Real & Virtual Experiments to Explore Non-Perturbative Aspects of QCD

Masakiyo Kitazawa (from Osaka U., Aug. '22)

YITP Lunch Seminar, 2022/10/19

QCD

Fundamental Theory of Strong Interaction

2

Complemental use of experiments, simulations, as well as theories, is indispensable!

QCD Phase Diagram

OCD Phase Diagram

Two "Experimental" Tools to explore hot & dense medium

Relativistic Heavy-Ion Collisions

Lattice QCD Numerical Simulations

Real Experiment "HIC"

Virtual Experiment "LAT"

Their complementary use is crucial!

Topic 1

Experimental Search for OCD Phase Structure

Beam-Energy Scan

baryon chemical potential

Event-by-event Fluctuations

Cumulants $\langle \delta N_p^2 \rangle, \langle \delta N_p^3 \rangle, \langle \delta N_p^4 \rangle_c$

Non-Gaussian Cumulants

 $\langle \delta N_B^2 \rangle$

0

 $\langle \delta N^3$

0.8

 \mathcal{L}

μ_B [GeV]

0.6

0.4

0.2

0 150

100

$$\langle N^3 \rangle = T \frac{\partial \langle \partial H \rangle}{\partial \mu}$$

Asakawa, Ejiri, MK, 2009

Steeper divergence for higher-order cumulants Stephanov, 2009

Proton Number Cumulants in HIC

 $\langle N_p^3 \rangle_c / \langle N_p^2 \rangle_c$

 $\langle N_p^4 \rangle_c / \langle N_p^2 \rangle_c$

STAR, PRC 2020 [2001.06419]

Nonzero and non-Poissonian cumulants are experimentally established.

Time Evolution of Cumulants

Proper understanding of the time evolution of fluctuations is indispensable.

Rapidity Window Dependence in Diffusion Models

Higher order cumulants

in diffusion master equation MK+, PLB ('14); MK, NPA ('15)

D Evolution near CP

in stochastic diffusion equation

 $(\mathcal{L}) = 1$

Pihan+, 2205.12834

 \Box Non-monotonic Δy dependence can emerge reflecting the dynamical history.

Measurement of Soft Modes using (virtual) Photon Emission

Nishimura, MK, Kunihiro, PTEP '22; in prep.

2nd-order PT atQCD-CPColor superconductivity

Formation of soft modes fluctuation of order parameter

Photon emission?

$$\Pi^{\mu\nu}(k) =$$

Dilepton Production Rates

Diquark fluctuations give rise to anomalous enhancement in the low energy-momentum region for $T < 1.5T_c$.

Multi-Messenger Observation

Topic 2

QCD Phase Structure at Unphysical Quark Masses

Varying Quark Masses at $\mu_q=0$

Columbia plot = order of phase tr. at $\mu = 0$

Phase Diagram on the $T - m_q$ plane

u,d (degenerate) quark mass

Various orders of phase transition with variation of m_q .

Finite-Size Scaling / Binder Cumulant

Sudden change of B₄ is smeared by the finite-size effect.
 B₄ obtained for various V has crossing at t = 0.
 At the crossing point, B₄ = 1.604 in Z₂ universality class.

Binder-Cumulant Analysis

Light-quark region

Kuramashi, Nakamura, Ohno, Takeda, '20

Cuteri, Philipsen, Schön, Sciarra, '21

Heavy-quark region

Statistically-significant deviation of the crossing point from the 3d-Ising value.
 Large non-singular contribution?

Numerical Simulation

Kiyohara, MK, Ejiri, Kanaya, PRD, 2021

□ Coarse lattice: $N_t = 4$ □ But large spatial volume: $LT = N_s / N_t \le 12$

Hopping-param. (~1/m_q) expansion
 Monte-Calro with LO action
 High statistical analysis

Simulation params.

lattice size	β^*	λ	$\kappa^{N_{\mathrm{f}}=2}$
$48^3 \times 4$	5.6869	0.004	0.0568
	5.6861	0.005	0.0601
	5.6849	0.006	0.0629
$40^3 \times 4, 36^3 \times 4$	5.6885	0.003	0.0529
	5.6869	0.004	0.0568
	5.6861	0.005	0.0601
	5.6849	0.006	0.0629
	5.6837	0.007	0.0653
$32^3 \times 4$	5.6885	0.003	0.0529
	5.6865	0.004	0.0568
	5.6861	0.005	0.0601
	5.6845	0.006	0.0629
	5.6837	0.007	0.0653
$24^3 \times 4$	5.6870	0.0038	0.0561
	5.6820	0.0077	0.0669
	5.6780	0.0115	0.0740

Binder-Cumular Seminar in Kyoto-NT group 15:00 Today, Physics bldg. 5F

Kiyohara, MK, Ejiri, Kanaya, PRD, 2021

 $\nu = 0.630$ Z2 $B_4 = 1.604$ $LT \ge 9$ $B_4 = 1.630(24)(2), \nu = 0.614(48)(3)$ $LT \ge 8$ $B_4 = 1.643(15)(2), \nu = 0.614(29)(3)$

 \square B_4 and ν are consistent with Z_2 universality class only when $LT \ge 9$ data are used for the analysis.

Topic 3

Lattice Simulations with Energy-Momentum Tensor

Eneargy-Momentum Tensor

DEMT operator on the lattice

Naïve definition is problematic due to violation of translational symmetry on the lattice.
 EMT operator defined through the gradient flow Suzuki, 2013; FlowQCD, 2014~; WHOT-QCD, 2016~

Thermodynamics: $\varepsilon = \langle T_{00} \rangle$, $p = \langle T_{11} \rangle$ FlowQCD, 2014; 2016;

Conventional

from thermodynamic relations $p = \frac{T}{V} \ln Z$ $T \frac{\partial (p/T^4)}{\partial T} = \frac{\varepsilon - 3p}{T^4}$

Our method (SFtX) expectation value of $T_{\mu\nu}$

 $\varepsilon = \langle T_{00} \rangle$ $p = \langle T_{11} \rangle$

Thermodynamics quantities measured by completely different method agrees within 1% level.

Iritani, MK, Suzuki, Takaura, 2019

EMT Distribution in Localized Systems

EMT distribution inside hadrons now accessible??

Pressure @ proton

Nature, 557, 396 (2018)

EMT distribution @ pion

Kumano, Song, Teryaev (2018)

Measurement will be refined at the EIC.

Stress Tensor in $Q\overline{Q}$ System

FlowQCD, PLB (2019)

Lattice simulation SU(3) Yang-Mills a=0.029 fm R=0.69 fm t/a²=2.0

pulling

pushing

Definite physical meaning
Distortion of field, line of field
Propagation of the force as local interaction
Manifestly gauge invariant

Maxwell Stress

(in Maxwell Theory)

$$\sigma_{ij} = \varepsilon_0 E_i E_j + \frac{1}{\mu_0} B_i B_j - \frac{1}{2} \delta_{ij} \left(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)$$

$$\vec{E} = (E, 0, 0)$$
$$T_{ij} = \begin{pmatrix} -E^2 & 0 & 0 \\ 0 & E^2 & 0 \\ 0 & 0 & E^2 \end{pmatrix}$$

Parallel to field: Pulling
 Vertical to field: Pushing

SU(3) YM vs Maxwell

SU(3) Yang-Mills (quantum)

Maxwell (classical)

Propagation of the force is clearly different in YM and Maxwell theories!

Mid-Plane

Degeneracy: T₄₄ ~ T_{zz}, T_{rr} ~ T_{\thetaθ}
 Separation: T_{zz} ≠ T_{rr}
 Nonzero trace anomaly $\sum T_{cc} \neq 0$

Flux Tube in Dual SC Picture

Yanagihara, MK (2019)

0.5

0.6

EMT in Abelian-Higgs model

AH model can reproduce lattice results **qualitatively**. But, all parameters are rejected quantitatively.

Quantum Effects?

Classical vortex is unstable against quantum fluctuations
 Quantum effects give rise to
 Luscher term in potential Luscher (1981)
 Fattening of the tube Luscher, Munster, Weisz (1981)

How do these effects modify EMT distribution?

EMT Distr. in Simple Systems Ito, MK, in prep.

Quantum effect on EMT at 1-loop order

Confirmation of EMT conservation $\partial_x T_{11}(x) = 0$

Final Comment

Relativistic HIC and lattice simulations are invaluable tools for revealing non-perturbative aspects of QCD. Active researches are ongoing.

Looking forward to exchanging research ideas with you!

Maxwell Stress (in Maxwell Theory)

Definite physical meaning Distortion of field, line of the field Propagation of the force as local interaction

Columbia Plot = order of phase tr. at $\mu = 0$

36