J-PARC-HI: Theory

Masakiyo Kitazawa (YITP, Kyoto)

Workshop on nuclear physics with heavy ion reaction and related topics, 2023/9/30, Tohoku University

Accelerators − LINAC − RCS − Main Ring ■ High intensity *I* = 1MW

Purposes— Hadron/Nuclear physics— Neutrino physics— Material/Life science

Accelerators − LINAC − RCS − Main Ring ■ High intensity *I* = 1MW

Purposes — Hadron/Nuclear physics — Neutrino physics — Material/Life science

J-PARC Heavy Ion

High intensity

Intermediate eneargy

History / Current Status of HIC

J-PARC-HI Staging Plan

Phase-I

---KEK-BS booster ---E16+ α spectrometer

Phase-II

NEW HI boosterNEW spectrometer

Physics Goals

Exploring

Search for

Extremely Dense Medium

Rare Hadronic/Hypernuclear Events

J-PARC-HI = Highest Baryon Density

Hadron/Hypernuclear Physics

Correlation functions

Hypernuclei

Production Mechanism

Light-nuclei production as a signal of QCD critical point

Production Mechanism

Light-nuclei production as a signal of QCD critical point

Measurement of light/hyper-nuclei

Precise data will lead us to a better understanding of production mechanism Event-by-event Fluctuations of Conserved Charges

Fluctuations, Cumulants of Conserved Charges

$$\langle N^m \rangle_{\rm c} = \chi_m V$$

Divergence and sign change at the QCD-CP. Stephanov,'09; Asakawa, Ejiri, MK,'09

□ Volume dependence is canceled out in ratio. Ejiri, Karsch, Redlich,'05

Direct comparison with lattice QCD simulations.

□ Slower diffusion.

Experimental Results

Net-proton number cumulants

Questions

When are these fluctuations generated?
 Is the use of proton # cumulants as a proxy of baryon's justified?

STAR, 2020 (2001.02852)

Non-Poisson and non-monotonic behaviors of the higher order cumulants.

Evolution of Conserved-charge Fluctuations

Electric-charge Fluctuations: Wider $\Delta \eta$

DD-measure

Nucleon's Isospin as Two Sides of a Coin

Nucleons have two isospin states.

Coins have two sides.

MK, Asakawa, 2012;2012

Slot Machine Analogy

Reconstruction of Total Coin

$$P_{\odot}(N_{\odot}) = \sum_{P_{\odot}} P_{\odot}(N_{O}) B_{1/2}(N_{\odot};N_{O})$$

DExample

$$\begin{bmatrix} 2\langle (\delta N_p^{(\text{net})})^2 \rangle = \frac{1}{2}\langle (\delta N_B^{(\text{net})})^2 \rangle + \frac{1}{2}\langle (\delta N_B^{(\text{net})})^2 \rangle_{\text{free}} \\ 2\langle (\delta N_p^{(\text{net})})^3 \rangle = \frac{1}{4}\langle (\delta N_B^{(\text{net})})^3 \rangle + \frac{3}{4}\langle (\delta N_B^{(\text{net})})^3 \rangle_{\text{free}} \\ 2\langle (\delta N_p^{(\text{net})})^4 \rangle_c = \frac{1}{8}\langle (\delta N_B^{(\text{net})})^4 \rangle_c + \cdots$$
genuine info. Poisson noise

Note: Higher order cumulants are more fragile.

MK, Asakawa, 2012;2012

 $\langle N_B^2 \rangle_{\rm c} / \langle N_Q^2 \rangle_{\rm c}$

MK, Esumi, Nonaka, 2205.10030

$\langle N_{\rm B}^2\rangle_c/\langle N_{\rm Q}^2\rangle_c$

- Ratio of 2nd order: Suppress uncertainties from various experimental effects compared with higher orders.
- \square Almost linear T dependence around T_c^* .

$\Box \sqrt{s_{NN}} = 200 \text{GeV}$
0-5% centrality
$\Box \Delta y$ dependence
Construction of baryon number,
p_T -acceptance correction

Experimental Data

 $\langle N_n^2 \rangle_c$

STAR, PRC104,024902 (2021)

- proton cumulants up to 4th order
- rapidity window Δy
- $0.4 < p_T < 2.0 {\rm GeV/c}$

STAR, PRC100,014902 (2019)

- 2nd mixed cumulants of p, ,pi, K, Q
- pseudo-rapidity window $\Delta\eta$
- $0.4 < p_T < 1.6 \text{GeV/c}$
- Total charge: private comm. A. Chattergee

 □ proton → baryon cumulants MK, Asakawa,'12;'12
 □ Rapidity is better than pseudo-rapidity Ohnishi, MK, Asakawa, '16

□ Wider acceptance is more desirable.

p_T -Acceptance Correction

Modification by p_T -cut should be corrected. This study: Binomial distribution model.

$$\langle N_{
m net}^2
angle_c^{
m corrected} = rac{1}{p^2} \Big(\langle n_{
m net}^2
angle_c - (1-p) \langle n_{
m tot}
angle_c \Big)$$
MK, Asakawa, '12, '12

Cumulants: Proton \rightarrow Baryon & Acceptance Correction

$$\langle N_B^2 \rangle_c / \Delta y$$

$$\langle N_Q^2 \rangle_c / \Delta y$$

Data from STAR, '19, '21

Deviation from Poissonian is clarified by the acceptance correction.

$$\langle N_{
m net}^2
angle_c^{
m corrected} = rac{1}{p^2} \Big(\langle n_{
m net}^2
angle_c - (1-p) \langle n_{
m tot}
angle_c \Big)$$

MK, Asakawa, '12, '12

 $\langle N_B^2
angle_{
m c}/\langle N_Q^2
angle_{
m c}$

 $\Box \langle N_B^2 \rangle_c / \langle N_Q^2 \rangle_c$ becomes smaller due to the p_T -acceptance correction. $\Box \text{ Clear } \Delta y \text{ dependence } \longrightarrow \text{ non-thermal effects behind fluctuations}$

HIC vs HRG&LAT

From data @ STAR HRG+Lattice

HIC vs HRG&LAT

From data @ STAR HRG+Lattice

plot by MK

Effect of Diffusion and Rapidity Conversion

- **D** Blurring due to diffusion & rapidity conversion $(Y \rightarrow y)$
 - Stronger modification in Q than B

DResonance Decays

- About 30% charged particles come from RD
- Enhancement of charged particles

$$\left\{\begin{array}{c} \Box \text{ Increase } \langle N_Q^2 \rangle \\ \Box \text{ Reduce } \langle N_B^2 \rangle_c / \langle N_Q^2 \rangle_c \end{array}\right.$$

These effects will be more important for higher order cumulants!

Dilepton Production as experimental observables of Color Superconductivity & QCD-CP

> Nishimura, MK, Kunihiro, PTEP2022, 093D02 Nishimura, MK, Kunihiro, PTEP2023, 053D01

Observing CSC in HIC

CSC would not be created if Tc is not high enough.

• Even if created, its lifetime would be short.

Since CSC is created in the early stage, its signal would be blurred during the evolution in later stage.

Strategy in the present study:
Use dilepton production as an observable
Focus on precursory phenomena of CSC

Precursor of CSC

Anomalous behavior of observables near but above Tc of SC

electric conductivity
magnetic susceptibility
pseudogap

- Enhanced pair fluctuations is one of the origins of precursory phenomena.
- More significant phenomena in strongly-coupled systems.

Precursor of Color Superconductivity

MK, Koide, Kunihiro, Nemoto, '03, '05

. . .

100

-100

ω

0

Depression

in DoS above Tc

Model

NJL model (2-flavor) 200 $\mathcal{L} = \psi i \partial \!\!\!/ \psi + \mathcal{L}_S + \mathcal{L}_C$ 175 $\mathcal{L}_S = G_S \left((\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\tau\psi)^2 \right)$ 150 $\mathcal{L}_C = G_C ((\bar{\psi} i \gamma_5 \tau_A \lambda_A \psi^C) (\text{h.c.})$ 125 T [MeV]100 diquark interaction 75 **Parameters** 50 $G_S = 5.01 \text{ GeV}^{-2}, \quad \Lambda = 650 \text{MeV}, \quad m_q = 0$ 25 0 0

Phase Diagram in MFA

Order of phase transition

D 2nd in the MFA

□ can be 1st due to gauge fluctuation Matsuura+('04), Giannakis+('04) Noronha+('06), Fejos, Yamamoto('19)

Di-quark Fluctuations

-300

200

 $|\mathbf{k}|$ [MeV]

100

Soft mode of CSC transition
 Strength in the space-like region

MK, Koide, Kunihiro, Nemoto, '01,'05

Photon Self-Energy: Precursor of CSC

Dilepton Production Rate

$$\frac{d^4\Gamma}{dk^4} = \frac{\alpha}{12\pi^4} \frac{1}{k^2} \frac{1}{e^{\beta\omega-1}} \mathrm{Im} \Pi^{R\mu}_{\mu}(k)$$

DEffect of Di-quarks on $\Pi^{\mu u}(k)$

Production Rate at k = 0

Nishimura, MK, Kunihiro ('22)

Red: fluctuation contribution Blue: free quarks $G_C = 0.7G_s, T_c \simeq 45 \text{ MeV}$

Di-quark fluctuations give rise to large enhancement in the low energy region ω < 200 MeV and T < 1.5T_c.
 Anomalous enhancement is not sensitive to T.

Invariant-Mass Spectrum

Strong enhancement at low invariant mass. **Observable in the HIC?**

Dileptons from QCD Critical Point

NJL model (2-flavor)

 $\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi + G_S((\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\tau\psi)^2)$

Parameters

 $G_S = 5.5 \text{ GeV}^{-2}, \ \Lambda = 631 \text{MeV}, \ m_q = 5.5 \text{ MeV}$

Soft Mode of QCD-CP

= fluctuation of scalar ($\overline{q}q$) channel

 $D^{R}(x) = \langle [\bar{\psi}\psi(x), \bar{\psi}\psi(0)] \rangle \theta(t) = \blacksquare$

Random Phase Approximation

$$= + + + \cdots$$

Dilepton production rate near QCD-CP

Nishimura, MK, Kunihiro ('23)

Invariant mass spectrum

for fixed chem. pot.: $\mu = \mu_c$

□ Enhancement at low M_{ll} region near QCD-CP □ Distinguishment from diquark soft mode may be difficult. **Event Selection**

Sophisticated Event Selections

Event selection in terms of maximum baryon density (or, correlation analysis) should be a useful tool.

average transverse energy

Data

UrQMD

 10^{2}

√ s_{NN} (GeV)

10

Nuclear Liquid-Gas Phase Transition

Pochodzalla+, PRL, 75, 1040 ('95)

Nuclear Liquid-Gas Phase Transition

Pochodzalla+, PRL, 75, 1040 ('95)

Similar analysis in relativistic HIC requires event-by-event total energy of the fireball. Beam-energy scan will reveal phase transitions in dense QCD.
 J-PARC-HI will play an invaluable role in the future development.

Many interesting observables to reveal the QCD phase diagram:
 Event-by-event fluctuations of conserved charges
 Dilepton production at ultra-low-mass-region
 Event selection via baryon/energy density
 Light/hyper-nuclei production

J-PARC-HI Collaboration

and 138 members in total

Exp.: J. K. Ahn, K. Aoki, S. Ashikaga, O. Busch, M. Chiu, T. Chujo, P. Cirkovic, T. Csorgo, D. Devetak, G. David, M. Djordjevic,

S. Esumi, P. Garg, R. Guernane, T. Gunji, T. Hachiya, H. Hamagaki, S. Hasegawa, B. S. Hong, S. H. Hwang, Y. Ichikawa, T. Ichisawa, K. Imai, M. Inaba, M. Kaneta, H. Kato, B. C. E. J. Kim, X. Luo, Y. Miake, J. Milosevic, D. Mishra, Y. Morino, L. Nadjdjerdj, S. Nagamiya, T. Nakamura, M. Naruki, K. Nishio, T. Nonaka, M. Ogino, K. Oyama, K. Ozawa, T. R. Saito, A. Sakaguchi, T. Sakaguchi, S. Sakai, H. Sako, K. Sato, S. Savada, K. Shigaki, S. Shimansky, M. Shimomura, M. Stojanovic, H. Sugimura, Y. Takeuchi, H. Tamura, K. H. Tanaka, Y. Tanaka, K. Tanida, N. Xu, S. Yokkaichi, I. K. Yoo

Theor.: Y. Akamatsu, M. Asakawa, K. Fukushima, H. Fujii , T. Hatsuda , M. Harada, T. Hirano, K. Itakura M. Kitazawa , T. Maruyama , K. Morita, K. Murase A. Nakamura, Y. Nara, C. Nonaka, A. Ohnishi, M. Oka

Acc.: E. Chishiro, H. Harada, Y. Hashimoto, N. Hayashi, K. Hirano, H. Hotchi, K. Ishii, T. Ito, M. Kinsho, R. Kitamura, A. Kovalenko, J. Kamiya, N. Kikuzawa, T. Kimura, Y. Kondo, H. Kuboki, Y. Kurimoto, Y. Liu S. Meigo, A. Miura, T. Miyao, T. Morishita, Y. Morita, K. Moriya, R. Muto, T. Nakanoya, K. Niki, H. Oguri, C. Ohmori, A. Okabe, M. Okamura, P. K. Saha, K. Sato, Y. Sato, T. Shibata, T. Shimokawa, K. Shindo, S. Shinozaki, M. Shirakata, Y. Shobuda, K. Suganuma, Y. Sugiyama, H. Takahashi, T. Takayanagi, F. Tamura, J. Tamura, N. Tani, M. Tomisawa, T. Toyama, Y. Watanabe, K. Yamamoto, M. Yamamoto, M. Yoshii, M. Yoshimoto

J-PARC-HI Future Plan

J-PARC-HI Staging Plan

Phase-I

---KEK-BS booster ---E16+ α spectrometer

Phase-II

NEW HI boosterNEW spectrometer

Staging of HI Booster

Staging of HI Booster

Detector Phase-I

E16 Spectrometer

 $\begin{array}{l} -\phi \rightarrow e^+e^-, \, \phi \rightarrow K^+K^- \\ -\text{In-medium mass modification} \\ -\text{Pilot data taking in June} \end{array}$

UPGRADE

E16+ α

Upgrade forward region for high-multiplicity counting

Hadron/lepton measurement at wide acceptance

Detector Phase-II

 -4π acceptance, high-intensity beam - Precise measurement of fluctuations, dileptons - Detailed design are under discussion

Dimuon Setup

Hadron calorimeter + hyper-nuclear measurement

