy bw T_{rr} & T_{θθ}
 T_{θθ} changes sign

 $\frac{d}{dr}(rT_{rr}) = T_{\theta\theta}$

Stress Tensor in AH Model infinitely-long flux tube

No degeneracy bw T_{rr} & T_{θθ}
T_{θθ} changes sign

Inconsistent with lattice result $T_{rr} \simeq T_{\theta\theta}$

Flux Tube with Finite Length

Yanagihara, MK (2019)

AH model can reproduce lattice results qualitatively by tuning parameters.
 But, quantitatively all parameters are rejected.

EMT Distr. in Simple Systems Ito, MK, in prep.

$\phi^{4} \text{ Theory in 1+1d} \qquad \Box \text{ Soliton (kink)}$ $\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{\lambda}{4} \left(\phi^{2} - \frac{m^{2}}{\lambda} \right)^{2} \qquad \phi(x) = \frac{m}{\sqrt{\lambda}} \tanh \frac{mx}{\sqrt{2}} \qquad \longrightarrow$

Quantum effect on EMT at 1-loop order

Confirmation of EMT conservation $\partial_x T_{11}(x) = 0$

Single Q System in the Deconfined Phase

FlowQCD, PRD 102, 114522 (2020)

Flux Tube at Nonzero T

Vacuum

$T = 1.42T_{c}$

Dissociation of the flux tube at $T>T_c$.

Motivations

T < *T_c*: Heavy-light meson
EMT distribution in the meson

$\Box T > T_c$: Single charge

- Screening
- Running coupling

 $\Box T \approx T_c$ • Confinement transition

This study: $T > T_c$ in pure YM

Lattice Setup

Ω: Polyakov loop

SU(3) Yang-Mills (Quenched)
 Wilson gauge action
 Clover operator

Analysis above Tc
 Simulation on a Z₃ minimum
 EMT around a Polyakov loop

 $\langle O(x) \rangle_{\mathbf{Q}} = \frac{\langle \delta O(x) \delta \Omega(0) \rangle}{\langle \Omega(0) \rangle}$

continuum extrapolation

T/T_c	N_s	N_{τ}	β	$a \; [fm]$	$N_{\rm conf}$
1.20	40	10	6.336	0.0551	500
	48	12	6.467	0.0460	650
	56	14	6.581	0.0394	840
	64	16	6.682	0.0344	$1,\!000$
	72	18	6.771	0.0306	$1,\!000$
1.44	40	10	6.465	0.0461	500
	48	12	6.600	0.0384	650
	56	14	6.716	0.0329	840
	64	16	6.819	0.0288	$1,\!000$
	72	18	6.910	0.0256	$1,\!000$
2.00	40	10	6.712	0.0331	500
	48	12	6.853	0.0275	650
	56	14	6.973	0.0236	840
	64	16	7.079	0.0207	$1,\!000$
	72	18	7.173	0.0184	$1,\!000$
2.60	40	10	6.914	0.0255	500
	48	12	7.058	0.0212	650
	56	14	7.182	0.0182	840
	64	16	7.290	0.0159	$1,\!000$
	72	18	7.387	0.0141	$1,\!000$

FlowQCD, PRD **102**, 114522 (2020)

Spherical Coordinates

EMT is diagonalized in Spherical Coordinates

• Maxwell theory $T_{44} = T_{rr} = -T_{\theta\theta} = -\frac{|\boldsymbol{E}|^2}{2} = -\frac{\alpha}{8\pi} \frac{1}{r^4}$

Stress Tensor Around a Quark

 $T=1.44T_{c}$

Suppression at large distance
 Separation of different channels
 |T₄₄| > |T_{rr}| ~ |T_{θθ}|

Stress Tensor Around a Quark

Perturbative Analysis

M. Berwein, private comm.

Perturbation

Lattice

Perturbation: Combination of NLO pert. + NLO EQCD □ |T₄₄| > |T_{rr}| is reproduced by perturbation.
 □ Hierarchy of T_{rr}, T_{θθ} does not match?

r Dependence

Leading order perturbation

$$\langle \mathcal{T}_{44}(r) \rangle = \langle \mathcal{T}_{rr}(r) \rangle = -\langle \mathcal{T}_{\theta\theta}(r) \rangle$$
$$= -\frac{C_F}{8\pi} \alpha_s \frac{(m_{\rm D}r+1)^2}{r^4} e^{-2m_{\rm D}r}$$

Higher order terms: M. Berwein, in progress

Channel Dependence

$$r^4\Delta(r) = -r^4 \langle T_{\mu\mu} \rangle$$

Separation b/w channels becomes clearer for smaller T

FlowQCD, PRD **102**, 114522 (2020)

Running Coupling

\Box Estimate of α_s

$$\left|\frac{\langle T_{\mu\mu}\rangle}{\langle \mathcal{T}_{44,rr,\theta\theta}(r)\rangle}\right| = \frac{11}{2\pi}\alpha_s + \mathcal{O}(g^3),$$

by the formula at the leading-order perturbation theory
 channel dependent

Consistent with the estimate from QQ potential
 Kaczmarek, Karsch, Zantow, 2004

Summary

Static charges are fundamental but convenient tools for studying YM gauge theories.

Now, lattice simulations of EMT in static-quark systems are available thanks to SFtX (gradient flow) method.

x [fm]

So many future studies
 Single Q in full QCD (a) T<T_c = heavy-light meson
 QQQ, QQ, etc. / T dependence
 Hadrons

N_f=2+1 QCD Thermodynamics

Taniguchi+ (WHOT-QCD), PR**D96**, 014509 (2017)

- N_f=2+1 QCD, Iwasaki gauge + NP-clover
- m_{PS}/m_V ≈0.63 / almost physical s quark mass
- T=0: CP-PACS+JLQCD (ß=2.05, 28³x56, a≈0.07fm)
- T>0: 32³xN_t, N_t = 4, 6, ..., 14, 16):
- T≈174-697MeV
- $t \rightarrow o$ extrapolation only (No continuum limit)

EMT on the Lattice: Conventional

 $\begin{aligned} & \text{Lattice EMT Operator}_{\text{Caracciolo+, 1990}} \\ & T_{\mu\nu} = Z_6 T_{\mu\nu}^{[6]} + Z_3 T_{\mu\nu}^{[3]} + Z_1 \left(T_{\mu\nu}^{[1]} - \left\langle T_{\mu\nu}^{[1]} \right\rangle \right) \\ & T_{\mu\nu}^{[6]} = (1 - \delta_{\mu\nu}) F_{\mu\rho}^a F_{\nu\rho}^a, \ T_{\mu\nu}^{[3]} = \delta_{\mu\nu} \left(F_{\mu\rho}^a F_{\nu\rho}^a - \frac{1}{4} F_{\rho\sigma}^a F_{\rho\sigma}^a \right), \ T_{\mu\nu}^{[1]} = \delta_{\mu\nu} F_{\rho\sigma}^a F_{\rho\sigma}^a \end{aligned}$

Determination of Zs are necessary.Non-pert. Determination of Zs

- Shifted-boundary method
- Full QCD with fermions

Giusti, Pepe, 2014~; Borsanyi+, 2018 Brida, Giusti, Pepe, 2020

Force

Local interaction

Faraday 1839

