The 4th J-PARC Symposium, Mito, Japan, 2024/10/15

Physics of J-PARC Heavy-lon Project

Masakiyo Kitazawa (YITP, Kyoto) for J-PARC-HI Collaboration

Imagine J-PARC 20 years from now!

New experiments with heavy-ion beams will enrich the future of J-PARC.

J-PARC-HI = J-PARC Heavy-lon Project

- New HI injector + existing accelerators (RCS, MR)
 Heavy-ion beams with world highest luminosity
- Realize various new experiments at J-PARC

J-PARC-HI = J-PARC Heavy-lon Project

- New HI injector + existing accelerators (RCS, MR)
 Heavy-ion beams with world highest luminosity
- Realize various new experiments at J-PARC

Who am I??

Masakiyo Kitazawa Yukawa Institute for Theoretical Physics, Kyoto U.

Working with J-PARC-HI since 2014

Research Interests:

- -QCD in medium
- -Relativistic heavy-ion collisions
- -Lattice QCD Monte-Carlo simulations

Relativistic HI Collisions at J-PARC: Physics Goals

Exploring extremely dense medium

- -QCD phase transitions
- Equation state for neutron stars

Hadron/hypernuclear physics

- -Hadron interaction/structure
- Search for rare events
- Hypernuclear physics

QCD Phase Diagram

 Crossover at zero density
 Possible first-order transition and QCD critical point in dense region
 Multiple QCD-CP? MK+ ('02)
 Color superconducting phases in dense and cold quark matter

History / Current Status of HIC

How High Density? Where is optimal $\sqrt{s_{NN}}$?

Medium with $\rho > 3\rho_0$ can be formed for $V_4 \simeq (6 \text{ fm})^4$ at J-PARC-HI energy

The density is comparable with the cores of neutron stars

J-PARC-HI = experiments to create the highest baryondensity matter in the Universe

Event-by-event Fluctuations

Theoretical Predictions on conserved charge fluctuations

STAR (2024)

Higher-order cumulants
Signal of QCD CP

Baryon/Charge Cumulant Ratio

Finite acceptance modifies the ratio strongly.
 Wider acceptance/efficiency is desirable.

Acceptance of Detectors

Each detector has individual acceptance and efficiency. Checking detector-response correction is important.

Dilepton Production Rate

Generated by the decay of virtual photons
 Carry information of primordial medium

Physics accessible with DPR

- Medium temperature
- Dispersion relations
- Chiral mixing by chiral restoration
- Signal of phase transitions

Dilepton at Ultra-Low-Mass Region

Signal for QCD-CP & Color SC

Nishimura, MK, Kunihiro, '22; '23; '24

Anomalous dilepton production due to soft modes at phase transitions

Two "hot spots" on the $T-\mu$ plane?

Event Selection

Event selections via highest baryon/energy density will allow us a detailed study of QCD phase diagram.

events

10

10²

 $\sqrt{s_{NN}}$

10³

Hadron/Hypernuclear Physics

Hypernuclei

-30

-10

0

-20

Hyodo (today)Mantovani Sarti (16th) Correlation functions

30

40 [cm]

ALICE,2020

\rightarrow hadron interaction event -**∓**-3³H **−** "⁵H ---- ⁴He, ⁴He 2.6 ALICE pp $\sqrt{s} = 5 \text{ TeV}$ Yield (dN/dy) for 10⁶ ● , ⁶/₄He 2.4 $r_0 = 1.13 \pm 0.02 \stackrel{+0.17}{_{-0.15}} \text{fm}$ $\lambda = 0.68 \pm 0.07$ C(k*) 10-1 500 400 k* (MeV/c) 10 1.2 10⁻³ 10 $0.7 < S_T < 1$ 0.8 10³ 10² 10 200 150 250 50 100 $\sqrt{s_{NN}}$ (GeV) k* (MeV/c) ¹²C+¹²C at 15AGeV ¹²C ⁴_ΛHe $(^{7}_{\Lambda\Lambda\Lambda}H)$ $(^{6}_{\Lambda\Lambda\Lambda}H)$ 6Li ⁴He (5T / 2.4m magnet) ⁶ Be ⁵ He ⁵∧Li nΛ Ξ⁻n Ξ⁻nn Λn Λnn

10

20

Shape of Nuclei

Deformation parameter β , γ can be estimated from HIC using flow correlations.

J-PARC-HI Future Plan

J-PARC-HI Staging Plan

Phase-I

---KEK-BS booster ---E16+ α spectrometer

Phase-II

NEW HI boosterNEW spectrometer

Staging of HI Booster

Staging of HI Booster

Detector Phase-I

Morino (15th), Ozawa (Poster)

E16 Spectrometer

 $-\phi \rightarrow e^+e^-, \phi \rightarrow K^+K^-$ -In-medium mass modification -Commissioning 2020-2024

UPGRADE

$E16+\alpha$

Upgrade forward region for high-multiplicity counting

Hadron/lepton measurement at wide acceptance

Hadron Spectrometer Phase-II

 -4π acceptance, high-intensity beam - Precise measurement of fluctuations, dileptons - Detailed design are under discussion

Dimuon Setup

Hadron calorimeter

Dilelectron Measurements Phase-II

 Large acceptance measurement of dielectrons and hadrons

Precise measurement of low-mass dielectronssearch for QCD-CP & CSC phase transition

M_{ee} GeV/c²

Hypernuclear Spectrometer

- Closed geometry : Sweeping magnet and Collimator
- -Interaction Rate : ~100 MHz
- Lifetime and Magnetic moment
 Search for new hypernuclei and
 strangelet

Phase-II

Imagine J-PARC 20 years from now!

New experiments with heavy-ion beams will enrich the future of J-PARC.

Summary

J-PARC-HI will

realize high-precision HI experiments to explore — extremely dense QCD

-hadron/hypernuclear physics, etc.

- be realized through the staging plan:
 - Phase-I: Experiment utilizing existing equipment
 - Phase-II: Full-spec experiment with world highest rate

Still many things to do

We need continuous support from community.
 New challengers are welcome!

J-PARC-HI Collaboration

and 138 members in total

Exp.: J. K. Ahn, K. Aoki, S. Ashikaga, O. Busch, M. Chiu, T. Chujo, P. Cirkovic, T. Csorgo, D. Devetak, G. David, M. Djordjevic,

S. Esumi, P. Garg, R. Guernane, T. Gunji, T. Hachiya, H. Hamagaki, S. Hasegawa, B. S. Hong, S. H. Hwang, Y. Ichikawa, T. Ichisawa, K. Imai, M. Inaba, M. Kaneta, H. Kato, B. C. E. J. Kim, X. Luo, Y. Miake, J. Milosevic, D. Mishra, Y. Morino, L. Nadjdjerdj, S. Nagamiya, T. Nakamura, M. Naruki, K. Nishio, T. Nonaka, M. Ogino, K. Oyama, K. Ozawa, T. R. Saito, A. Sakaguchi, T. Sakaguchi, S. Sakai, H. Sako, K. Sato, S. Savada, K. Shigaki, S. Shimansky, M. Shimomura, M. Stojanovic, H. Sugimura, Y. Takeuchi, H. Tamura, K. H. Tanaka, Y. Tanaka, K. Tanida, N. Xu, S. Yokkaichi, I. K. Yoo

Theor.: Y. Akamatsu, M. Asakawa, K. Fukushima, H. Fujii , T. Hatsuda , M. Harada, T. Hirano, K. Itakura M. Kitazawa , T. Maruyama , K. Morita, K. Murase A. Nakamura, Y. Nara, C. Nonaka, A. Ohnishi, M. Oka

Acc.: E. Chishiro, H. Harada, Y. Hashimoto, N. Hayashi, K. Hirano, H. Hotchi, K. Ishii, T. Ito, M. Kinsho, R. Kitamura, A. Kovalenko, J. Kamiya, N. Kikuzawa, T. Kimura, Y. Kondo, H. Kuboki, Y. Kurimoto, Y. Liu S. Meigo, A. Miura, T. Miyao, T. Morishita, Y. Morita, K. Moriya, R. Muto, T. Nakanoya, K. Niki, H. Oguri, C. Ohmori, A. Okabe, M. Okamura, P. K. Saha, K. Sato, Y. Sato, T. Shibata, T. Shimokawa, K. Shindo, S. Shinozaki, M. Shirakata, Y. Shobuda, K. Suganuma, Y. Sugiyama, H. Takahashi, T. Takayanagi, F. Tamura, J. Tamura, N. Tani, M. Tomisawa, T. Toyama, Y. Watanabe, K. Yamamoto, M. Yamamoto, M. Yoshii, M. Yoshimoto

Accelerators - LINAC - RCS - Main Ring(MR) High intensity I = 1MW

Purposes— Hadron/Nuclear physics— Neutrino physics— Material/Life science

J-PARC-HI = J-PARC Heavy-lon Project

- New HI injector + existing synchrotrons (RCS, MR)
- Supply heavy-ion beams with world highest luminosity
- Realize various new experiments at J-PARC