

LT = 12, 10, 91.68 12 - 8LT = 12 - 61.66 LT = 61.64 B_4^Ω 1.62 NLO. N 1.60 0.0050 0.0048 1.58 0.30 0.25 TC3-91

Critical Points in QCD

Masakiyo Kitazawa (YITP, Kyoto)

Seminar @ Nuclear Theory Group, Kyoto U., 2022/10/19

Critical Points

Ising Model

CP: Second-order transition point.
 Singularities in thermodynamic quantities.

 \square These CPs belong to the same universality class (Z_2).

Common critical exponents. Ex. $\ C \sim (T-T_c)^{-lpha}$

QCD Phase Diagram

QCD Phase Diagram

OCD Phase Diagram

QCD Phase Diagram

QCD Phase Diagram

Various orders of phase transition with a vari

Various orders of phase transition with a variation of m_q .

Fluctuations and Scaling near CP

CP in Ising Model

$$H = -J\sum_{\langle ij\rangle} S_i S_j - H\sum_i S_i \qquad M = \frac{1}{N}\sum_{i=1}^N S_i$$

Mapping b/w Ising & QCD

Ising Model

 $\overline{F(t,h)} = F(b^{y_t}t, b^{y_h}h)$

D Singular part: $F_{\text{QCD}}(T, \mu_q) = F_{\text{Ising}}(M(T, \mu_q))$

 $\begin{pmatrix} t \\ h \end{pmatrix} = M \begin{pmatrix} T \\ \mu_a \end{pmatrix} \qquad \begin{pmatrix} t \\ h \end{pmatrix} = M \begin{pmatrix} T \\ m_a^{-1} \end{pmatrix}$

Fluctuations = Prob. Distr.

Observables are fluctuating even in equilibrium!

Cumulants

Cumulants

 $\begin{cases} \langle N \rangle_c = \langle N \rangle & \text{average} \\ \langle N^2 \rangle_c = \langle \delta N^2 \rangle & \text{variance} \\ \langle N^3 \rangle_c = \langle \delta N^3 \rangle \\ \langle N^4 \rangle_c = \langle \delta N^4 \rangle - 3 \langle \delta N^2 \rangle^2 \end{cases}$

- Gauss distribution: $\langle N^3 \rangle_c = \langle N^4 \rangle_c = \cdots = 0$
- Poisson distribution: $\langle N^2 \rangle_c = \langle N^3 \rangle_c = \langle N^4 \rangle_c = \cdots = \langle N \rangle_c$

Review: Asakawa, MK, PPNP 90 (2016)

Cumulants around Critical Point

• Sign of $\langle M^3 \rangle_c$ is flipped at h = 0.

14

Cumulants around Critical Point

 $\square \langle M^4 \rangle_{c,h=0}$ changes discontinuously at the CP.

Experimental Search for QCD Critical Point in Heavy-Ion Collisions

Reviews:

Asakawa, MK, PPNP ('16) Bluhm, MK+, NPA 1003 ('20) MK, Esumi, Nonaka, JPS journal, 2021/8

現在.およそ10¹⁵g/cm³という超高密度 実現するとされる相転移の実験的探索が 提界各地の実験施設で行われているのをご

ビームエネルギー走査による高密度領域の 相構造探索である.

QCD Phase Diagram

Event-by-event Fluctuations

Review: Asakawa, MK, PPNP 90 (2016)

STAR, PRL105 (2010)

Cumulants $\langle \delta N_p^2 \rangle, \langle \delta N_p^3 \rangle, \langle \delta N_p^4 \rangle_c$

□ Sign of $\langle N^3 \rangle_c$ flips on the phase boundary of QCD. □ Same idea is also applicable to higher order cumulants.

Sign Change of Cumulant

Asakawa, Ejiri, MK, 'og

Geometric interpretation on the signs

Fluctuations $\langle N_B^2 \rangle_c$ diverge at the QCD-CP.

Themodynamic Relation

$$\langle N_{\rm B}^{m+1} \rangle_c = T \frac{\partial \langle N_{\rm B}^m \rangle_c}{\partial \mu_{\rm B}}$$

Sign of $\langle N_B^3 \rangle_c$ can distinguish near and away sides!

 $\langle \delta N^3$

Collision Energy √s_{NN} (GeV) STAR, PRL**126** ('21)

Nonzero and non-Poissonian cumulants are experimentally established.

Lattice Simulations of QCD-CP in Heavy-Quark Region

> Ejiri+, Phys.Rev.D 101 (2020) 054505 Kiyohara+, Phys.Rev.D 104 (2021) 114509 Wakabayashi+, PTEP 2022 (2022) 033B05 Ashikawa+, in prep.

Varying Quark Masses

Columbia plot = order of phase tr. at $\mu = 0$

] Example

Phase diagram in heavy-quark region

Cumulants around Critical Point

• $\langle M^4 \rangle_c$ changes discontinuously at the CP.

Finite-Volume Effects

Sudden change of B₄ at the CP is smeared by finite V effect.
B₄ obtained for various V has crossing at t = 0.
At the crossing point, B₄ = 1.604 in Z₂ universality class.

Finite-Volume Effects

Sudden change of B₄ at the CP is smeared by finite V effect.
B₄ obtained for various V has crossing at t = 0.
At the crossing point, B₄ = 1.604 in Z₂ universality class.

Finite-Size Scaling

Infinite vol.: $F(t,h) = F(b^{y_t}t, b^{y_h}h)$ Finite vol.: $\tilde{F}(t,h,L^{-1}) = \tilde{F}(b^{y_t}t, b^{y_h}h, bL^{-1})$ $= \tilde{F}(L^{y_t}t, L^{y_h}h, 1)$ $\triangleright b = L$ $\langle M^n \rangle_c = \frac{\partial^n F}{\partial h^n}$ $B_4(t,0,L^{-1}) = b_4 + ctL^{y_t} + \cdots$ Z(2) universality class:

smaller V

 $b_4 = 1.604, \quad \nu = 1/y_t = 0.630$

Lattice Studies of Binder-Cumulant

Light-quark region

Kuramashi, Nakamura, Ohno, Takeda, '20

Heavy-quark region

Cuteri, Philipsen, Schön, Sciarra, '21

Statistically-significant deviation of the crossing point from the 3d-Ising value.

V may not be large enough?

Our Strategy

Kiyohara+, PRD104 (2021); Ashikawa+, in prep.

Numerical simulations with large spatial volume $LT \ge 10$

To realize it: \Box Focus on the CP in the heavy-quark region \Box Simulations on coarse lattices ($N_t = 1/aT = 4 \rightarrow 6$) \Box Hopping parameter ($\sim 1/m_q$) expansion (HPE) \Box Monte Carlo simulations at the LO of HPE \Box Measurement at the NLO of HPE by reweighting

Hopping Parameter Expansion 1

Wilson fermion

$$S_{q} = \sum_{x,y} \bar{\psi}_{x} M_{xy} \psi_{y} \qquad \kappa \sim \frac{1}{2m_{q}a}$$

$$M_{xy} = \delta_{xy} - \kappa B_{xy} \qquad B_{xy} = \sum_{\mu=1}^{4} \left[(1 - \gamma_{\mu}) U_{x,\mu} \delta_{y,x+\hat{\mu}} + (1 + \gamma_{\mu}) U_{y,\mu}^{\dagger} \delta_{y,x-\hat{\mu}} \right]$$

Hopping Parameter Expansion 2

□ Monte Carlo Simulation @ LO

 heat bath & over relaxation with modified staple
 Numerical cost is almost the same as the pure YM!

NLO by Reweighting

 $\langle \mathcal{O} \rangle_{\rm NLO} = \frac{\langle \hat{O} e^{-S_{\rm NLO}} \rangle_{\rm LO}}{\langle e^{-S_{\rm NLO}} \rangle_{\rm LO}}$

Overlapping problem is well suppressed due to the LO confs.
 Realize high statistical analysis

$$\lambda = 64 N_c N_f \kappa^4$$

Numerical Simulation (a) $N_t = 4$

Kiyohara+, PRD104 (2021) 114509

Coarse lattice: $N_t = 4$ But large spatial volume:

 $LT = N_s / N_t \le 12$

Hopping-param. (~1/m_q) expansion
 Monte-Calro with LO action
 High statistical analysis (6 × 10⁵ meas.)

Simulation params.

lattice size	β^*	λ	$\kappa^{N_{\rm f}=2}$
$48^3 \times 4$	5.6869	0.004	0.0568
	5.6861	0.005	0.0601
	5.6849	0.006	0.0629
$40^3 \times 4, 36^3 \times 4$	5.6885	0.003	0.0529
	5.6869	0.004	0.0568
	5.6861	0.005	0.0601
	5.6849	0.006	0.0629
	5.6837	0.007	0.0653
$32^3 \times 4$	5.6885	0.003	0.0529
	5.6865	0.004	0.0568
	5.6861	0.005	0.0601
	5.6845	0.006	0.0629
	5.6837	0.007	0.0653
$24^3 \times 4$	5.6870	0.0038	0.0561
	5.6820	0.0077	0.0669
	5.6780	0.0115	0.0740

 $\lambda = 64 N_c N_f \kappa^4$

Binder-Cumulant Analysis

Fitting function $B_4(\lambda, LT) = b_4 + c(\lambda - \lambda_c)(LT)^{1/\nu}$ params: b_4 , c, λ_c , ν

Binder-Cumulant Analysis

 $LT \ge 9 \quad B_4 = 1.630(24)(2), \ \nu = 0.614(48)(3)$ $LT \ge 8 \quad B_4 = 1.643(15)(2), \ \nu = 0.614(29)(3)$ $Z_2 \qquad B_4 = 1.604 \qquad \nu = 0.630$

 $\square B_4 \text{ and } \nu \text{ are consistent with } \mathbb{Z}_2 \text{ universality class}$ only when $LT \ge 9$ data are used for the analysis.

Scaling of Distribution Function

e Potential: $V(\Omega_{
m R}) = -\log P(\Omega_{
m R})$

LT = 12LT = 10LT = 9LT = 8LT = 6

Result at $\lambda = \lambda_c$

Z₂-FSS is well applied near the peaks
 Scaling violation around the edges
 lead to scaling violation of B₄

Scaling of Gap of Peaks

Polyakov-loop Distribution

$\lambda = 0.0050$ 15 LT = 12LT = 10LT = 9LT = 810 $p(\Omega_{ m R})$ LT = 65 0 0.00 0.05 0.10 0.15 $\Omega_{ m R}$

Peak Position

 λ dep. of the gap agrees well with Z_2 -FSS.

■ For $N_t = 6$, deviation from the finite-size scaling is more significant with the same V.

37

Lattice Studies of Binder-Cumulant

Light-quark region

Kuramashi, Nakamura, Ohno, Takeda, '20

Heavy-quark region

Cuteri, Philipsen, Schön, Sciarra, '21

Statistically-significant deviation of the crossing point from the 3d-Ising value.

V may not be large enough?

Violation of FSS & Remnant of Z(3) Probability Distribution of Polyakov loop

= 6

0.02

 Ω_R

0.04

0.06

Convergence of HPE

Wakabayashi+ ('22)

HPE of free lattice field (U=1) Wilson-loop-type

Polyakov-loop-type

 $N_t = 4 \ \kappa_c = 0.0602(4)$ Kiyohara+,'21 $N_t = 6 \ \kappa_c = 0.0877(9)$ Cuteri+, '21 NNLO and higher Wakabayashi+ ('22)

Summary

- Critical points appear many places in QCD at nonzero temperature.
- Among them, a search for the CPs 1) on the $T - \mu_q$ plane by Relativistic heavy-ion collisions 2) on the $T - m_q$ plane by Lattice QCD simulations are interesting subjects that are actively studied.
- Large spatial-volume simulations are mandatory to apply for the FSS for the analysis of the CP on the lattice.

Transition Line

Definitions of transition line \square Maximum of $\langle \Omega_R^2 \rangle$ \square Zero of $\langle \Omega_R^2 \rangle$ \square Minimum of B_4

