CPOD2022 (Critical Point and Onset of Deconfinement), Dec. 1, 2022

10

5

0

1.68

1.66

1.64

1.62

1.60

1.58

0.30

0.0048

 B_4^Ω

0.00

0.05

0.10

0.15

Lattice study of the **Critical point** IT = 12 In heavy-quark QCD

Masakiyo Kitazawa (YITP, Kyoto)

with R. Ashikawa, S. Ejiri, K. Kanaya, H. Suzuki, N. Wakabayashi

Ashikawa+, in preparation Wakabayashi+, PTEP 2022, 033B05 (2022) [2112.06340] Kiyohara+, Phys. Rev. D104, 114509 (2021) [2108.00118] Shirogane+, PTEP 2021, 013B08 (2021) [2011.10292] Ejiri+, Phys. Rev. D101, 054505 (2020) [1912.10500]

Critical Points

Ising Model

CP: Second-order transition point.
 Singularities in thermodynamic quantities.

 \square These CPs belong to the same universality class (Z_2).

Common critical exponents. Ex. $\ C \sim (T-T_c)^{-lpha}$

QCD Phase Diagram

QCD Phase Diagram

Various orders of phase transition with a variation of m_q .

Binder Cumulant B₄

 $\Box \langle M^4 \rangle_{c,h=0}$ changes discontinuously at the CP.

Finite-Volume Effects

Discontinuity of B₄ at the CP is smeared on finite V.
 B₄ obtained at various V have crossing at t = 0.

Finite-Volume Effects

Discontinuity of B₄ at the CP is smeared on finite V.
 B₄ obtained at various V have crossing at t = 0.

Lattice Studies of Binder-Cumulant

Light-quark region

Kuramashi, Nakamura, Ohno, Takeda, '20

Heavy-quark region

Cuteri, Philipsen, Schön, Sciarra, '21

Statistically-significant deviation of the crossing point from the 3d-Ising value.

V may not be large enough?

Our Strategy

Kiyohara+, PRD104 (2021); Ashikawa+, in prep.

Numerical simulations on large spatial volume up to LT = 15

To realize it: CP in the heavy-quark region Simulations on coarse lattices ($N_t = 1/aT = 4 \rightarrow 6$) Hopping parameter ($\kappa \sim 1/m_q$) expansion (HPE)

$$\ln \det M(\kappa) = -\sum_{n=1}^{\infty} \frac{1}{n} \operatorname{tr}[B^n] \kappa^n$$

tr[B_n] is given by the closed trajectories of length n.

Hopping Parameter Expansion

□ Monte Carlo Simulation @ LO

 heat bath & over relaxation with modified staple
 Numerical cost is almost the same as the pure YM!

NLO by Reweighting

 $\langle \mathcal{O} \rangle_{\rm NLO} = \frac{\langle \hat{O} e^{-S_{\rm NLO}} \rangle_{\rm LO}}{\langle e^{-S_{\rm NLO}} \rangle_{\rm LO}}$

 Overlapping problem is well suppressed due to the LO confs.
 Realize high statistical analysis

$$\lambda = 64 N_c N_f \kappa^4$$

Numerical Simulation (a) $N_t = 4$

Kiyohara+, PRD104 (2021) 114509

Coarse lattice: $N_t = 4$ But large spatial volume:

 $LT = N_s / N_t \le 12$

Hopping-param. (~1/m_q) expansion
 Monte-Calro with LO action
 High statistical analysis (6 × 10⁵ meas.)

Simulation params.

lattice size	β^*	λ	$\kappa^{N_{\rm f}=2}$
$48^3 \times 4$	5.6869	0.004	0.0568
	5.6861	0.005	0.0601
	5.6849	0.006	0.0629
$40^3 \times 4, 36^3 \times 4$	5.6885	0.003	0.0529
	5.6869	0.004	0.0568
	5.6861	0.005	0.0601
	5.6849	0.006	0.0629
	5.6837	0.007	0.0653
$32^3 \times 4$	5.6885	0.003	0.0529
	5.6865	0.004	0.0568
	5.6861	0.005	0.0601
	5.6845	0.006	0.0629
	5.6837	0.007	0.0653
$24^3 \times 4$	5.6870	0.0038	0.0561
	5.6820	0.0077	0.0669
	5.6780	0.0115	0.0740

 $\lambda = 64 N_c N_f \kappa^4$

Transition Line

Binder-Cumulant Analysis

 $\lambda = 64 N_f N_c \kappa^4$

Fitting function $B_4(\lambda, LT) = b_4 + c(\lambda - \lambda_c)(LT)^{1/\nu}$ params: b_4 , c, λ_c , ν

Binder-Cumulant Analysis

 $LT \ge 9 \quad B_4 = 1.630(24)(2), \ \nu = 0.614(48)(3)$ $LT \ge 8 \quad B_4 = 1.643(15)(2), \ \nu = 0.614(29)(3)$ $Z_2 \qquad B_4 = 1.604 \qquad \nu = 0.630$

■ B_4 and ν are consistent with Z₂ universality class only when $LT \ge 9$ data are used for the analysis.

Scaling of Distribution Function

e Potential: $V(\Omega_{
m R}) = -\log P(\Omega_{
m R})$

Result at $\lambda = \lambda_c$

Z₂-FSS is well applied near the peaks
 Scaling violation around the edges
 lead to scaling violation of B₄

Numerical Simulation (a) $N_t = 6$ Ashikawa+, in prep.

■ For $N_t = 6$, deviation from the finite-size scaling is more significant with the same V.

Lattice Studies of Binder-Cumulant

Light-quark region

Kuramashi, Nakamura, Ohno, Takeda, '20

Heavy-quark region

Cuteri, Philipsen, Schön, Sciarra, '21

Statistically-significant deviation of the crossing point from the 3d-Ising value.
 V may not be large enough?

Convergence of HPE

Wakabayashi+ ('22)

HPE for free lattice field (U=1) =The worst convergence case

Wilson-loop-type

Polyakov-loop-type

 $N_t = 4 \ \kappa_c = 0.0602(4)$ Kiyohara+,'21 $N_t = 6 \ \kappa_c = 0.0877(9)$ Cuteri+, '21

NLO of HPE is reliable for $N_t = 6$.

Effective Inclusion of Higher-order Terms

Ejiri+ ('20) Wakabayashi+ ('22)

 $32^3 \times 6$

Milson-loop Polyakov-loop

 $\ln \det \overline{M(\kappa)} = \sum W(n)\kappa^n + \sum \overline{L(n)}\kappa^n$

□ L(n) are strongly correlated with each other. □ Higher order terms: $L(n) \simeq c_n L(N_t)$ □ incorporated by determining c_n .

Summary

- CP in the light- & heavy-quark QCD can be investigated by the lattice QCD simulations.
- The hopping-parameter expansion allows us to study the CP in the heavy-quark region quite efficiently.
 - Our method: Monte-Carlo@LO + NLO by Reweighting
 - Good convergence at the NLO for $N_t = 4, 6$.
 - Effective method will extend the applicability of the HPE further.
- Confirmation of Z(2) scaling behavior.
 But, large spatial volume is necessary.
 Precise determination of κ_c

Future: $N_t = 8, 10, \cdots$

LT = 12, 10, 91.68 LT = 12 - 8LT = 12 - 61.66 1.64 3^{Ω}_{4} 1.62 LT = 61.60 LT = 10LT = 12NLO, $N_f = 2$ 1.58 0.0050 0.0048 0.0052 λ

Violation of FSS & Remnant of Z(3) Probability Distribution of Polyakov loop

Scaling of Gap of Peaks

Polyakov-loop Distribution

$\lambda = 0.0050$ 15 LT = 12LT = 10LT = 9LT = 810 $p(\Omega_{ m R})$ LT = 65 0 0.00 0.05 0.10 0.15 $\Omega_{ m R}$

Peak Position

 λ dep. of the gap agrees well with Z_2 -FSS.

Mapping b/w Ising & QCD

Ising Model

 $\begin{pmatrix} t \\ h \end{pmatrix} = M \begin{pmatrix} T \\ \mu_a \end{pmatrix}$

 $F(t,h) = F(b^{y_t}t, b^{y_h}h)$

D Singular part: $F_{\text{QCD}}(T, \mu_q) = F_{\text{Ising}}(M(T, \mu_q))$

24

Hopping Parameter Expansion 1

Wilson fermion