Machine Learning Topological Sector of Yang-Mills Theory

Masakiyo Kitazawa (YITP, Kyoto)

Matsumoto, MK, Kohno, PTEP2021, 023D01

MK, Kohno, in preparation

Topological Charge in YM Theory

$$Q = \int d^4x \rho_q(x) : \text{integer}$$
$$\rho_q(x) = -\frac{1}{32\pi^2} \text{tr}[F_{\mu\nu}\tilde{F}_{\mu\nu}]$$

Motivations & Applications

- \Box $U_A(1)$ anomaly
- Axion for cosmology

Instantons

Toplogical freezing in simulations

$ho_q(x)$ in SU(3) YM

Machine Learning for measuring Q

Matsumoto, MK, Kohno, PTEP2021

Recognizing objects in high-dim. space

Input/Output Data

Matsumoto, MK, Kohno, PTEP2021

Q(t) on the flowed field at flow time t

Input data:

topological charge density at small $t \simeq 0.2 - 0.3$

Answer:

spatial integral at $t/a^2 = 4$

Setup/Result

Setup

- **SU(3)** YM Wilson action
- $\square \beta = 6.2, 6.5, 24^4 \ (T < T_c)$
- 🗖 20000 data
- \square average pooling to 12^4
- Multi-dim. CNN (Chainer)
- \square multiple t as multi-channel

Result

High accurate CNN model

 \Box Accuracy increases with increasing t.

Matsumoto, MK, Kohno, PTEP2021

Input t/a^2	$\beta = 6.2$	$\beta = 6.5$
0.45, 0.4, 0.35	0.974(2)	0.998(1)
0.4, 0.35, 0.3	0.975(2)	0.997(1)
0.35, 0.3, 0.25	0.967(2)	0.996(1)
0.3, 0.25, 0.2	0.959(2)	0.990(2)
0.25, 0.2, 0.15	0.939(3)	0.951(2)
0.2, 0.15, 0.1	0.864(3)	0.831(5)
0.15, 0.1, 0.05	0.692(4)	0.647(8)
0.1, 0.05, 0	0.538(5)	0.499(6)

Result

Matsumoto, MK, Kohno, PTEP2021

NN without spatial coordinates

NN just refers to spatial integral of $\rho_0(t)$

Can NN recognize local structure?

MK, Kohno, in preparation

To realize the recognition of local structures

■ Normalization (subtract the average) : $\tilde{\rho}_q(x) = \rho_q(x) - \bar{\rho}$ ■ Data set @ $T > T_c \rightarrow$ Range of T where DIGA is well justified ■ Data at larger flow time t/a^2

Purpose

Recognition of local structure in higher-dimensional space

- Direct confirmation of instantons
- Further applications in numerical studies

Setup

U SU(3) YM

- \square Wilson gauge action, $\beta=6.3$
- $\square 36^3 \times 8 (T = 1.88T_c)$
- □ ~2500 data
- \square Approximately equal numbers for |Q| = 0,1,2
- **\square** Average pooling: $36^3 \times 8 \rightarrow 18^3 \times 4$

 \square Padding by permutations of spatial axes by $\times 6$

MK, Kohno, in preparation

Q	-3	-2	-1	0	1	2	3	total
Data #	23	436	512	493	534	448	15	2461

CNN Models & Training

Dimensional Reduction

D 3 + 1 : No reduction

- $\square 3 + 0$: Integrate temporal direction
- $\square 2 + 1$: Integrate one spatial direction

Data Division

- Training: 1600 × 6
 Validation: 400 × 6
 Evaluation: 400 × 6
- Data are divided randomly into training/validation/evalation
 Perform the training 7 times for each setting

Layer	In ch	Out ch	Filter	Out size	Activation
conv1	1,2,3	4	3^4	4x4x18^3	sigmoid
conv2	4	8	3^4	8x4x18^3	sigmoid
conv3	8	16	3^4	16x4x18^3	sigmoid
GAP	-	-	4x18^3	16x1	-
ull connect	_		16x1	1	-
4d CNN					

NN Structure

Optimizer	Adam
Learning rate	0.001
Batchsize	16
Loss function	MSE
N_train	9600
N_val	1200
N_eval	1800
N_epoch	1500

MK, Kohno, in preparation

Result: Accuracy

- Training for 7 times
- Big markers: Average and variance of top 5 results
- Small points: accuracy of each training
- Origin of errors
 - training data
 - procedure of training

worse accuracy at 2+1d **→** Recognition of 3d structure

- increasing accuracy with multiple $t \rightarrow \text{Recognition of 4d (space+flow) structure}$
- \Box unstable result for 3+1d? \rightarrow Recognition of 5d (3+1+flow) space?

Result: Accuracy

□ worse accuracy at 2+1d → Recognition of 3d structure

□ increasing accuracy with multiple $t \rightarrow \text{Recognition of 4d (space+flow) structure}$ □ unstable result for 3+1d? → Recognition of 5d (3+1+flow) space? □ $t/a^2 \le 1$: saturation of accuracy

Topological Charge Density

Summary

■ A CNN model to recognize local structure of the topological charge density ■ Supervised learning (Input: $\rho_0(x, t)$, Output: $Q_{t=4}$)

- **D** SU(3) @ $T > T_c$
- \square Removal the average from $ho_Q(x,t)$ as preconditioning

□ Accuracy increases as increasing the dimension of the data
 □ →Our CNN model recognizes structures in 4(+1)d space

Future

Detailed structure of localized objects: location, size, form, etc.

- Training of vacuum configurations
 - understanding of vacuum structure of YM theory
- Other numerical applications