Critical Points in Hot and Dense QCD

Masakiyo Kitazawa (Osaka U.→YITP, Kyoto)

The 15th Asia Pacific Physics Conference, 2022/8/25, online (Korea)

Critical Points

Ising Model

The CP is a singular point. Divergence of thermodynamic quantities.

These CPs belong to the same universality class (Z_2).

igstarrow Common critical exponents. Ex. $\ C \sim (T-T_c)^{-lpha}$

QCD Phase Diagram

QCD Phase Diagram

OCD Phase Diagram

Varying Quark Masses

Various orders of phase transition with variation of m_q .

Two Experimental Tools

Relativistic Heavy-Ion Collisions

Colliding two heavy nuclei in accelerators RHIC (USA), LHC (EU), etc.

Lattice QCD Numerical Simulations

First-principle simulations on supercomputers

Lattice QCD Numerical Simulations

Unique tool to perform quantitative analyses of non-perturbative QCD aspects

Hadron Spectroscopy

Thermodynamics

Relativistic Heavy-Ion Collisions

Elementary processes new particle search properties of particles Thermal Medium hot & dense medium phase transitions

LHC—Large Hadron Collider

J-PARC Heavy-lon Program

Heavy-ion collision experiments using accelerators in J-PARC (RCS/MR) World highest intensity / Low cost

■ $E_{lab} \sim 11 \rightarrow 19 \text{ AGeV}$ ■ $\sqrt{s_{NN}} \sim 4.9 \rightarrow 6.2 \text{ GeV}$ ■ Collision rate: ~10⁸Hz ■ 2028~?

J-PARC-HI: Staging Plan

D Phase-I (~2026)

SC HI Linac
 KEK PS booster ~10⁸Hz
 E16 spectrometer (upgrade)
 Thermal dileptons

D Phase-II (~2032)

New booster ~10¹¹Hz
 New spectrometer
 Fluctuations
 Correlations

HIC vs LAT: Pros & Cons

HIC vs LAT: Pros & Cons

finite density Accessible | Difficult beam-energy | due to scan | sign problem

Fluctuations & Distribution Functions

Fluctuations

Observables in equilibrium are fluctuating!

Cumulants

Cumulants

 $\begin{cases} \langle N \rangle_c = \langle N \rangle & \text{average} \\ \langle N^2 \rangle_c = \langle \delta N^2 \rangle & \text{variance} \\ \langle N^3 \rangle_c = \langle \delta N^3 \rangle \\ \langle N^4 \rangle_c = \langle \delta N^4 \rangle - 3 \langle \delta N^2 \rangle^2 \end{cases}$

- Gauss distribution: $\langle N^3 \rangle_c = \langle N^4 \rangle_c = \cdots = 0$
- Poisson distribution: $\langle N^2 \rangle_c = \langle N^3 \rangle_c = \langle N^4 \rangle_c = \cdots = \langle N \rangle_c$

Review: Asakawa, MK, PPNP 90 (2016)

 $P(M) \sim e^{-V(M)}$

- P(M) : probability distr.
- V(M) : effective potential
- *M* : order parameter

• Sign of $\langle N^3 \rangle_c$ is flipped at the CP.

• Sign of $\langle N^3 \rangle_c$ is flipped at the CP.

 $P(M) \sim e^{-V(M)}$

- P(M) : probability distr.
- *V*(*M*) : effective potential
- *M* : order parameter

• $\langle N^4 \rangle_c$ changes discontinuously at the CP.

Experimental Search for QCD Critical Point

Reviews: Asakawa, MK, PPNP ('16) Bluhm, MK+, NPA 1003 ('20) MK, Esumi, Nonaka, JPS journal, 2021/8

Event-by-event Fluctuations

Review: Asakawa, MK, PPNP 90 (2016)

STAR, PRL105 (2010)

Cumulants $\langle \delta N_p^2 \rangle, \langle \delta N_p^3 \rangle, \langle \delta N_p^4 \rangle_c$

• Sign of $\langle N^3 \rangle_c$ is flipped at the CP.

Sign Change of Cumulant

Asakawa, Ejiri, MK, PRL '09

Geometric interpretation on the signs

Fluctuations $\langle N_B^2 \rangle_c$ diverge at the QCD-CP.

Themodynamic Relation

$$\langle N_{\rm B}^{m+1} \rangle_c = T \frac{\partial \langle N_{\rm B}^m \rangle_c}{\partial \mu_{\rm B}}$$

Sign of $\langle N_B^3 \rangle_c$ can distinguish near and away sides!

 $\langle \delta N^3$

Impact of Negative Cumulants

Asakawa, Ejiri, MK, PRL '09

Once negative $\langle N_B^3 \rangle_c$ is established, it is evidences that $\begin{cases} (1) \ \chi_B \text{ has a peak structure in the QCD phase diagram.} \\ (2) \text{ Hot matter beyond the peak is created in the collisions.} \end{cases}$

No dependence on any specific models.
 Just the sign! **No** normalization (such as by N_{ch}).

STAR, PRL**126** ('21)

Nonzero and non-Poissonian cumulants are experimentally established.

Collision Energy Vs_{NN} (GeV)

Time Evolution of Cumulants

Proper understanding of the time evolution of fluctuations is indispensable.

Rapidity Window Dependence in Diffusion Models

Higher order cumulants

D 2nd order cumulant near CP

in diffusion master equation MK+ (2014); MK (2015)

in stochastic diffusion equation sakaida, Asakawa, Fujii, MK, 2018

□ Non-monotonic Δy dependence can emerge reflecting the dynamical evolution.

Issues with Experimental Analysis

Detector-response correction

MK, Asakawa, 2012 MK, 2016 MK, Luo, 2017 Nonaka, MK, Esumi, 2017 Nonaka, MK, Esumi, 2018

Pileup correction
 Nonaka, MK, Esumi, 2020

 Acceptance correction
 Nonaka, MK, Esumi, 2022

Lattice Simulation of CP in Heavy-Quark Region

WHOT-QCD, Phys. Rev. **D 101** (2020) 05450; WHOT-QCD, PTEP **2021** (2021) 013B08; Kiyohara, MK, Ejiri, Kanaya, Phys. Rev. **D 104** (2021) 114509; WHOT-QCD, PTEP **2022** (2022) 033B05 WHOT-QCD (Ashikawa, et al.), in progress

Varying Quark Masses

Columbia plot Example = order of phase tr. at $\mu = 0$ Phase diagram in PURE $m_q = \infty$ heavy-quark region N_f=2 00 ms GAUGE 2nd order 1st 2nd order Z(2) order O(4) T1sttr. physical point Critical N_f=3 N_f=1 Point m, $= \pm = >$ nd order orde $1/m_a$ m_{u,d} $m_q = 0$

Various orders of phase transition with variation of m_q .

 $P(M) \sim e^{-V(M)}$

- P(M) : probability distr.
- *V*(*M*) : effective potential
- *M* : order parameter

• $\langle N^4 \rangle_c$ changes discontinuously at the CP.

Finite-Volume Effects

Sudden change of B₄ at the CP is smeared by finite V effect.
B₄ obtained for various V has crossing at t = 0.
At the crossing point, B₄ = 1.604 in Z₂ universality class.

Finite-Volume Effects

Sudden change of B₄ at the CP is smeared by finite V effect.
B₄ obtained for various V has crossing at t = 0.
At the crossing point, B₄ = 1.604 in Z₂ universality class.

Binder-Cumulant Analysis

Light-quark region

Kuramashi, Nakamura, Ohno, Takeda, '20

J Heavy-quark region Cuteri , Philipsen , Schön, Sciarra, '21

Statistically-significant deviation of the crossing point from the 3d-Ising value.
 Too large finite-V effects?

Numerical Simulation

Coarse lattice: $N_t = 4$ But large spatial volume: $LT = N_s / N_t \le 12$

Hopping-param. (~1/m_q) expansion
 Monte-Calro with LO action
 High statistical analysis

Simulation params.

lattice size	β^*	λ	$\kappa^{N_{\rm f}=2}$
$48^3 \times 4$	5.6869	0.004	0.0568
	5.6861	0.005	0.0601
	5.6849	0.006	0.0629
$40^3 \times 4, 36^3 \times 4$	5.6885	0.003	0.0529
	5.6869	0.004	0.0568
	5.6861	0.005	0.0601
	5.6849	0.006	0.0629
	5.6837	0.007	0.0653
$32^3 \times 4$	5.6885	0.003	0.0529
	5.6865	0.004	0.0568
	5.6861	0.005	0.0601
	5.6845	0.006	0.0629
	5.6837	0.007	0.0653
$24^3 \times 4$	5.6870	0.0038	0.0561
	5.6820	0.0077	0.0669
	5.6780	0.0115	0.0740

Binder-Cumulant Analysis

Z2 $B_4 = 1.604$ $\nu = 0.630$ $LT \ge 9$ $B_4 = 1.630(24)(2), \ \nu = 0.614(48)(3)$ $LT \ge 8$ $B_4 = 1.643(15)(2), \ \nu = 0.614(29)(3)$

■ B_4 and ν are consistent with Z₂ universality class only when $LT \ge 9$ data are used for the analysis.

Further Check of Finite-V Scaling

Effective potential at the CP

$\lambda = \lambda_{\rm c}$ 0.30 0.7 0.6 $\Delta\Omega(LT_{ m c})^{3-y_t}$ 0.25 0.5 $(U_{\mathrm{H}}^{\mathrm{H}})$ 0.4 0.3 LT = 12LT = 120.20 LT = 10LT = 100.2 LT = 9LT = 90.1 LT = 8LT = 80.15 0.0 LT = 6LT = 6-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 -0.10-0.05 0.00 0.05 $(\Omega_{\mathrm{R}} - \left< \Omega_{\mathrm{R}} \right>) / (LT)^{y_t - 3}$ $(\lambda - \lambda_c)(LT)^{1/\nu}$

Scaling of order parameter

On the finer lattice, deviation from the finitesize scaling becomes larger with the same V.

□ Violation of the HPE \rightarrow See, WHOT, PTEP2022, 033B05

Summary

- Critical points appear many places in QCD at nonzero temperature.
- Two experimental tools for the search for the CPs:
 Relativistic heavy-ion collisions
 Lattice QCD numerical simulations
- Various studies are ongoing using both real and virtual experiments.

Quantum ChromoDynamics

Building blocks of matter

Quantum ChromoDynamics

Building blocks of matter

Quantum chromodynamics (QCD)
 =Fundamental theory of strong interaction

$$\mathcal{L} = \frac{\bar{\psi}(i D - m)\psi}{1 - \frac{1}{4}} \frac{F_{\mu\nu,a}F_a^{\mu\nu}}{1 - \frac{1}{4}} \frac{F_{\mu\nu,a}F_a^{\mu\nu}}{1 - \frac{1}{4}}$$

Quark-Gluon Plasma (QGP)

vacuum

Quark-Gluon Plasma (QGP)

Quark-Gluon Plasma (QGP)

quark-gluon plasma

Early Universe