2024年度第2回宇宙史研究センター構成員会議・成果報告会、2024/12/16、筑波大学

重イオン衝突実験を用いた高密度核物質探索

QCD Phase Diagram

 Crossover at zero density
 Possible first-order transition and QCD critical point in dense region
 Multiple QCD-CP? MK+ ('02)
 Color superconducting phases in dense and cold quark matter

History / Current Status of HIC

J-PARC-HI = J-PARC Heavy-lon Project

- New HI injector + existing accelerators (RCS, MR)
 Heavy-ion beams with world highest luminosity
- Realize various new experiments at J-PARC

J-PARC-HI = J-PARC Heavy-lon Project

- New HI injector + existing accelerators (RCS, MR)
 Heavy-ion beams with world highest luminosity
- Realize various new experiments at J-PARC

How High Density? Where is optimal $\sqrt{s_{NN}}$?

Medium with $\rho > 3\rho_0$ can be formed for $V_4 \simeq (6 \text{ fm})^4$ at J-PARC-HI energy

The density is comparable with the cores of neutron stars

J-PARC-HI = experiments to create the highest baryondensity matter in the Universe

Event-by-event Fluctuations

Theoretical Predictions on conserved charge fluctuations

STAR (2024)

Higher-order cumulants
Signal of QCD CP

A Coin Game

Bet 25 Euro
 You get head coins of

Same expectation value.

A Coin Game

Bet 25 Euro
 You get head coins of

Lattice & Exp. Cooperate

Lattice Data

Experimental Result

Lattice-QCD Numerical Simulations: equations of state, fluctuation, viscosity, ...

Baryon/Charge Cumulant Ratio

Finite acceptance modifies the ratio strongly.
 Wider acceptance/efficiency is desirable.

Acceptance of Detectors

Each detector has individual acceptance and efficiency. Checking detector-response correction is important.

Dilepton Production Rate

Generated by the decay of virtual photons
 Carry information of primordial medium

Physics accessible with DPR

- Medium temperature
- Dispersion relations
- Chiral mixing by chiral restoration
- Signal of phase transitions

"Multi-Messenger" Observation

Dileptons and Phase Transitions

2nd-order phase transition >> Formation of the soft modes

Anomalous phenomena

Dilepton at Ultra-Low-Mass Region

Signal for QCD-CP & Color SC

Nishimura, MK, Kunihiro, '22; '23; '24

Anomalous dilepton production due to soft modes at phase transitions

Two "hot spots" on the $T-\mu$ plane?

Hadron/Hypernuclear Physics

Hypernuclei

Correlation functions

 \rightarrow hadron interaction

Light-/hyper-Nuclear Production

Measurement of light/hyper-nuclei

Precise data will lead us to a better understanding of production mechanism **Light-nuclei production** as a signal of QCD critical point

Shape of Nuclei

Deformation parameter β , γ can be estimated from HIC using flow correlations.

J-PARC-HI Future Plan

J-PARC-HI Staging Plan

Phase-I

---KEK-BS booster ---E16+ α spectrometer

Phase-II

NEW HI boosterNEW spectrometer

Staging of HI Booster

Staging of HI Booster

Detector Phase-I

E16 Spectrometer

 $-\phi \rightarrow e^+e^-, \phi \rightarrow K^+K^-$ -In-medium mass modification -Commissioning 2020-2024

UPGRADE

E16+ α

Upgrade forward region for high-multiplicity counting

Hadron/lepton measurement at wide acceptance

Hadron Spectrometer Phase-II

 -4π acceptance, high-intensity beam - Precise measurement of fluctuations, dileptons - Detailed design are under discussion

Dimuon Setup

Hadron calorimeter

Summary

- Relativistic HIC can investigate extremely hot/dense medium.
- Density/temperature dependence of the produced medium can be studied by the beam-energy scan.
 - Investigation of QCD phase diagram: QCD-CP, color-SC, etc.
- Various observables
 - fluctuations, dilepton production rate, light/hyper-nuclear production, ...
- Other applications: hadron interaction, nuclear shape, ...
- **J-PARC-HI** will pursue this realm further.
 - -world's highest interaction rate
 - best collision energy to study

Dilelectron Measurements Phase-II

 Large acceptance measurement of dielectrons and hadrons

Precise measurement of low-mass dielectronssearch for QCD-CP & CSC phase transition

M_{ee} GeV/c²

Hypernuclear Spectrometer

- Closed geometry : Sweeping magnet and Collimator
- -Interaction Rate : ~100 MHz
- Lifetime and Magnetic moment
 Search for new hypernuclei and
 strangelet

Phase-II