Nuclear Physics School (NPS2022), Busan, Korea, 2022/June/28

Lattice OCD and Physics at T $\neq 0$

Masakiyo Kitazawa (Osaka U.)

Contents

1. Why is Lattice so Difficult?

1. Lattice field theory
2. Observables
3. Monte-Carlo simulations
4. Nonzero temperature
5. Dynamics
6. QCD at $T \neq 0$
7. Equation of state
8. QCD critical points \& Columbia plot
9. Gradient flow \& energy-momentum tensor

QCD

Fundamental Theory of Strong Interaction

\square Degrees of freedom $\begin{cases}\text { • } & \psi: \text { quark field } \\ \bullet & A_{\mu}^{a}: \text { gluon field }\end{cases}$

Properties

\square Asymptotic freedom
\rightarrow Energy-scale dependent coupling constant
\rightarrow Violation of perturbation at low E scale
\square Quark confinement
\square Chiral symmetry breaking

Lattice OCD numerical simulations are powerful tools to explore non-perturbative phenomena of QCD.

Yes, but it is not so useful...

Establishments

Hadron Spectroscopy

Thermodynamics

Budapest-Wuppertal; HotQCD, 2014

QCD Phase Diagram

QCD Phase Diagram

orD Phase Diagram

QCD Phase Diagram

Reproducing HIC on the lattice?

Not possible with various

 fundamental reasons

Real-time simulations will be impossible forever

Nuclear Structure on the Lattice?

Nucleus

Nucleon
 (Hadrons)

\square Difficult to treat.
\square Even a reliable measurement of deuteron mass has not been achieved.
\square Masses have been measured.
\square Other properties, such as charge distribution, are still difficult to measure.

Contents

1. Why is Lattice so Difficult?

1. Lattice field theory
2. Observables
3. Monte-Carlo simulations
4. Nonzero temperature
5. Dynamics

2. QCD at $T \neq 0$

1. Equation of state
2. QCD critical points \& Columbia plot
3. Gradient flow \& energy-momentum tensor

Lattice Simulations

Diffusion eq.: $\quad \frac{\partial}{\partial t} \phi(\vec{x}, t)=D \nabla^{2} \phi(\vec{x}, t)$

$$
\begin{gathered}
\frac{d^{2} \phi(x)}{d x^{2}}=\frac{1}{a^{2}}\{\phi(x-a)-2 \phi(x)+\phi(x+a)\} \\
\phi(x+\Delta t)=\phi(x)+\Delta t D \frac{d^{2} \phi(x)}{d x^{2}}
\end{gathered}
$$

QCD is a Quantum Theory

$$
i \frac{\partial}{\partial t} \psi(\vec{x}, t)=-\frac{\hbar^{2} \nabla^{2}}{2 m} \psi(\vec{x}, t)+V(x) \psi(\vec{x}, t)
$$

Time evolution can be simulated, but the eigenvalue problem would be better.

QCD is a Quantum Field Theory

Quantum Field Theory

 $\phi(\mathrm{x})$ at every space-time points are arguments of wave func.Spin $1 / 2$ system:

$$
\Psi(x)=\left(\psi_{\uparrow}(x), \psi_{\downarrow}(x)\right)
$$

QFT:

Physical States

Functional of ψ
So many d.o.f

Numerical simulation of time evolution is too difficult to handle!

Initial Conditions

Initial conditions having physical meaning?

- Vacuum
$|0\rangle$
- 1-particle state $a_{p}^{\dagger}|0\rangle$
- 2-particle state $a_{p_{1}}^{\dagger} c_{p_{2}}^{\dagger}|0\rangle$
$|0\rangle$ Vacuum state: unknown
a_{p}^{\dagger} Creation operators: unknown

Path Integral

Classical mechanics: Principle of least action

Trajectory that minimize the action S is realized as a classical path between x_{1} and x_{2}.

$$
S[x(t)]=\int_{t_{1}}^{t_{2}} d t \mathcal{L}(x(t), \dot{x}(t))
$$

Path Integral

Quantum mechanics:
 Path integral

Transition amplitude $\left\langle x_{1}, t_{1} \mid x_{2}, t_{2}\right\rangle$ is given by the sum of all trajectories with the weight $e^{i S}$.

$$
\begin{aligned}
& \left\langle x_{2}, t_{2} \mid x_{1}, t_{1}\right\rangle \\
& \quad=\lim _{\Delta t \rightarrow 0}\left[\prod_{n} \int d x\left(t_{n}\right)\right] e^{i S[x(t)] / \hbar} \\
& \quad=\int \mathcal{D} x e^{i S / \hbar}
\end{aligned}
$$

Note: OM states are labeled only by the coordinate x.

Path Integral in QFT

Transition amplitude between two states can be calculated as

$$
\begin{aligned}
& \left\langle\phi_{2}(x), t_{2} \mid \phi_{1}(x), t_{1}\right\rangle \\
& \quad=\lim _{a \rightarrow 0}\left[\prod_{x} \int d \phi(x)\right] e^{i S[\phi(x)] / \hbar} \\
& \quad=\int \mathcal{D} \phi e^{i S(\phi) / \hbar}
\end{aligned}
$$

Lattice field theory is constructed by the space-time discretization

Problems:
(1)What are physical states?
(2)How to carry out path integral numerically?

Problems

(1) Quantum states

$\square \mathbf{~ Q}:\left\langle x_{2}, t_{2} \mid x_{1}, t_{1}\right\rangle$: Not very useful...
\square OFT: We don't know meaningful quantum states

$$
|\phi(x)\rangle ?
$$

(2) Numerical Integration

$$
\lim _{\Delta t \rightarrow 0}\left[\prod_{n} \int d x\left(t_{n}\right)\right] e^{i S[x(t)] / \hbar}
$$

The phase oscillates rapidly.
\rightarrow Difficult to handle in numerical integration

Solution: Wick Rotation $(t \rightarrow \tau=-i t)$

\square Minkowski \rightarrow Euclid spacetime

$\square S[x(t)]=\int_{t_{1}}^{t_{2}} d t \mathcal{L}(x(t), \dot{x}(t))$

$$
\longrightarrow S_{\mathrm{E}}[x(\tau)]=\int_{\tau_{1}}^{T_{2}} d \tau \mathcal{L}_{\mathrm{E}}(x, \dot{x})
$$

$\square \int \mathcal{D} x e^{i S[x(t)] / \hbar} \longrightarrow \int \mathcal{D} x e^{-S_{\mathrm{E}}[x(\tau)] / \hbar}$

Integrand becomes real \rightarrow Numerically feasible

Solution: Wick Rotation $(t \rightarrow \tau=-i t)$

\square Vacuum expectation value

Take the limit: $\tau_{1} \rightarrow-\infty, \tau_{2} \rightarrow \infty$

$$
\int \mathcal{D} x e^{-\int_{-\tau_{1}}^{0} d \tau L[x(\tau)]} \sim e^{-H \tau_{1}}|x\rangle \underset{\tau_{1} \rightarrow \infty}{ }|0\rangle
$$

$$
\langle 0| f(\hat{x})|0\rangle \sim \int_{-\infty}^{\infty} \mathcal{D} x f(x)_{\tau=0} e^{-S / \hbar}
$$

\square Expectation values w.r.t. |0〉 can be evaluated!
\square Note: periodic BC is also possible.

Calculating Operators

Lattice Simulations can calculate vacuum expectation values and correlation funcs.

$$
\begin{aligned}
& \langle 0| \mathcal{O}(x)|0\rangle \\
& \langle 0| \mathcal{O}_{1}(x) \mathcal{O}_{2}(y)|0\rangle
\end{aligned}
$$

These are almost everything that lattice simulations can do.

Plane-Wave Solution of QCD?

Q.

Are states having translational symmetry (such as plane waves) of OCD analyzed in lower dimensional simulations?
Then, such a simulation will reduce numerical costs drastically.

$$
\begin{aligned}
& \langle 0| \mathcal{O}(x)|0\rangle \\
& =\frac{1}{Z} \int \mathcal{D} \phi \mathcal{O}(x) e^{-S_{E}}
\end{aligned}
$$

A.

No. Gauge configurations are not translationally symmetric.

General Comments

\square Another advantage of lattice FT: removal of ultraviolet divergence thanks to finite d.o.f. on the lattice.
\square Lattice provides us with a non-perturbative construction of the QFT.
\square Continuum extrapolation ($a \rightarrow 0$ limit) must be taken at the end.
\square Numerical simulations were not the original purpose of introducing lattice gauge theory by K. Wilson.

Summary so far

\square A real-time simulation of OFT is quite difficult.
\square Ignorance of physical states is one of the reasons.
\square Lattice FT in Euclidean spacetime enables
\square Stable numerical integral.
↔- real integrand of path integral.
\square Calculation of vacuum expectation values.

- Lattice calculates vacuum expectation values (correlation functions / Green functions).

$$
\langle 0| \phi\left(x_{1}\right) \phi\left(x_{2}\right)|0\rangle, \ldots
$$

\square Physical information are extracted from them.

Contents

1. Why is Lattice so Difficult?
2. Lattice field theory
3. Observables
4. Monte-Carlo simulations
5. Nonzero temperature
6. Dynamics
7. QCD at $T \neq 0$
8. Equation of state
9. QCD critical points \& Columbia plot
10. Gradient flow \& energy-momentum tensor

Expectation Value of Physical States

Pion creation operator: $P^{\dagger}(p=0, \tau)$
$\square 1 \pi$ state: $|\pi\rangle=P^{\dagger}|0\rangle$
\square Mass

$$
\begin{aligned}
& \langle 0| P(\tau) P^{\dagger}(0)|0\rangle \\
& =\langle\pi(\tau) \mid \pi(0)\rangle \sim e^{-m_{\pi} \tau}
\end{aligned}
$$

\square Charge density

$$
\lim _{\tau \rightarrow 0}\langle\pi(\overrightarrow{0}, \tau)| \hat{\rho}(\vec{x})|\pi(\overrightarrow{0}, 0)\rangle
$$

\square Energy density

$$
\langle\pi(\tau)| T_{00}(x)|\pi(0)\rangle \square \int d^{3} x\left\langle T_{00}(x)\right\rangle=m_{\pi}
$$

No Operators of Hadrons!!

\square We cannot represent hadrons in terms of quark and gluon fields.

We don't know their operators in OCD.
\square Constructing operators of observables is also nontrivial.

Ex. energy-momentum tensor
\rightarrow cannot be defined as Noether current (Recent progress: gradient flow mothod)

How to Create Hadrons on the Lattice?

 Use an operator having the same quantum number as poins; ex.:

$$
\begin{gathered}
P_{5}(x)=\bar{\psi}(x) \gamma_{5} \psi(x) \\
P_{5}(-\tau)|0\rangle \\
=c_{0} e^{-\tau m_{\pi}}|\pi\rangle+c_{1} e^{-\tau m_{\pi}^{\prime}}\left|\pi^{\prime}\right\rangle+\cdots \\
\tau \rightarrow \infty \text { limit: }\left|\bar{P}_{5}\right\rangle \sim|\pi\rangle \\
\left\langle\bar{P}_{5}(\tau) \mid \bar{P}_{5}(0)\right\rangle \rightarrow e^{-m_{\pi} \tau}
\end{gathered}
$$

Evaluation of the lowest energy eigenvalue

Correlation Functions: Example

$$
C(\tau)=\langle\bar{P}(\tau) \mid \bar{P}(0)\rangle \rightarrow e^{-m \tau}
$$

Mass of hadrons are obtained from the plateau of effective mass

Figs from C.B. Lang
http://physik.uni-graz.at/~cbl/teaching/lgtped_c.pdf
\square Effective-mass Plot

$$
m_{\mathrm{eff}}=\ln \frac{C(n)}{C(n+1)}
$$

Caveats

\square Successful analysis only for the lowest-energy state.
\square More sophisticated treatment is required for
\square Excited states.
\square Systems with small energy gaps: ex. multihadron states, etc.

- The "plateau" region should be determined carefully.

HAL-OCD Collab. 2016

Charge Distribution inside Hadrons?

$$
\langle 0| P_{5}(\vec{x}, \tau) \rho(\vec{y}, 0) P_{5}(\vec{x},-\tau)|0\rangle
$$

Charge distribution \& radius?

The hadron state is not the eigenstate of coordinate x.

A hadron at position x cannot be created on the lattice.

Oform factor: $\left\langle\pi\left(\vec{p}_{1}\right)\right| V_{\mu}(\vec{q})\left|\pi\left(\vec{p}_{2}\right)\right\rangle$

Contents

1. Why is Lattice so Difficult?
2. Lattice field theory
3. Observables
4. Monte-Carlo simulations
5. Nonzero temperature
6. Dynamics
7. OCD at $T \neq 0$
8. Equation of state
9. QCD critical points \& Columbia plot
10. Gradient flow \& energy-momentum tensor

DoF of Path Integral

$$
\begin{aligned}
& \int \mathcal{D} \phi \mathcal{O} e^{-S[\phi(x)]} \\
& =\left[\prod_{x} \int d \phi(x)\right] \mathcal{O} e^{-S[\phi(x)]}
\end{aligned}
$$

(integration variable) $=$ (spacetime points) \times (dof of fields)

Multiple Integral in Ultra-high Dimensions!!

Monte-Carlo Integral

\square Monte-Carlo Integral

Evaluate integrand randomly in the integral space \rightarrow Take the average

$$
\int d x^{m} F(\vec{x}) \simeq \frac{1}{N} \sum_{i} F\left(\vec{x}_{i}\right)
$$

integral space

Importance Sampling

\square Metropolis Method

If only a part of integral space contribute strongly to the integral:

$$
\int d x^{m} F(\vec{x}) G(\vec{x}) \quad G(\vec{x}) \text { :weight func. }
$$

integral space

Generate the sampling points with the probability $G(x)$

Importance Sampling

\square Metropolis Method
If only a part of integral space contribute strongly to the integral:

$$
\int d x^{m} F(\vec{x}) G(\vec{x}) \quad G(\vec{x}) \text { :weight func. }
$$

Acceptance/rejection of integrand

$$
\begin{cases}G\left(\vec{x}_{i+1}\right) \leq G\left(\vec{x}_{i}\right) & \text { accept! } \\ G\left(\vec{x}_{i+1}\right)>G\left(\vec{x}_{i}\right) & \text { accept with the } \\ & \text { probability } G_{i} / G_{i+1}\end{cases}
$$

$$
\int d x^{m} F(\vec{x}) G(\vec{x})=\frac{1}{N} \sum_{\vec{x}_{i}} F\left(\vec{x}_{i}\right)
$$

Path Integral in QFT

$$
\int \mathcal{D} \phi \mathcal{O} e^{-S[\phi(x)]}
$$

"Hot spot": Extremely narrow

Acceptance hardly occurs with the random sampling

An algorithm that "moves" only around the hot spot is necessary

Hybrid Monte-Carlo method (heat-bath method for pure YM)

Problem in Lattice QCD 1

Each step of the HMC need a matrix inversion of

$$
\left(i \gamma_{\mu} D_{\mu}-m\right)^{-1}
$$

Larger numerical cost when the difference of the min/max eigenvalues are larger.
integral space

Larger numerical cost for smaller quark masses.

Problem in Lattice QCD 2

$$
\int \mathcal{D} \phi \mathcal{O} e^{-S[\phi(x)]}
$$

Importance sampling is applicable only when the action S is real and positive.

Complex action cannot be handled. "Sign Problem"
(complex-phase problem)

- Real-time simulation
- Nonzero density $(\mu \neq 0)$

Sign Problem at $\mu \neq 0$

$$
\begin{gathered}
\mathcal{L}=\bar{\psi}\left(\gamma_{\mu} D_{\mu}+m+\mu \gamma_{0}\right) \psi=\bar{\psi} \Delta \psi \\
\Delta^{\dagger}(\mu)=-\gamma_{\mu} D_{\mu}+m-\mu^{*} \gamma_{0}=\gamma_{5} \Delta\left(-\mu^{*}\right) \gamma_{5} \\
{[\operatorname{det} \Delta(\mu)]^{*}=\operatorname{det} \Delta\left(-\mu^{*}\right)}
\end{gathered}
$$

Quark action becomes complex when $\mu \neq 0$.

■Exceptions

- pure imaginary μ
- $\mu_{u}=-\mu_{d}$
- $\mathrm{SU}(2)_{\mathrm{c}}$

\square Solutions

- Reweighting, Taylor expansion
- Complex Langevin method
- Lifshitz thimble method

Reweighting

$$
\frac{1}{Z} \int \mathcal{D} \phi \mathcal{O} e^{-S[\phi(x) ; s]} \quad \begin{aligned}
& \text { : Action depends } \\
& \text { on a parameter } s
\end{aligned}
$$

\square Monte-Carlo simulation at $s=s_{1}$

$$
\langle\mathcal{O}\rangle_{s_{1}}=\frac{1}{Z_{1}} \int \mathcal{D} \phi \mathcal{O} e^{-S\left[\phi(x) ; s_{1}\right]}
$$

\square Measurement at $s=s_{2}$

$$
\begin{aligned}
\langle\mathcal{O}\rangle_{s_{2}} & =\frac{1}{Z_{2}} \int \mathcal{D} \phi \mathcal{O} e^{-S\left[\phi(x) ; s_{2}\right]} \\
& =\frac{\int \mathcal{D} \phi \mathcal{O} e^{-S_{2}+S_{1}} e^{-S_{1}}}{\int \mathcal{D} \phi e^{-S_{2}+S_{1}} e^{-S_{1}}}=\frac{\left\langle\mathcal{O} e^{-S_{2}+S_{1}}\right\rangle_{s_{1}}}{\left\langle e^{-S_{2}+S_{1}}\right\rangle_{s_{1}}}
\end{aligned}
$$

Measurement at $s=s_{2}$ from the Monte Carlo simulation at $s=s_{1}$.

Effective when "hot spots" overlaps well

Lattice Spacing a

QCD with zero quark masses

$$
\begin{gathered}
\mathcal{L}=\bar{\psi} i \gamma_{\mu}\left(\partial_{\mu}+i g A_{\mu}\right) \psi+\frac{1}{2} \operatorname{tr} F_{\mu \nu}^{2} \\
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g\left[A_{\mu}, A_{\nu}\right]
\end{gathered}
$$

g is the only parameter. No dimensionful parameters. Physical scale arises from quantum effects.

Relation $\mathrm{b} / \mathrm{w} \mathrm{g}$ and the lattice spacing a must be determined through the measurement of physical observables.

Contents

1. Why is Lattice so Difficult?
2. Lattice field theory
3. Observables
4. Monte-Carlo simulations
5. Nonzero temperature
6. Dynamics
7. QCD at $T \neq 0$
8. Equation of state
9. QCD critical points \& Columbia plot
10. Gradient flow \& energy-momentum tensor

Quantum Statistical Mechanics

The most important formulae in QSM

$$
\begin{aligned}
& \rho=\frac{1}{Z} e^{-\beta(H-\mu N)} \quad: \text { density matrix } \\
& Z=\operatorname{Tr} e^{-\beta(H-\mu N)} \quad: \text { partition function } \\
& \langle O\rangle=\operatorname{Tr}[O \rho]
\end{aligned}
$$

QFT @ Nonzero T

$$
\begin{aligned}
Z & =\operatorname{Tr} e^{-\beta H}=\sum_{n}\langle n| e^{-\beta H}|n\rangle \\
& =\int \mathcal{D} \phi e^{-S_{T}}
\end{aligned}
$$

(Anti-)periodic $B C$ along τ direction = Nonzero T system

Thermodynamics
$\langle\mathcal{O}\rangle_{T}=\frac{1}{Z} \int \mathcal{D} \phi \mathcal{O} e^{-S_{T}}$

Suzuki,2013; FlowQCD, 2014

Thermodynamics

Thermodynamic Relations

$$
\varepsilon=\frac{T^{2}}{V} \frac{\partial \ln Z}{\partial T} \quad p=T \frac{\partial \ln Z}{\partial V}
$$

ε and p are obtained from
T, V derivatives of $\ln Z$.

Derivative w.r.t. lattice spacing a with fixed $N_{s}^{3} \times N_{t}$
\Rightarrow Simultaneous variations of V and $1 / T$.

$$
a \frac{\partial \ln Z}{\partial a} \sim \frac{V}{T}(\varepsilon-3 p)
$$

Integral Method

$$
\begin{gathered}
\frac{\partial \ln Z}{\partial a}=\frac{\partial \beta}{\partial a} \frac{\partial \ln Z}{\partial \beta} \sim \frac{\partial \beta}{\partial a}\langle S\rangle \\
T \frac{\partial\left(p / T^{4}\right)}{\partial T}=\frac{\varepsilon-3 p}{T^{4}} \\
\frac{p}{T^{4}}=\int_{T_{0}}^{T} d T \frac{\varepsilon-3 p}{T^{5}}
\end{gathered}
$$

Thermodynamics of SU(3)YM

\square Integral method

\square Most conventional / established
\square Use themodynamic relations Boyd+ 1995; Borsanyi, 2012

$$
p=\frac{T}{V} \ln Z
$$

$$
T \frac{\partial\left(p / T^{4}\right)}{\partial T}=\frac{\varepsilon-3 p}{T^{4}}
$$

\square Gradient-flow method
\square Take expectation values of EMT FlowQCD, 2014, 2016

$$
\left\{\begin{array}{l}
\varepsilon=\left\langle T_{00}\right\rangle \\
p=\left\langle T_{11}\right\rangle
\end{array}\right.
$$

\square Moving-frame method
Giusti, Pepe, 2014~
\square Non-equilibrium method
■ Use Jarzynski's equality Caselle+, 2016;2018
\square Differential method
Shirogane+(WHOT-QCD), 2016~

SU(3) Thermodynamics: Comparison

Iritani, MK, Suzuki, Takaura, 2019

Boyd+:1996 / Borsanyi+: 2012
\square All results agree well.
\square But, the results of integral method has a discrepancy. (Older result looks better...)

Contents

1. Why is Lattice so Difficult?

1. Lattice field theory
2. Observables
3. Monte-Carlo simulations
4. Nonzero temperature
5. Dynamics
6. QCD at $T \neq 0$
7. Equation of state
8. QCD critical points \& Columbia plot
9. Gradient flow \& energy-momentum tensor

Analytic Continuation

\square Lattice: imaginary time

-Dynamics: real time

Real-time info. have to be extracted from the correlation funcs. in imaginary time.

Spectral Function

\rightarrow transport coefficients
Kubo formulae $\eta \sim \lim _{\omega \rightarrow 0} \frac{1}{\omega} \rho(\omega)$
$\int \bullet$ shear viscosity : T_{12}
-bulk viscosity : $T_{m m}$
electric conductivity : $J_{i i}$

Analytic Continuation

\square Lattice: imaginary time

discrete and noisy

\square Dynamics: real time

$\rho(\omega, \boldsymbol{k})$
continuous

$$
\tilde{G}(\tau)=\int d \omega \frac{e^{(\beta / 2-\tau) \omega}}{e^{\beta \omega / 2}+e^{-\beta \omega / 2}} \rho(\omega)
$$

Maximum Entropy Method

Asakawa, Nakahara Hatsuda, 2001

Lattice data

$$
G(\tau)=\int_{0}^{\infty} d \omega \frac{\cosh (1 / 2 T-\tau) \omega)}{\sinh (\omega / 2 T)} \rho(\omega)
$$

"ill-posed problem"

Maximum Entropy Method

Asakawa, Nakahara Hatsuda, 2001

Lattice data

Bayes Prior probability
theorem • Shannon-Jaynes entropy

- default model $m(\omega)$

Probability of $\rho(\omega)$
$P[\rho(\omega), \alpha]$

Spectral Function

Maximum Entropy Method

Asakawa, Nakahara Hatsuda, 2001

Lattice data

Bayes Prior probability
theorem • Shannon-Jaynes entropy

- default model $m(\omega)$

Probability

 of $\rho(\omega)$$P[\rho(\omega), \alpha]$

Spectral Function

expectation value

$$
\langle\rho(\omega)\rangle_{P}
$$

$$
\langle\mathcal{O}\rangle_{P}=\int d \alpha \int[d \rho] P[\rho, \alpha] \mathcal{O}
$$

Output of MEM is jus an expectation value. Error analysis is necessary!!!

Charmonium SPC

Ikeda, Asakawa, MK PRD 2017

Spectral function of J / ψ

\square Transverse/longitudinal decomposed
\square Mass enhancement in medium?

Dispersion Relation of Charmonia

Ikeda, Asakawa, MK PRD 2017

Disp. Rel. in vacuum

$$
E=\sqrt{p^{2}+m^{2}}
$$

\square Large mass enhancement at nonzeroT.
\square Disp. Rel. of J / Ψ is unchanged from the vacuum one.

Contents

1. Why is Lattice so Difficult?

1. Lattice field theory
2. Observables
3. Monte-Carlo simulations
4. Nonzero temperature
5. Dynamics

2. QCD at $T \neq 0$

1. Equation of state
2. QCD critical points \& Columbia plot
3. Gradient flow \& energy-momentum tensor

orD Phase Diagram

Beam-Energy Scan

Beam-Energy Scan

Contents

1. Why is Lattice so Difficult?

1. Lattice field theory
2. Observables
3. Monte-Carlo simulations
4. Nonzero temperature
5. Dynamics
6. OCD at $T \neq 0$
7. Equation of state
8. QCD critical points \& Columbia plot
9. Gradient flow \& energy-momentum tensor

QCD Thermodynamics

Stefan-Boltzmann Limit

SB limit = Free gas of massless quarks \& gluons

$$
\begin{aligned}
& \epsilon=\left(16+\frac{21}{2} N_{f}\right) \frac{\pi^{2}}{30} T^{4} \\
& \epsilon=3 p
\end{aligned}
$$

$$
\epsilon_{\text {free }}=g \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p}{e^{p / T} \pm 1}=\frac{\pi^{2}}{30} T^{4}
$$

Hadron Resonance Gas (HRG) Model

= Free gas composed of all known hadrons

$$
\begin{aligned}
& \epsilon=\sum_{i=\text { hadrons }} \epsilon_{i} \\
& \epsilon_{i}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{E_{p}^{(i)}}{e^{E_{p}^{(i)} / T} \pm 1} \\
& \quad E_{p}=\sqrt{m^{2}+p^{2}}
\end{aligned}
$$

HRG reproduces OCD thermodynamics for $T<160 \mathrm{MeV}$ quite well

Particle data group

$\bullet \pi^{ \pm}$	$1^{-}\left(0^{-}\right)$
$\bullet \pi^{0}$	$1^{-}\left(0^{-+}\right)$
$\bullet \eta$	$0^{+}\left(0^{-+}\right)$
$\bullet f_{0}(500)$	$0^{+}\left(0^{++}\right)$
$\bullet \rho(770)$	$1^{+}\left(1^{--}\right)$
$\bullet \omega(782)$	$0^{-}\left(1^{--}\right)$
$\bullet \eta^{\prime}(958)$	$0^{+}\left(0^{-+}\right)$
$\bullet f_{0}(980)$	$0^{+}\left(0^{++}\right)$
$\bullet a_{0}(980)$	$1^{-}\left(0^{++}\right)$
$\bullet \phi(1020)$	$0^{-}\left(1^{--}\right)$
$\bullet h_{1}(1170)$	$0^{-}\left(1^{+-}\right)$
$\bullet b_{1}(1235)$	$1^{+}\left(1^{+-}\right)$
$\bullet a_{1}(1260)$	$1^{-}\left(1^{++}\right)$
$\bullet f_{2}(1270)$	$0^{+}\left(2^{++}\right)$
$\bullet f_{1}(1285)$	$0^{+}\left(1^{++}\right)$
$\bullet \eta(1295)$	$0^{+}\left(0^{-+}\right)$
$\bullet \pi(1300)$	$1^{-}\left(0^{-+}\right)$
$\bullet a_{2}(1320)$	$1^{-}\left(2^{++}\right)$
$\bullet f_{0}(1370)$	$0^{+}\left(0^{++}\right)$
$h_{1}(1380)$	$?^{-}\left(1^{+-}\right)$
$\bullet \pi_{1}(1400)$	$1^{-}\left(1^{-+}\right)$

HRG Model 2: Exercise in Phthon3

p / T^{4}

sample codes: https://www.dropbox.com/sh/tojgefjkhp5cb7h/AABiBSFtP8j code: https://github.com/MasakiyoK/Saizensen/Chap3/

List of hadrons: Bollweg+, PRD104, 7 ('21) https://arxiv.org/abs/2107.10011

Advertising

A book "Quark matter at extreme conditions: Phase transitions in the world of elementary particles" will come soon (end of August)!
\square Intro. to hot and dense QCD
\square Relativistic heavy-ion collisions
\square BCS theory

- Phase diagram in NJL model
- Linear response, collective modes
\square Color superconductivity
\square Numerical codes in Python
Codes at:
https://github.com/MasakiyoK/Saizensen

Thermal Fluctuations

Observables in equilibrium are fluctuating!

Enhancement \& sign change of higher order cumulants will be used for the signal of the OCD critical point.

Stephanov, 'o9; Asakawa, Ejiri, MK, '09

Cumulants

Cumulants

$$
\begin{cases}\langle N\rangle_{c}=\langle N\rangle & \text { average } \\ \left\langle N^{2}\right\rangle_{c}=\left\langle\delta N^{2}\right\rangle & \text { variance } \\ \left\langle N^{3}\right\rangle_{c}=\left\langle\delta N^{3}\right\rangle & \\ \left\langle N^{4}\right\rangle_{c}=\left\langle\delta N^{4}\right\rangle-3\left\langle\delta N^{2}\right\rangle^{2}\end{cases}
$$

\square skewness

$$
S=\frac{\left\langle N^{3}\right\rangle_{c}}{\left\langle N^{2}\right\rangle_{c}^{3 / 2}}
$$

■ NOTE

- Gauss distribution: $\left\langle N^{3}\right\rangle_{c}=\left\langle N^{4}\right\rangle_{c}=\cdots=0$
- Poisson distribution: $\left\langle N^{2}\right\rangle_{c}=\left\langle N^{3}\right\rangle_{c}=\left\langle N^{4}\right\rangle_{c}=\cdots=\langle N\rangle$

Cumulants of Conserved Charges =Observable on the Lattice

\square Fluctuation-Response Relations

$$
\begin{aligned}
& \chi_{m}^{B} \sim \frac{\partial^{m} p}{\partial \mu_{B}^{m}} \\
& p(T, \mu)=p(T, 0)+\frac{\chi_{2}}{2}\left(\frac{\mu}{T}\right)^{2}+\cdots
\end{aligned}
$$

\square Volume dependence canceled out in ratios Ejiri, Karsch, Redlich, '05
useful for comparison w/ HIC

Review: Asakawa, MK, PPNP 90 (2016)

Proton Number Cumulants in HIC

$\left\langle N_{p}^{3}\right\rangle_{c} /\left\langle N_{p}^{2}\right\rangle_{c}$

$\left\langle N_{p}^{4}\right\rangle_{c} /\left\langle N_{p}^{2}\right\rangle_{c}$

STAR, PRC 2020 [2001.06419]
\square Nonzero and non-Poissonian cumulants are experimentally established.

Contents

1. Why is Lattice so Difficult?

1. Lattice field theory
2. Observables
3. Monte-Carlo simulations
4. Nonzero temperature
5. Dynamics
6. QCD at $T \neq 0$
7. Equation of state
8. QCD critical points \& Columbia plot
9. Gradient flow \& energy-momentum tensor

Critical Points

W Water

\square Ising Model

These CPs belong to the same universality class $\left(Z_{2}\right)$.
Common critical exponents.
ex. $C \sim\left(T-T_{c}\right)^{-\alpha}$

orD Phase Diagram

Columbia Plot

= order of phase tr. at $\mu=0$

Various orders of phase transition with variation of m_{q}.

Varying Quark Masses

\square Columbia plot
= order of phase tr. at $\mu=0$

\square Phase Diagram

on the $T-m_{q}$ plane

Cumulants around Critical Point

$$
P(M) \sim e^{-V(M)}
$$

- $P(M)$: probability distr.
- $V(M)$: effective potential
- M : order parameter
- $\left\langle N^{4}\right\rangle_{c}$ changes discontinuously at the CP.

Finite-Volume Effects

Binder Cumulant

Ising Model

\square Sudden change of B_{4} at the CP is smeared by finite V effect.
$\square B_{4}$ obtained for various V has crossing at $t=0$.
\square At the crossing point, $B_{4}=1.604$ in Z_{2} universality class.

Finite-Volume Effects

Binder Cumulant

Ising Model

\square Sudden change of B_{4} at the CP is smeared by finite V effect.
$\square B_{4}$ obtained for various V has crossing at $t=0$.
\square At the crossing point, $B_{4}=1.604$ in Z_{2} universality class.

Binder-Cumulant Analysis

\square Light-quark region

Kuramashi, Nakamura, Ohno, Takeda, '20

\square Heavy-quark region
Cuteri , Philipsen, Schön, Sciarra, '21

\square Statistically-significant deviation of the crossing point from the 3 d -Ising value. Too large finite-V effects?

Numerical Simulation

\square Coarse lattice: $N_{t}=4$
\square But large spatial volume:
$L T=N_{s} / N_{t} \leq 12$

- Hopping-param. $\left(\sim 1 / m_{q}\right)$ expansion
\square Monte-Calro with LO action
\square High statistical analysis

Simulation params.

lattice size	β^{*}	λ	$\kappa^{N_{\mathrm{f}}=2}$
$48^{3} \times 4$	5.6869	0.004	0.0568
	5.6861	0.005	0.0601
	5.6849	0.006	0.0629
$40^{3} \times 4,36^{3} \times 4$	5.6885	0.003	0.0529
	5.6869	0.004	0.0568
	5.6861	0.005	0.0601
	5.6849	0.006	0.0629
	5.6837	0.007	0.0653
$32^{3} \times 4$	5.6885	0.003	0.0529
	5.6865	0.004	0.0568
	5.6861	0.005	0.0601
	5.6845	0.006	0.0629
	5.6837	0.007	0.0653
$24^{3} \times 4$	5.6870	0.0038	0.0561
	5.6820	0.0077	0.0669
	5.6780	0.0115	0.0740

Binder-Cumulant Analysis

$$
\begin{array}{cll}
\mathrm{Z}_{2} & B_{4}=1.604 & \nu=0.630 \\
L T \geq 9 & B_{4}=1.630(24)(2), \nu=0.614(48)(3) \\
L T \geq 8 & B_{4}=1.643(15)(2), \nu=0.614(29)(3)
\end{array}
$$

$\square B_{4}$ and v are consistent with Z_{2} universality class only when $L T \geq 9$ data are used for the analysis.

Further Check of Finite-V Scaling

\square Effective potential at the CP
\square Scaling of order parameter

Z2 scaling is well established

Contents

1. Why is Lattice so Difficult?

1. Lattice field theory
2. Observables
3. Monte-Carlo simulations
4. Nonzero temperature
5. Dynamics
6. QCD at $T \neq 0$
7. Equation of state
8. QCD critical points \& Columbia plot
9. Gradient flow \& energy-momentum tensor

Energy-Momentum Tensor

All components are important physical observables!

EMT with Gradient Flow "SFtE Method"

New measurement of the renormalized EMT on the lattice. Suzuki 2013; FlowQCD 2014~; WHOT-OCD 2017~

Fluctuations and

 Correlationsviscosity, specific heat, ...

$$
\begin{aligned}
& \eta=\int_{0}^{\infty} d t\left\langle T_{12} ; T_{12}\right\rangle \\
& c_{V} \sim\left\langle\delta T_{00}^{2}\right\rangle
\end{aligned}
$$

Hadron Structure

- flux tube / hadrons
 - stress distribution

Yang-Mills Gradient Flow

$$
\frac{\partial}{\partial t} A_{\mu}(t, x)=-\frac{\partial S_{Y M}}{\partial A_{\mu}} \quad \begin{aligned}
& \text { Luscher 2010 } \\
& \text { Narayanan, Neuberger, } 2006 \\
& \text { Luscher, Weiss, 2011 }
\end{aligned}
$$

t: "flow time" dim:[length²]

$$
\partial_{t} A_{\mu}=D_{\nu} G_{\mu \nu}=\partial_{\nu} \partial_{\nu} A_{\mu}+\cdots
$$

\square diffusion equation in 4 -dim space \square diffusion distance $d \sim \sqrt{8 t}$

- "continuous" cooling/smearing
- No UV divergence at t>0

Gradient Flow = Smearing

Sasayama Marathon 2019/3/3 (Sun.) record: 3:42.45

Gradient Flow = Smearing

(1) $x(t) \rightarrow x^{\prime}(t) \sim \int d t^{\prime} \exp \left[-\frac{\left(t-t^{\prime}\right)^{2}}{2 \sigma^{2}}\right] x\left(t^{\prime}\right)$

$$
\text { (2) } \frac{d}{d s} x(t ; s)=\frac{d^{2}}{d t^{2}} x(t, s) \quad x(t ; 0)=x(t)
$$

$$
\sigma=\sqrt{2 s}
$$

Gradient Flow

$$
\partial_{t} A_{\mu}=\partial_{\nu} \partial_{\nu} A_{\mu}+\cdots
$$

Small Flow-Time Expansion

Luescher, Weisz, 2011
Suzuki, 2013

Constructing EMT 1

$$
\tilde{\mathcal{O}}(t, x) \underset{t \rightarrow 0}{\longrightarrow} \sum_{i} c_{i}(t) \mathcal{O}_{i}^{R}(x)
$$

- Gauge-invariant dimension 4 operators

$$
\left\{\begin{array}{l}
U_{\mu \nu}(t, x)=G_{\mu \rho}(t, x) G_{\nu \rho}(t, x)-\frac{1}{4} \delta_{\mu \nu} G_{\mu \nu}(t, x) G_{\mu \nu}(t, x) \\
E(t, x)=\frac{1}{4} \delta_{\mu \nu} G_{\mu \nu}(t, x) G_{\mu \nu}(t, x)
\end{array}\right.
$$

Constructing EMT

Suzuki, 2013

$$
\begin{aligned}
& U_{\mu \nu}(t, x)=\alpha_{U}(t)\left[T_{\mu \nu}^{R}(x)-\frac{1}{4} \delta_{\mu \nu} T_{\rho \rho}^{R}(x)\right]+\mathcal{O}(t) \\
& \left.E(t, x)=\langle E(t, x)\rangle+\alpha_{E}(t) T_{\rho \rho}^{R}(x)\right]_{\text {vacuum subtr. }}+\mathcal{O}(t)
\end{aligned}
$$

Remormalized EMT

$$
T_{\mu \nu}^{R}(x)=\lim _{t \rightarrow 0}\left[c_{1}(t) U_{\mu \nu}(t, x)+\delta_{\mu \nu} c_{2}(t) E(t, x)_{\text {subt }}\right]
$$

Perturbative coefficient:
Suzuki (2013); Makino, Suzuki (2014); Harlander+ (2018); Iritani, MK, Suzuki, Takaura (2019)

Higher Order Coefficient: $\varepsilon+p$

NLO (1-loop)

Iritani, MK, Suzuki, Takaura, PTEP 2019
\square t dependence becomes milder with higher order coeff.
\square Better $\mathrm{t} \rightarrow 0$ extrapolation
\square Systematic error: μ_{0} or $\mu_{\mathrm{d} \prime}$, uncertaintyof $\Lambda(\pm 3 \%)$, fit range

- Extrapolation func: linear, higher order term in $\mathrm{c}_{1}\left(\sim \mathrm{~g}^{6}\right)$

Double Extrapolation $t \rightarrow 0, a \rightarrow 0$

$$
\left\langle T_{\mu \nu}(t)\right\rangle_{\mathrm{latt}}=\left\langle T_{\mu \nu}(t)\right\rangle_{\mathrm{phys}}+C_{\mu \nu} t+D_{\mu \nu}(t) \frac{D^{2}}{t}
$$

$\mathrm{O}(\mathrm{t})$ terms in SFTE lattice discretization

Continuum extrapolation

$$
\left\langle T_{\mu \nu}(t)\right\rangle_{\mathrm{cont}}=\left\langle T_{\mu \nu}(t)\right\rangle_{\text {lat }}+C(t) a^{2}
$$

Small t extrapolation

$$
\left\langle T_{\mu \nu}\right\rangle=\left\langle T_{\mu \nu}(t)\right\rangle+C^{\prime} t
$$

Higher Order Coefficient: $\varepsilon+p$

NLO (1-loop)

Iritani, MK, Suzuki, Takaura, PTEP 2019
\square t dependence becomes milder with higher order coeff.
\square Better $\mathrm{t} \rightarrow 0$ extrapolation
\square Systematic error: μ_{0} or $\mu_{\mathrm{d} \prime}$ uncertaintyof $\Lambda(\pm 3 \%)$, fit range
\square Extrapolation func: linear, higher order term in $\mathrm{c}_{1}\left(\sim \mathrm{~g}^{6}\right)$

Effect of Higher-Order Coeffs.

Iritani, MK, Suzuki, Takaura, 2019

Systematic error: μ_{0} or $\mu_{\mathrm{d} \prime}, \Lambda, t \rightarrow 0$ function, fit range
More stable extrapolation with higher order $\mathrm{C}_{1} \& \mathrm{C}_{2}$ (pure gauge)

Energy-Momentum Tensor

Spatial components of EMT: Stress Tensor

Stress = Force per Unit Area

Stress = Force per Unit Area

Pressure

$$
\begin{aligned}
& s \vec{P}=\frac{\vec{F}}{S} \\
& \vec{P}=P \vec{n}
\end{aligned}
$$

Stress = Force per Unit Area

Pressure

$\vec{P}=P \vec{n}$
In thermal medium

$$
T_{i j}=P \delta_{i j}
$$

Generally, F and n are not parallel

$$
\frac{F_{i}}{S}=\sigma_{i j} n_{j}
$$

Stress Tensor

$$
\sigma_{i j}=-T_{i j}
$$

Landau Lifshitz

Force

Action-at-a-distance

$$
m_{1}, q_{1}
$$

$$
m_{2}, q_{2}
$$

Newton 1687

Local interaction

Faraday 1839

Maxwell Stress

(in Maxwell Theory)

$$
\sigma_{i j}=\varepsilon_{0} E_{i} E_{j}+\frac{1}{\mu_{0}} B_{i} B_{j}-\frac{1}{2} \delta_{i j}\left(\varepsilon_{0} E^{2}+\frac{1}{\mu_{0}} B^{2}\right)
$$

$$
\vec{E}=(E, 0,0)
$$

$\left\{\begin{array}{l}>\text { Parallel to field: Pulling } \\ >\text { Vertical to field: Pushing }\end{array}\right.$

Maxwell

$$
T_{i j}=\left(\begin{array}{ccc}
-E^{2} & 0 & 0 \\
0 & E^{2} & 0 \\
0 & 0 & E^{2}
\end{array}\right)
$$

Maxwell Stress

(in Maxwell Theory)

$T_{i j} v_{j}^{(k)}=\lambda_{k} v_{i}^{(k)}$

$$
(k=1,2,3)
$$

length: $\sqrt{\left|\lambda_{k}\right|}$
pulling pushing

Definite physical meaning

\square Distortion of field, line of the field
\square Propagation of the force as local interaction

Quark-Anti-quark system

Formation of the flux tube \rightarrow confinement

Previous Studies on Flux Tube

\square Potential
\square Action density
\square Color-electric field so many studies...

Stress Tensor in Q̄̄ System

Yanagihara+, 1803.05656 PLB, in press
Lattice simulation SU(3) Yang-Mills $a=0.029 \mathrm{fm}$ $R=0.69 \mathrm{fm}$ $t / a^{2}=2.0$

pulling pushing
Definite physical meaning
\square Distortion of field, line of the field
\square Propagation of the force as local interaction
\square Manifestly gauge invariant

SU(3) YM vs Maxwell

SU(3) Yang-Mills

(quantum)

Maxwell
(classical)

Propagation of the force is clearly different in YM and Maxwell theories!

Stress Distribution on Mid-Plane

From rotational symm. \& parity
EMT is diagonalized in Cylindrical Coordinates

$$
T_{c c^{\prime}}(r)=\left(\begin{array}{llll}
T_{r r} & & & \\
& T_{\theta \theta} & & \\
& & & \\
& & & \\
& & & T_{44}
\end{array}\right)
$$

$$
\begin{aligned}
& T_{r r}=\vec{e}_{r}^{T} T \vec{e}_{r} \\
& T_{\theta \theta}=\vec{e}_{\theta}^{T} T \vec{e}_{\theta}
\end{aligned}
$$

Degeneracy

in Maxwell theory

$$
T_{r r}=T_{\theta \theta}=-T_{z z}=-T_{44}
$$

Mid-Plane

$-\left\langle\mathcal{T}_{44}^{\mathrm{R}}(r)\right\rangle_{Q \bar{Q}}\left[\mathrm{GeV} / \mathrm{fm}^{3}\right]$ $-\left\langle\mathcal{T}_{z z}^{\mathrm{R}}(r)\right\rangle_{Q \bar{Q}}\left[\mathrm{GeV} / \mathrm{fm}^{3}\right]$ $\left\langle\mathcal{T}_{r r}^{\mathrm{R}}(r)\right\rangle_{Q \bar{Q}}\left[\mathrm{GeV} / \mathrm{fm}^{3}\right]$ 포 $\quad\left\langle\mathcal{T}_{\theta \theta}^{\mathrm{R}}(r)\right\rangle_{Q \bar{Q}}\left[\mathrm{GeV} / \mathrm{fm}^{3}\right]$

Continuum Extrapolated!

In Maxwell theory

$$
T_{r r}=T_{\theta \theta}=-T_{z z}=-T_{44}
$$

\square Degeneracy: $T_{44} \simeq T_{z z}, \quad T_{r r} \simeq T_{\theta \theta}$
\square Separation: $T_{z z} \neq T_{r r}$
\square Nonzero trace anomaly $\sum T_{c c} \neq 0$

Mid－Plane

巫	$-\left\langle\mathcal{T}_{44}^{\mathrm{R}}(r)\right\rangle_{Q \bar{Q}}\left[\mathrm{GeV} / \mathrm{fm}^{3}\right]$
雨	$-\left\langle\mathcal{T}_{z z}^{\mathrm{R}}(r)\right\rangle_{Q \bar{Q}}\left[\mathrm{GeV} / \mathrm{fm}^{3}\right]$
耳	$\left\langle\mathcal{T}_{r r}^{\mathrm{R}}(r)\right\rangle_{Q \bar{Q}}\left[\mathrm{GeV} / \mathrm{fm}^{3}\right]$
巫	$\left\langle\mathcal{T}_{\theta \theta}^{\mathrm{R}}(r)\right\rangle_{Q \bar{Q}}\left[\mathrm{GeV} / \mathrm{fm}^{3}\right]$

\square Degeneracy：$T_{44} \simeq T_{z z}, \quad T_{r r} \simeq T_{\theta \theta}$
\square Separation：$T_{z z} \neq T_{r r}$
\square Nonzero trace anomaly $\sum T_{c c} \neq 0$

Force

$$
F_{\mathrm{pot}}=-\frac{d V}{d R}
$$

Force from Potential

$$
F_{\text {stress }}=\int_{\text {mid. }} d^{2} x T_{z z}(x)
$$

$$
F_{\mathrm{pot}}=-\frac{d V}{d R}
$$

Newton 1687

Force

$$
F_{\text {stress }}=\int_{\text {mid. }} d^{2} x T_{z z}(x)
$$

$$
F_{\text {pot }}=-\frac{d V}{d R} \quad F_{\text {stress }}=\int_{\text {mid. }} d^{2} x T_{z z}(x)
$$

Newton 1687

Force from Stress

Faraday 1839

Summary

\square Lattice OCD numerical simulations are unique tools to investigate non-perturbative aspects of QCD.
\square Observables that can be measured on the lattice are strictly limited due to our ignorance of physical states and Euclidean formulation.
\square There still are many things that can be obtained from there.
\square More studies based on novel ideas are awaited!

Data \& Physics

Gauge Configuration 1284

$128^{4} \times 4 \times 9 \times 2 \times 8$ Bytes
$=144 \mathrm{~GB}$

Textbook
Peskin-Schroeder

$\sim 10 \mathrm{MB}$

