Exploring Strongly-Interacting Matter in Heavy-ion Collisions

Masakiyo Kitazawa (YITP, Kyoto)

ISMD 2023, Gyöngyös, Hungary, August. 22, 2023

QCD Phase Diagram

Crossover at μ = 0
 Possible first-order transition and QCD critical point in dense region
 Multiple QCD-CP? MK+ ('02)
 Color superconducting phases in dense and cold quark matter

QCD Phase Diagram

Crossover at μ = 0
 Possible first-order transition and QCD critical point in dense region
 Multiple QCD-CP? MK+ ('02)
 Color superconducting phases in dense and cold quark matter

Highest Baryon Density

Highest Baryon Density

 $E/A = 20 {\rm GeV}$ $\sqrt{s_{_{NN}}} \simeq 6 {\rm GeV}$

Akira Ohnishi 1964-2023 passed away silently on May. 16, 2023

History / Current Status of HIC

History / Current Status of HIC

J-PARC

Accelerators −LINAC −RCS −Main Ring(MR) ■ High intensity *I* = 1MW

Purposes— Hadron/Nuclear physics— Neutrino physics— Material/Life science

J-PARC

- Accelerators −LINAC −RCS −Main Ring(MR) ■ High intensity *I* = 1MW
 - Purposes
 Hadron/Nuclear physics

 Neutrino physics
 Material/Life science

J-PARC Heavy Ion Program High intensity Intermediate energy

Dilepton Production as experimental observables of Color Superconductivity & QCD-CP

> Nishimura, MK, Kunihiro, PTEP2022, 093D02 Nishimura, MK, Kunihiro, PTEP2023, 053D01

Observing CSC in HIC

CSC would not be created if Tc is not high enough.

• Even if created, its lifetime would be short.

Since CSC is created in the early stage, its signal would be blurred during the evolution in later stage.

Strategy in the present study:
Use dilepton production as an observable
Focus on precursory phenomena of CSC

Precursor of CSC

Anomalous behavior of observables near but above Tc of SC

electric conductivity
magnetic susceptibility
pseudogap

- Enhanced pair fluctuations is one of the origins of precursory phenomena.
- More significant phenomena in strongly-coupled systems.

Precursor of Color Superconductivity

MK, Koide, Kunihiro, Nemoto, '03, '05

. . .

100

-100

ω

0

Depression

in DoS above Tc

Model

NJL model (2-flavor) 200 $\mathcal{L} = \psi i \partial \!\!\!/ \psi + \mathcal{L}_S + \mathcal{L}_C$ 175 $\mathcal{L}_S = G_S \left((\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\tau\psi)^2 \right)$ 150 $\mathcal{L}_C = G_C ((\bar{\psi} i \gamma_5 \tau_A \lambda_A \psi^C) (\text{h.c.})$ 125 T [MeV]100 diquark interaction 75 **Parameters** 50 $G_S = 5.01 \text{ GeV}^{-2}, \quad \Lambda = 650 \text{MeV}, \quad m_q = 0$ 25 0 0

Phase Diagram in MFA

Order of phase transition

D 2nd in the MFA

□ can be 1st due to gauge fluctuation Matsuura+('04), Giannakis+('04) Noronha+('06), Fejos, Yamamoto('19)

Di-quark Fluctuations

-300

200

 $|\mathbf{k}|$ [MeV]

100

Soft mode of CSC transition
 Strength in the space-like region

MK, Koide, Kunihiro, Nemoto, '01,'05

Photon Self-Energy: Precursor of CSC

Dilepton Production Rate

$$\frac{d^4\Gamma}{dk^4} = \frac{\alpha}{12\pi^4} \frac{1}{k^2} \frac{1}{e^{\beta\omega-1}} \mathrm{Im} \Pi^{R\mu}_{\mu}(k)$$

DEffect of Di-quarks on $\Pi^{\mu u}(k)$

Production Rate at k = 0

Nishimura, MK, Kunihiro ('22)

Red: fluctuation contribution Blue: free quarks $G_C = 0.7G_s, T_c \simeq 45 \text{ MeV}$

Di-quark fluctuations give rise to large enhancement in the low energy region ω < 200 MeV and T < 1.5T_c.
 Anomalous enhancement is not sensitive to T.

Invariant-Mass Spectrum

Strong enhancement at low invariant mass. **Observable in the HIC?**

Dileptons from QCD Critical Point

NJL model (2-flavor)

 $\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi + G_S((\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\tau\psi)^2)$

Parameters

 $G_S = 5.5 \text{ GeV}^{-2}, \ \Lambda = 631 \text{MeV}, \ m_q = 5.5 \text{ MeV}$

Soft Mode of QCD-CP

= fluctuation of scalar ($\overline{q}q$) channel

 $D^{R}(x) = \langle [\bar{\psi}\psi(x), \bar{\psi}\psi(0)] \rangle \theta(t) = \blacksquare$

Random Phase Approximation

$$= + + + \cdots$$

Dilepton production rate near QCD-CP

Nishimura, MK, Kunihiro ('23)

Invariant mass spectrum

for fixed chem. pot.: $\mu = \mu_c$

□ Enhancement at low M_{ll} region near QCD-CP □ Distinguishment from diquark soft mode may be difficult.

Exploring dense quark matter

 is an interesting subject in heavy-ion collisions that are investigated actively all over the world.
 J-PARC-HI will accelerate this research field.

Dilepton production at ultra-low mass region

- can be used for experimental signals to detect
 - onset of color-superconducting phase transition
 - existence of QCD critical point

J-PARC-HI Staging Plan

Phase-I

---KEK-BS booster ---E16+ α spectrometer

Phase-II

NEW HI boosterNEW spectrometer

Gauge-Invariant Construction of $\Pi_{\mu\nu}(k)$

 \Box WT identity $k_{\mu}\Pi^{\mu\nu}(k) = 0$ is satisfied with AL, MT and DoS terms.

(Modified) Time-Dependent Ginzburg-Landau Approximation

Vertices

Vertices must be determined to be consistent with the TDGL approx.

$$\Pi^{\mu\nu}_{\rm AL}(k) = \checkmark \qquad \Pi^{\mu\nu}_{\rm MT}(k) = \checkmark \checkmark$$

$\Box \text{ WT identity for AL vertex}$ $k_{\mu}\Gamma^{\mu}(q, q + k) = \Xi^{-1}(q + k) - \Xi^{-1}(k)$ $\overrightarrow{k_{\mu}} \checkmark q = \overbrace{q + k} - \overbrace{q} q$

At the lowest order in k

Similar formula for

MT+DoS vertex

$$\begin{cases} \Gamma^0 = e_{\Delta}c \\ \Gamma^i = e_{\Delta} \frac{\partial^2 \Xi(q)^{-1}}{\partial q^2} (2q^i + k^i) \end{cases}$$

 e_Δ : electric charge of diquarks

□MT+DoS

Energy-Momentum Dependence

Nishimura, MK, Kunihiro ('22)

Red: fluctuation contribution Blue: free quarks $G_C = 0.7G_s, T_c \simeq 45 \text{ MeV}$

Enhancement due to diquark fluctuations is more suppressed for larger k.

Production Mechanism of Virtual Photons

Formulation

Diquark Fluctuations

Scalar Fluctuations

Photon self-energy including the soft mode of QCD-CP can be constructed in a similar manner as before.

Dilepton production rate near QCD-CP

Nishimura, MK, Kunihiro ('23)

Invariant mass spectrum

$\Box \omega - k$ plane

chemical potential: $\mu = \mu_c$

□ Enhancement at low ω, k, m_{ll} regions near QCD-CP □ Distinguishment from diquark soft mode may be difficult.

Electric Conductivity

\Box Soft mode leads to enhancement of conductivity σ .

 \square **Note:**

Both DPR and σ are given from photon self-energy.

 $\frac{d^4\Gamma}{d^4k} = -\frac{\alpha}{12\pi^4} \frac{1}{k^2} \frac{1}{e^{\omega/T} - 1} g_{\mu\nu} \text{Im}\Pi^{R\mu\nu}(\boldsymbol{k},\omega),$

$$\sigma = \frac{1}{3} \lim_{\omega \to 0} \frac{1}{\omega} \sum_{i=1,2,3} \operatorname{Im} \Pi^{Rii}(\mathbf{0}, \omega).$$

Critical Exponents

	QCD-CP	CSC
σ	$ T - T_c ^{-2/3}$	$ T - T_c ^{-1/2}$
τ	$ T - T_c ^{-1}$	$ T - T_c ^{-1}$

 Conductivity diverges with different critical exponents in QCD-CP & CSC.
 Can they distinguishable in HIC?? Nishimura, MK, Kunihiro, in prep.