Exploring Phases of Dense QCD in Heavy-lon Collisions

Masakiyo Kitazawa (Osaka U.)

Reimei Workshop "Hadrons in dense matter at J-PARC" KEK, Tokai, 2022/Feb./23

QCD Phase Diagram

QCD Phase Diagram

Relativistic Heavy-Ion Collisions

Collide 2 heavy nuclei

RHIC (2000~) QGP Formation Strongly coupled QGP LHC (2010~) Precision measurement of the QGP

Physics Hot & dense medium Early Universe Quark-gluon plasma QCD phase structre

Beam-Energy Dependence

Beam-Energy Dependence

High energy

Nuclear transparency net-baryon #: small

Low energy

Baryon stopping net-baryon #: large

Maximum Density

Time evolution in T- ρ plane by JAM

 $E/A = 20 {
m GeV}$ $\sqrt{s_{_{NN}}} \simeq 6 {
m GeV}$

Maximum density 5~10p_o @ E/A~20GeV
 Large event-by-event fluctuations?

Collapse of Vacuum

Our vacuum is filled with the quark condensate.

Collapse of Vacuum

Our vacuum is filled with the quark condensate.

Collapse of Vacuum

Matter modifies the vacuum.

Restoration of chiral symmetry

Collision Rate

Galatyuk, NPA982,163 (2019)

J-PARC-HI: High-luminosity x Fixed target \rightarrow World highest rate $\sim 10^8$ Hz

5-order higher than AGS, SPS

AGS, SPS = J-PARC-HI 1 year 5 min.

High-statistical exp.
 various event selections
 higher order correlations
 search for rare events

Various Observables

Flow

- Dilepton / photon
- **I** Fluctuations, higher-order cumulants **I** Ξ , Ω , ...
- Sophisticated event selectionsVarious correlations

Directed Flow

Reproduction of $\sqrt{s_{NN}}$ dependence Nara, Ohnishi, PRC ('22)

STAR, PRL('14)

Event Selection

Large fluctuations in highest density

"Density scan" by event selection?

Event-by-Event Fluctuations

Review: Asakawa, MK, PPNP 90 (2016)

Non-Gaussian Cumulants

 $\langle \delta N_B^2 \rangle$

0

 $\langle \delta N^3$

0.8

 \mathcal{L}

μ_B [GeV]

0.6

0.4

0.2

0 150

100

$$\left. \delta N^3 \right\rangle = T \frac{\partial \langle \delta N^2 \rangle}{\partial \mu}$$

Asakawa, Ejiri, MK, 2009

Steeper divergence for higher-order cumulants Stephanov, 2009

Experimental Results

STAR Collab. 2010~

Enhancement & Suppression of non-Gaussian cumulants! Have we observed QCD critical point?

Rapidity Window Dependence

Non-Gaussian Cumulants have been observed as a function of rapidity window ∆y.
 Some results have non-monotonic ∆y dependence.

Diffusion of Fluctuations

P(N)

P(N)

 Δy

MK, Ohno, Asakawa 2014 MK 2015

Distributions in Δy in the final state and early stage are different due to diffusion.

N

N

Rapidity Window dependence as a Result of Diffusion

MK+ (2014); MK (2015)

Higher order cumulants can behave non-monotonically.
 Δη dependence encodes history of time evolution.

Rapidity Window dependence as a Result of Diffusion

MK+ (2014); MK (2015)

Higher order cumulants can behave non-monotonically.
 Δη dependence encodes history of time evolution.

Search for **CSC Phase Transition** using dilepton production rates

Nishimura, MK, Kunihiro, arXiv:2201.01963

Color Superconductivity

Observing CSC in HIC?

Difficulties

- 1) Creation of CSC itself would be impossible.
- 2) CSC would be realized only in the early stage.

Solution

 Focus on precursor of CSC
 Use dilepton production

Nishimura, MK, Kunihiro, 2201.01963

Multi-Messenger Observation

Precursory Phenomena = anomalous behavior of observables near but above T_c Electric conductivity in metals

Precursor of CSC

 Pseudogap = Depression in the density of states
 Specific heat
 etc.

MK, Koide, Kunihiro, Nemoto, '03, '05

Model

NJL model (massless 2-flavor) $\mathcal{L} = \bar{\psi} i \partial \!\!\!/ \psi + \mathcal{L}_S + \mathcal{L}_C$ $\mathcal{L}_S = G_S \left((\bar{\psi} \psi)^2 + (\bar{\psi} i \gamma_5 \tau \psi)^2 \right)$ $\mathcal{L}_C = G_C \left((\bar{\psi} i \gamma_5 \tau_A \lambda_A \psi^C) (\text{h.c.}) \right)$ diquark interaction $G_S = 5.01 \text{ GeV}^{-2}, \quad \Lambda = 650 \text{MeV}$

 \square *G_C*: free parameter

Order of CSC phase transition Matsuura+('04), Giannakis+('04) Noronha+('06), Fejos, Yamamoto('19)

Phase Diagram in MFA

Diquark Mode

Dynamical Structure

 Massless at T=T_c as a soft mode of CSC transition
 Strength in the space-like region

MK, Koide, Kunihiro, Nemoto, '01,'05

Photon Self-Energy

Dilepton Production Rate

$$\frac{d^4\Gamma}{dk^4} = \frac{\alpha}{12\pi^4} \frac{1}{k^2} \frac{1}{e^{\beta\omega-1}} \mathrm{Im} \Pi^{R\mu}_{\mu}(k)$$

Terms included in $\Pi^{\mu\nu}$

Aslamasov-Larkin

Maki-Thompson, Density of states

💳 = diquark propagator

common in metallic superconductors (conductivity)
 time-dependent GL approx. for diquark field
 gauge-invariant construction

Nishimura, MK, Kunihiro, 2201.01963

Dilepton Production Rates

Diquark fluctuations give rise to anomalous enhancement in the low energy-momentum region for $T < 1.5T_c$.

Invariant-Mass Spectrum Fixed Temperature $d\Gamma = \int d^3k d^4\Gamma$

 Strong enhancement at low invariant mass, though the range of *M* is narrower than the previous results.
 Observable in the HIC?

Nishimura, MK, Kunihiro, 2201.01963

Summary

Exploring dense medium in relativistic heavy-ion collisions is a hot topic in this field. The beam-energy scan is ongoing, and many new experiments will start in near future!

 Among them, search for
 the OCD critical point using fluctuation observables
 the color superconductivity using dileptons are especially interesting and important subjects.

Heavy-ion collisions at J-PARC will play important roles in pursuing these subjects.

Beam-Energy Scan

□ Use of reliable / high-performance RCS & main ring
 □ → Reduce cost and time