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In this chapter, we present analytic calculations of gravitational waves from a particle 
orbiting a black hole. We first review the Teukolsky formalism for dealing with the gravita­
tional perturbation of a black hole. Then we develop a systematic method to calculate higher 
order post-Newtonian corrections to the gravitational waves emitted by an orbiting particle. 
As applications of this method, we consider orbits that are nearly circular, including exactly 
circular ones, slightly eccentric ones and slightly inclined orbits off the equatorial plane of 
a Kerr black hole and give the energy flux and angular momentum flux formulas at infinity 
with higher order post-Newtonian corrections. Using a different method that makes use of 
an analytic series representation of the solution of the Teukolsky equation, we also give a 
post-Newtonian expanded formula for the energy flux absorbed by a Kerr black hole for a 
circular orbit. 

§1. Introduction 

1 

In this chapter, we review recent progress in the analytic calculations of gravita­
tional waves from a particle orbiting a black hole using a systematic post-Newtonian 
expansion method. There have been substantial activities in this field recently and 
there is a diversity of literature. Here we are mostly concerned with the actual cal­
culations of the gravitational waves from an orbiting particle and we intend to make 
this chapter as self-contained as possible. We do not, however, discuss much about 
implications of the results to actual astrophysical situations. 

In the black hole perturbation approach, one considers gravitational waves from 
a particle of mass J.L orbiting a black hole of mass M assuming J.L « M. Although 
this method is restricted to the case when J.L « M, one can calculate very high 
order post-Newtonian corrections to gravitational waves using a relatively simple 
algorithm in contrast with the standard post-Newtonian analysis. This is because the 
fully relativistic effect of the spacetime curvature is naturally taken into account in 
the basic perturbation equation. We can also calculate numerically the gravitational 
waves without assuming the slow motion of its source. Then, we can easily investigate 
the convergence of the post-Newtonian expansion by comparing the result of the post­
Newtonian approximation with the fully relativistic one. In this sense, the black hole 
perturbation method gives a very important test of the post-Newtonian expansion. 
Further, since the effect of the spacetime curvature is naturally taken into account, 
we can easily investigate interesting relativistic effects such as tails of gravitational 
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waves. 
We consider the post-Newtonian wave forms and luminosity which are expanded 

by v / c, where v is the order of the orbital velocity. The lowest order of the gravi­
tational waves are given by the Newtonian quadrupole formula. We call the post­
Newtonian formulas for the wave forms and luminosity which contain terms up to 
O((v/c)n) beyond the Newtonian quadrupole formula as the n/2PN formulas. 

Let us first briefly give a historical review. The gravitational perturbation equa­
tion of a black hole using the Newman-Penrose formalism 1) was derived by Bardeen 
and Press 2) for the Schwarzschild black hole, and by Teukolsky 3) for the Kerr black 
hole. By using these equations, many numerical calculations of gravitational waves 
induced by the presence of a test particle have been done. We do not list up all 
such works. Here, we only refer to three articles; Breuer, 4) Chandrasekhar, 5) and 
Nakamura, Oohara and Kojima. 6) 

On the other hand, analytic calculations of gravitational waves produced by the 
motion of a test particle have not been developed very much until recently. This 
direction of research was first done by Gal'tsov, Matiukhin and Petukhov 7) in which 
they considered a case when a particle moves a slightly eccentric orbit around a 
Schwarzschild black hole, and calculated the gravitational waves up to lPN order. 
Then, Poisson 8) considered a case of circular orbit around a Schwarzschild black hole 
and calculated the wave forms and luminosity to 1.5PN order at which the tail effect 
appears. Cutler, Finn, Poisson and Sussman 9) also worked on the same problem 
numerically by using the least square fitting method, and obtained a formula for the 
luminosity to 2.5PN order. Subsequently, a highly accurate numerical calculation 
was carried out by Tagoshi and Nakamura. lO) They obtained the formulas for the 
luminosity to 4PN order numerically by using the least square fitting method. They 
found the logv terms in the luminosity formula at 3PN and 4PN orders. They 
showed that, although the convergence of the post-Newtonian expansion is slow, the 
luminosity formula which is accurate to 3.5PN order will be good enough to represent 
the orbital phase evolution of coalescing compact binaries accurately. After that, 
Sasaki ll) found an analytic method and obtained the formulas which are needed 
to calculate the gravitational waves to 4PN order. Then, Tagoshi and Sasaki 12) 

obtained the gravitational wave forms and luminosity to 4PN order analytically, and 
confirmed the results of Tagoshi and Nakamura. These calculations were extended 
to 5.5PN order by Tanaka, Tagoshi and Sasaki. 13) 

In the case of orbits around a Kerr black hole, Poisson calculated the 1.5PN 
order corrections to the wave forms and luminosity due to the rotation of the black 
hole and showed that the result agrees with the standard post-Newtonian effect due 
to spin-orbit coupling. 14) Then, Shibata, Sasaki, Tagoshi and Tanaka 15) calculated 
the luminosity to 2.5PN order. They calculated the luminosity from a particle in 
circular orbit with small inclination from the equatorial plane. They used the Sasaki­
Nakamura equation as well as the Teukolsky equation. This analysis was extended to 
4PN order by Tagoshi, Shibata, Tanaka and Sasaki 16) in which the orbit of the test 
particle was restricted to circular ones on the equatorial plane. The analysis in the 
case of slightly eccentric orbit on the equatorial plane was also done by Tagoshi 17) 

to 2.5PN order. 
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Chapter 1 Black Hole Perturbation 3 

Tanaka, Mino, Sasaki and Shibata 18) considered the case when a spinning par­
ticle moves a circular orbit near the equatorial plane around a Kerr black hole, and 
derived the luminosity formula to 2.5PN order including the linear order effect of 
the particle's spin. They used the equations of motion of Papapetrou's 19) and the 
energy momentum tensor of the spinning particle given by Dixon. 20) 

The absorption of gravitational waves into the black hole horizon, appearing 
at 4PN order in the Schwarzschild case, was calculated by Poisson and Sasaki in 
the case when a test particle is in a circular orbit. 21 ) The black hole absorption in 
the case of rotating black hole appears at 2.5PN order. 22 ) Recently a new analytic 
method to solve the homogeneous Teukolsky equation was found by Mano, Suzuki, 
and Takasugi. 23) Using this method, the black hole absorption in the case of rotating 
black hole was calculated by Tagoshi, Mano and Takasugi 24) to 6.5PN order beyond 
the quadrupole formula. 

If gravity is not described by the Einstein theory but by the Brans-Dicke the­
ory, there will appear scalar type gravitational waves as well as transverse-traceless 
gravitational waves. Such scalar type gravitational waves were calculated by Ohashi, 
Tagoshi and Sasaki 25) in a case when a compact star is in a circular orbit on the 
equatorial plane around a Kerr black hole. 

The organization of this chapter is as follows. We review the Teukolsky formal­
ism for the black hole perturbation in §2 and formulate a post-Newtonian expansion 
method of the Teukolsky equation in §3. Then we turn to the evaluation of gravita- . 
tional waves by an orbiting particle in the rest of sections. 

First we consider circular orbits. In §4, we calculate the gravitational wave 
luminosity from a test particle in circular orbit around a Schwarzschild black hole 
to 5.5PN order, based on Tanaka, Tagoshi and Sasaki. 13) This is the highest post­
Newtonian order achieved so far. Based on this result, we investigate the convergence 
property of the post-Newtonian expansion in §5. In §6, we consider circular orbits on 
the equatorial plane around a Kerr black hole and calculate the luminosity to 4PN 
order, based on Tagoshi, Shibata, Tanaka and Sasaki. 16) We find the luminosity 
contains the terms which describe the effect of not only spin-orbit coupling but also 
the effect of higher multipole moments of the Kerr black hole. 

Next we consider slightly noncircular orbits. In §7, we calculate the O(e2 ) cor­
rections to the 4PN energy and angular momentum flux formulas in the case of a 
slightly eccentric orbit around a Schwarzschild black hole, where e is the eccentricity. 
In §8, we consider a slightly eccentric orbit on the equatorial plane around a Kerr 
black hole and evaluate the O(e2) corrections to 2.5PN order, based on Tagoshi. 17) 

Then in §9, we calculate the gravitational waves induced by a test particle in circular 
orbit with small inclination from the equatorial plane around a Kerr black hole and 
evaluate the 2.5PN energy and angular momentum fluxes, based on Shibata, Sasaki, 
Tagoshi and Tanaka. 15) In §10, we discuss the adiabatic orbital evolution around a 
Kerr black hole under radiation reaction and show that circular orbits will remain 
circular under adiabatic radiation reaction but the stability of circular orbits can 
only be examined by an explicit evaluation of the backreaction force. 

In §11, we consider the effect of the spin of a particle. We first give a general 
formalism to treat the gravitational radiation from a spinning particle orbiting a 
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4 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

Kerr black hole. Then we calculate the 2.5PN luminosity formula with the first 
order corrections of the spin for circular orbits which are slightly inclined due to the 
spin of the particle. 

Finally, in § 12, we review a calculation of the black hole absorption based on 
Tagoshi, Mana and Takasugi. 24) The black hole absorption effect appears at O(v5 ) 

relative to the Newtonian quadrupole luminosity for a Kerr black hole, while at 
O(v8 ) for a Schwarzschild black hole. We show the energy absorption rate to O(v8 ) 

beyond the lowest order for the Kerr case, i.e., O(v13) or 6.5PN order beyond the 
Newtonian quadrupole luminosity. 

Since many of the calculations encountered in this black hole perturbation ap­
proach are lengthy, various subsidiary equations and formulas are deferred to Ap­
pendices A to J. In the rest of this chapter, we use the units of c = G = 1. 

§2. Teukolsky formalism 

In terms of the conventional Boyer-Lindquist coordinates, the metric of a Kerr 
black hole is expressed as 

Ll sin
2 

() [ ] 2 ds2 =- E(dt- asin2 Od~.p) 2 + ---y;- {r2 + a2)d<p- adt 

E 
+ Ll dr2 + Ed02 , {2·1) 

where E = r 2 + a 2 cos2 () and Ll = r 2 - 2M r + a 2. In the Teukolsky formalism, 3) 

the gravitational perturbations of a Kerr black hole are described by a Newman­
Penrose quantity 'lj;4 = -Co.f3"f8n°inJ3n"~m8 , where Ca.f3"!8 is the Weyl tensor, n° 
= ((r2 + a2), -Ll, 0, a) I (2E) and m 0 = { ia sin 0, 0, 1, il sin 0) I ( J2(r + ia cos 0) ). 

We decompose 'lj;4 into Fourier-harmonic components according to 

(r- iacos0)4
'1j;4 = L J dwe-iwt+im<.p -2Sem(B)Remw(r). 

em 
{2·2) 

The radial function Remw and the angular function 8 Sem(B) satisfy the Teukolsky 
equations with s = -2 as 

2 d ( 1 dRemw) 
Ll dr Ll dr - V(r)Remw = Temw 1 {2·3) 

[ 
1 d {. 0d} 2 2 . 20 {m-2cos0)2 

sin() d() sm d() -a w sm - sin2 () 

+ 4aw cosO- 2 + 2maw +A] -2Sem = 0. (2·4) 

The potential V(r) is given by 

V( ) 
_ K 2 + 4i(r- M)K 

8
. , 

r - - Ll + ~wr + "' (2·5) 
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Chapter 1 Black Hole Perturbation 5 

where K = (r2 +a2)w- rna, and..\ is the eigenvalue of -28~. The angular function 
8 S£m(O) is the spin-weighted spheroidal harmonic which may be normalized as 

(2·6) 

The source term Temw is specified later. Here we only mention that for orbits of our 
interest, which are bounded, Temw has support in a compact range of r. 

We define two kinds of homogeneous solutions of the radial Teukolsky equation: 

for r-+ r +• 

for r-+ +oo, 

{

cup eikr* _L .:12cref e-ikr* for r -+ r+, 
Rup -+ fmw 1 fmw 

fmw ctrans 3 iwr* fmw r e for r-+ +oo, 

where k = w - rna/2M r +, and r* is the tortoise coordinate defined by 

r* = j dr* dr 
dr 

2M r + 
1 

r - r + 2M r _ 
1 

r - r _ 
=r+ n----- n---

r + - r _ 2M r + - r _ 2M ' 

(2·7) 

(2·8) 

(2·9) 

where r ± = M ± J M 2 - a2 , and for definiteness, we have fixed the integration 
constant. 

We solve the radial Teukolsky equation by using the Green function method. A 
solution of the Teukolsky equation which has purely outgoing property at infinity 
and has purely ingoing property at the horizon is given by 

' 1 { up 1r 1 in . -2 in 100 

1 up -2} Remw = ~ Remw dr R£mwTfmwL1 + Rtmw dr RemwTfmwL1 , 
YYfmw r+ r 

(2·10) 
where the Wronskian Wtmw is given by 

W 2 · ctransBinc fmw = ~W fmw fmw · (2·11) 

Then, the solution has an asymptotic property at the horizon as 

Btrans L12e-ikr*

1
oc. 

R ( ) fmw d IRUp T A-2- z-H A2 -ikr* (2 12) fmw r -+ r + -+ . trans inc r fmw fmwL.l = fmw,(J e . . 
2~wC£mw Bcmw r+ 

The solution at infinity is also expressed as 

R ( -+ ) -+ r e d I fmw r fmw r = z-00 r3eiwr* 3 iwr* 1oo T. ( I)Rin ( I) 
fmw r 00 2" Binc r A2( 1) - fmw . 

~w fmw r+ L.l r 
{2·13) 

Here and in the following sections except for §12, we focus on the gravitational waves 
emitted to infinity. Hence z~w will be simply denoted as Zemw. The gravitational 
waves absorbed into the black hole horizon will be treated separately in §12. 
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6 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

Now let us discuss the general form of the source term Ternw. It is given by 

where 

with 

T. = 4jdndtp_5_p- 1(B' + B'*)e-im<p+iwt-2S£::;;, (2·14) 
imw 2 2 vl27f ' 

I 1 8- -4 -2--1 B2 = -2p pL_l[p Lo(P p Tnn)] 

__ 1_ 8-..:12 L [ -4-2 J ( -2--2 Ll-1y:_ )] 

2
.;2P P -1 P P + P P mn 1 

'* 1 8- 2 -4 -2-B2 = -4p pLl J+[P J+(P pTmm)] 

__ 1_ 8-Ll2 J [ -4-2 Ll-1 L ( -2--2y:_ )] 

2
.j2P P + P P -1 P P mn , 

p = (r- iacose)- 1 , 

Ls = 8o + _m(j - aw sin(} + scot(}, 
sm 

J+ = 8r + iK/Ll. 

(2·15) 

(2·16) 

In the above, Tnn, Tmn and T~m are the tetrad components of the energy momentum 
tensor (Tnn = TJ.LvnJ.Lnv, etc.), and the bar denotes the complex conjugation. 

We consider TJ.Lv of a monopole particle of mass J.t. The case of a spinning particle 
will be discussed in § 11 separately. The energy momentum tensor takes the form 

TJ.LV = Esin~dtjdT ~~ ~~ J(r- r(t))J((}- e(t))J(<p- <p(t)), (2·17) 

where zi-L = (t, r(t), (}(t), <p(t)) is a geodesic trajectory and T = r(t) is the proper 
time along the geodesic. The geodesic equations in Kerr geometry are given by 

E~~ =±[C-cos
2

e{a
2
(1-E

2
)+ si~~e}r/

2 

:=8((}), 

E~~ =- ( aE- si~~ (}) + ~ ( E(r
2 + a2

)- alz) = IP, 

dt ( lz ) . 2 r
2 + a 2 

( 2 2 ) E- =- aE- -.-2- asm (} + L1 E(r +a ) - alz = T, 
dr sm (} 

Edr = ±VR (2·18) 
dr ' 

where E, lz and Care the energy, the z-component of the angular momentum and 
the Carter constant of a test particle, respectively.*) E = r 2 + a2 cos2 (}and 

R = [E(r2 + a2
)- alzf- Ll[(Ea -lz)2 + r 2 + C]. (~·19) 

• l These constants of motion are those measured in units of It· That is, if expressed in the 
standard units, E, lz and C in Eq. (2·18) are to be replaced with E/~-t, lz/1-t and C/11?, respectively. 
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Chapter 1 Black Hole Perturbation 7 

Using Eq. (2·18), the tetrad components of the energy momentum tensor are 
expressed as 

· Cnn 
Tnn = 11-:--

0
8(r- r(t))8(0- O(t))8(<p- <p(t)), 

sm 

Tm;n = 11 ~men 8(r- r(t))8(0- O(t))8(<p- <p(t)), 
sm 

Tm;m = 11 ~mme 8(r -- r(t))8(0- O(t))8(<p- <p(t)), (2·20) 
sm 

where 

1 [ 2 2 dr] 2 Cnn=-3-. E(r +a )-alz+L'-d , 
4L' t T 

P [ 2 2 dr] [· . ( lz )] Cm;n=-
2
y'2E2 i E(r +a )-alz+L'd

7 
zsmO aE- sin2 () , 

p2 [· . ( lz )] 
2 

Omm;=-. zsmO aE-~e , 
2L't sm 

(2·21) 

and i = dt/dT. Substituting Eq. (2·15) into Eq. (2·14) and performing integration 
by part, we obtain 

Ttmw 

= 411 Joo dt J dOeiwt-im<p(t) 
..j2ii -00 

where 

x [ -~£1 {p-4L~(p3S) }CnnP-2p-18(r- r(t))8(0- O(t)) 

L\2-2 
+ j,p ( L~S + ia(p- p) sinOS)J+{ OmnP-215-2 

L\-
18(r- r(t))8(0- O(t))} 

+ 2~LHp3S(p2p-4 ),r }Cm;nLlp-2p-28(r- r(t))8(0- O(t)) 

-lp3 L12SJ+{p- 4 J+(Pp- 2Cm;m;8(r- r(t))6(0- O(t)))}], (2·22) 

m 
L! = ao - -:--

0 
+ aw sin 0 + s cot 0, 

sm 
(2·23) 

and S denotes -2S£m(O) for simplicity. 
We further rewrite Eq. (2·22) as 

Ttmw = 11 i: dteiwt-im<p(t) L12 [(AnnO+ Am;no + Am;m;o)8(r- r(t)) 

+{ (Amn 1 + Am;m;1)8(r- r(t)) },r + { Amm28(r- r(t)) },rr], 
(2·24) 
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8 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

where 

A -2 C -2--ILt{ -4Lt( 38)} nno= V27rLl2 nnP P 1 P 2 P . , 

Amno= JLlcmnP-
3

[(L!s) C1 +p+p) ~asinOS~(p-p)], 

AmmO=- vhp-
3
pCmmS [ -i ( ~) ,r- ~: + 2ip ~], 

2 
Amnl = y'1rLlp-3Cmn[L!S + iasinO(p- p)S], 

Amml =-~p-3/)CmmS(i~ +p), 

1 
Amm2 =- ../'ii/-3

/)CmmS. (2·25) 

Inserting Eq. (2·24) into Eq. (2·13), we obtain Zemw as 

z - 11 Joo dteiwt-imcp(t)W': fmw - 2 . sine fmw ' 
ZW fmw -oo (2·26) 

where 

Wemw = [R}~w{AnnO + AmnO +Ammo} 

dRin d2Rin ] fmw {A A } fmwA - d mnl + mml + d 2 mm2 
r r r=r(t) 

(2·27) 

In this paper, we focu§ on orbits which are either circular (with or without 
inclination) or eccentric but confined on the equatorial plane. In either case, the 
frequency spectrum of Temw becomes discrete. Accordingly Zemw in Eq. (2·12) or 
(2·13) takes the form 

Zemw = L o(w- Wn)Zemw. (2·28) 
n 

Then, in particular, 1jJ4 at r-+ oo is obtained from Eq. (2·2) as 

1 sawn ·'· - - """'z -2 fm eiwn(r*-t)+imcp 
o/4 - L fmwn f2"= · 

r lrrm Y 4 7r 
(2·29) 

At infinity, 1/J4 is related to the two independent modes of gravitational waves h+ 
and hx as 

(2·30) 

From Eqs. (2·29) and (2·30), the luminosity averaged over t » Llt, where Llt is 
the characteristic time scale of the orbital motion (e.g., a period between the two 
consecutive apastrons), is given by 

jdE) = L 1Zemwnl
2 

= L (dE) 
\ dt f,m,n 47rw; - f,m,n dt fmn 

(2·31) 
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Chapter 1 Black Hole Perturbation 9 

In tlie same way, the time-averaged angular momentum flux is given by 

jdJz) = L m/Zem~n/
2 

= L (dJz) = L m (dE) 
\ dt f,m,n 47rWn i',m,n dt i'mn f,m,n Wn dt i'mn 

(2·32) 

§3. Post-Newtonian expansion of the ingoing wave solutions 

We consider the case when a test particle of mass J.t is in an orbit which is 
nearly circular around a Kerr black hole of mass M » J.t and describe a method to 
calculate the ingoing wave Teukolsky functions R~r:nw which are necessary to evaluate 
the 4PN formulas for the gravitational waves energy and angular momentum fluxes 
emitted to infinity. In the Schwarzschild case, we shall derive the 5.5PN luminosity 
formula in §4. A method to calculate the ingoing wave solutions in this case is 
separately discussed in Appendix D because it is considerably more complicated 
than the method explained in this section. 

Using non-dimensional variables in the Teukolsky equation, we can see that the 
Teukolsky equation is expressed in terms of three basic variables, z = wr, E = 2M w 
and aw = qE/2 where q = ajM. In order to calculate the gravitational waves induced 
by a particle, we need to know the explicit form of the source terms Temw ( r) . They 
will be given in the proceeding sections for specified orbits. Here it is sufficient to note 
that they have support only around r == ro where ro is the orbital radius for a circular 
orbit or the mean radius in the case of an eccentric orbit (with small eccentricity). 
Hence from Eq. (2·13), what we need to know are the ingoing wave functions Ri0 (r) 
around r = ro, and their incident amplitudes Binc. Note that we do not need the 
transmission amplitudes Btrans to evaluate the gravitational waves at infinity. This 
fact considerably simplifies the calculations. Since we treat a test particle in a bound 
orbit which is nearly circular, th~ contribution of w to the Teukolsky functions comes 
from w "' mfl'P, where fl'P "' (M/rJ) 112 is the orbital angular frequency. We will 
evaluate Rin by setting three basic variables to be z = wro "' m(M/ro) 112 "' v, 
E"' 2m(Mjr0 ) 312 "'v3 and aw "'qm(Mjr0 )

312 "'v3 . Here, we have introduced a 
parameter v = (M/r0 ) 112 which represents the magnitude of the orbital velocity. We 
assume that v is much smaller than the velocity of light; v « 1. Consequently, we 
also assume that E « v « 1. This relation is the basic assumption in obtaining the 
homogeneous solutions below. 

Now we calculate the ingoing wave solutions which are necessary to calculate 
the luminosity to O(v8 ) beyond the lowest order for the Kerr case. The method 
is mainly based on Shibata et al. 15) and Tagoshi et al.. 16) An extension tu 0( v11 ) 
calculations done by Tanaka, Tagoshi and Sasaki 13) for the Schwarzschild case is 
given in Appendix D. 

First, we discuss the angular solutions. The angular solutions are the spin­
weighted spheroidal harmonics. The angular equation (2·4) contains only one small 
parameter aw. It is straightforward to calculate the spin-weighted spheroidal har­
monic -2Sem and its eigenvalue ..\ by expanding the solution in power of aw. It can 
be done by the usual perturbation method. 26), 16), 15) It is also possible to obtain 
them by using an expansion by means of Jacobi functions. 27) The method and the 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.128.1/1929942 by M

PI G
ravitational Physics user on 25 April 2025



10 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

results are given explicitly in Appendix A. Here we only show the eigenvalue..\ which 
is used to calculate the radial functions. The eigenvalue ..\ is given by 

where 

..\0 = f(f + 1)- 2 = (f- 1)(£ + 2), 
£(£+1)+4 

.At= -2m f(f + 1) ' 

(3·1) 

Hl 2 e-1 2 2 2 (£ + 4)(£- 3)(£2 + f- 3m2) 
..\2 = -2(£ + 1)(cern ) + 2f(cern ) + 3- 3 f(f + 1)(2£ + 3)(2£- 1) ' 

(3·2) 

with 

Hl_ 2 [(f+3)(f-1)(f+m+1)(f-m+1)] 1
/
2 

cern - (f + 1)2 (2£ + 1)(2£ + 3) ' 

e-l- _! [(£ + 2)(£- 2)(£ + m)(f- m)] 1/2 (3·3) 
Cern - £2 (2£ + 1)(2£- 1) · 

Next we consider the homogeneous solution Rin. We assume w > 0 below. The 
solution for w < 0 can be obtained from the one for w > 0 by using the symmetry of 
the homogeneous Teukolsky equation which implies Re,rn,w = Re,-rn,-w· Here, we do 
not treat the Teukolsky equation directly. Instead, we transform the homogeneous 
Teukolsky equation to the Sasaki-Nakamura equation, 28) which is given by 

[ 
d2 d ] 

- 2 - F(r)-d - U(r) Xernw = 0. 
dr* r* 

The function F(r) is given by 

where 

with 

F(r) = 'f/,r 2.:1 2' 
ry r +a 

co= -12iwM + ..\(..\ + 2)- 12aw(aw- m), 

Ct= 8ia[3aw- ..\(aw- m)], 

c2= -24iaM(aw- m) + 12a2[1- 2(aw- m)2], 

c3= 24ia3(aw- m)- 24Ma2, 

c4= 12a4 . 

(3·4) 

(3·5) 

(3·6) 

(3·7) 
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Chapter 1 Black Hole Perturbation 11 

The function U ( r) is given by 

_ L\U1 2 L\G,r 
U(r)- ( 2 2)2 + G + 2 2 - FG, r +a r +a 

(3·8) 

where 

G=-2(r-M)+ rL\ 
r2 + a2 (r2 + a2)2' 

U1 = V + ~
2 

[ ( 2a + ~) ,r - ~ (a + ~) J, 
.K/3 . 6.1 

a = -2 112 + 3zK,r +A+ --:;:'2' 

{3 = 2.1 ( -iK + T - M -
2~) . (3·9) 

When we set a = 0, this transformation becomes the Chandrasekhar transforma­
tion 29) for the Schwarzschild black hole. The Sasaki-Na~mura equation was orig­
inally introduced, for the inhomogeneous case, to make the potential term short­
ranged and to make the source term well-behaved at infinity. It is not necessary to 
perform this transformation in this case, since we are interested only in bound or­
bits. Nevertheless we choose to do this because the lowest order solution becomes the 
spherical Bessel function and we can apply the post-Newtonian expansion techniques 
developed for the Schwarzschild case by Poisson 8) and Sasaki. ll) 

The relation between Rcmw and Xcmw is 

1 { ( /3,r) {3 } Remw = ry a+ -::1 XPmw- L\ Xlmw,r ' (3·10) 

where Xlmw = Xemw.1./(r 2 + a 2 ) 112 . Conversely, we can express Xcmw in terms of 
Remw as 

(3·11) 

where J_ = (d/dr)- i(K/.1.). Then the asymptotic behavior of the ingoing-wave 
solution xin which corresponds to Eq. (2·7) is 

(3·12) 

The coefficients A inc, A ref and A trans are respectively related to Binc, nref and ntrans, 

defined in Eq. (2·7), by 

B inc 1 Ainc 
fmc-.: = - 4w2 fmw' (3·13) 

B
ref __ 4W

2 
Aref 

Pnu..: - fmw' co 
(3·14) 

B
trans __ 1_Atrans 
fmw - d fmw' fmw 

(3·15) 
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12 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

where co is given in Eq. (3·7) and 

~---- 2 2 2 
d£mw = y 2Mr +[(8- 24iMw- 16M w )r + 

+(12iam- 16M+ 16amMw + 24iM2w)r +- 4a2m 2 - 12iamM +8M2]. 

Now we introduce the variable z* as 

z*=z+E[ z+ ln(z-z+)- z_ ln(z-z_)] 
z+- z_ z+- z_ 

= wr* + ElnE, (3·16) 

where z = wr and Z± = wr ±. To solve for X in, we set 

x~~w = v z2 + a2w2~em(z) exp ( -icf>(z))' (3·17) 

where 

* E 1 Z- Z+ 
= z - z - -mq ln . 

2 z+- z_ z- z_ 
(3·18) 

With this choice of the phase function, the ingoing wave boundary condition at 
horizon reduces to that ~£m is regular and finite at z = z+· 

Inserting Eq. (3·17) into Eq. (3·4) and expanding it in powers of E = 2M w, we 
obtain 

£(O)[~£m] = E£(1)[~£m] + EQ(l)[~£m] + E2 Q(2)[~£m] + E3Q(3)[~£m] + E4Q(4)[~£m] + 0(E5), 

(3·19) 
where £(0), £(1), Q(l) and Q(2) are differential operators given by 

L(O) = d2 + ~.!!._ + (1- £(£ + 1))' 
dz 2 z dz z2 (3·20) 

£(1) = ~ d
2 

+ (_!_ + 2i) .!!._- (_!- _i_ + ~) ' 
z dz2 z2 z dz z3 z2 z 

(3·21) 

Q(1) _ iq>-.1 .!!._ _ 4imq 
- 2z2 dz l(l + 1)z3 · 

(3·22) 

The formulas for Q(2), Q(3) and Q(4) are very complicated, and they are given ex­
plicitly in Appendix B. Note that, when we set a = 0, all Q(n) vanish. 

By expanding ~£m in terms of E as 
00 

~£m = L End:;;(z), 
n=O 

we obtain from Eq. (3·19) the iterative equations, 

L(o)[c(n)] = z-2w(n) 
'-,£m £m ' 

(3·23) 

(3·24) 
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Chapter 1 Black Hole Perturbation 13 

where 

~- ( WPm - 0, 3·25) 

Wp\!! = z2 (L(ll[d~J + Q(ll[_;~~J), (3·26) 

Wp~ = z2 
( £(1) [.;~~] + Q(l) [d~J + Q(2

) [d~J) , (3·27) 

Wp~ = z2 (L(ll[_;~~] + Q(ll[_;~~] + Q(2l[_;~~] + Q(3l[_;~~J), (3·28) 

Wp~ = z2 ( £(1) [_;~~] + Q(l) fd~J + Q(2) [_;~~] + Q(3) [_;~~] + Q(4) [_;~~]) . 

(3·29) 

As f = 2G M w if we recover G, the above expansion corresponds to the post­
Minkowski expansion of the vacuum Einstein equations. 

The iterative equations (3·24) have been obtained by expanding Eq. (3·4) in 
powers of f by regarding z = wr as the independent variable. Since the horizon is 
at z = z+ = O(t), this procedure implicitly assumes that f «:: z. Consequently, we 
cannot apply the above expansion near the horizon where the ingoing wave boundary 
condition is to be imposed. To implement the boundary condition correctly, we have 
to consider a series solution of .;em which is valid near the horizon as well as in the 
range f «:: z and match it to the series solution of the form (3·23). Recently this 
matching problem has been rigorously solved by Mana, Suzuki and Takasugi 23) for 
the original Teukolsky equation. However, for our present purpose, it is sufficient 
to resort to a simple power-counting argument, by which it is possible to implement 

the boundary condition of .;em at the horizon to the behavior of .;~;;; at z » f for 
n :S: 2.€ (for n :S: 2.€ + 1 in the Schwarzschild case; see Appendix D). 

Since the ingoing wave boundary condition is that .;em is regular at horizon, if 
we introduce an independent variable x := (z- z+)/t we can expand .;em near the 
horizon as 

= 
.;Pm = L>n .;t;! (X)· (3·30) 

n=O 

This means we have = 
.;Pm(O) = .;};;! (0) L fnCn, (3·31) 

n=O 

where Cn = .;};;?(0)/.;};;!(o). In other words, .;em(O) should have a well-defined limit 

for f--'---? 0 except for the overall normalization factor.;};;! (0). Keeping this property 
in mind, let us consider the boundary conditions for Eqs. (3·25)"-'(3·29). 

The general solution to Eq. (3·25) is immediately obtained as 

,::(0) = o:(O)J·" + {3(o)n" 
~Pm em ~ Cm ~' (3·32) 

where ]c and np are the spherical Bessel functions. The coefficients o:~~ and {3~~ 
are to be determined by the boundary condition. For convenience, we normalize the 
solution xin such that the incident amplitude Ainc is of order unity. Then both o:~~ 
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14 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

and /1~~ must be of order unity. Since ]e(z) ,....., ze and ne(z) ,....., z-e-1 for z « 1, the 
latter is 0(E2H 1) larger than the former near the horizon where z = O(E). Hence 

Eq. (3·31) implies we should set /1~~ = 0. As for the value of a~~' since it only 

contributes to the overall normalization of xin, we set a~~ = 1 for convenience. 

Inspection of Eqs. (3·26),.....,(3·29) reveals that the solution ~~~ behaves as zR-n 

plus the homogeneous solution a~~je + /1~~ne for z-+ 0. As for a~~ (n ~ 1), they 

simply contribute to renormalizations of a~~. Hence we put them to zero. As for 

/1~~, from the same argument as given above, we find they may become non-zero 
only for n ~ 2£ + 1. Since R ~ 2 and E = O(v3 ), this implies that the near zone 
contribution of ne ,....., z-£- 1 , which is O(v-(2H 1)) greater than the lowest order term 
jg, to the gravitational waves emitted to infinity may arise only at O(v10) beyond 
the quadrupole order. Since the post-Newtonian corrections we shall consider for the 
Kerr case are those up to O(v8 ), we set /1~~ = 0 and solve the iterative equations 

(3·24) to 0(E4) with the boundary conditions that ~~~ ,....., ze-n at z -+ 0. We note 
that, in the Schwarzschild case which is discussed separately in Appendix D, these 
boundary conditions turn out to be appropriate for n ::::; 2£ + 1; i.e., up to one power 
of E higher than the Kerr case. 

To calculate ~~~ for n ~ 1, we rewrite Eqs. (3·26),.....,(3·29) in the indefinite 
integral form by using the spherical Bessel functions as 

c(n) - Jz d . yv(n) . Jz d w(n) 
'>Cm - ne ZJcv Cm - )£ znc Cm . (3·33) 

The calculation is straightforward but tedious. All the formulas which are needed 

to calculate the above integration to obtain~~~ for n ::::; 2 are shown in Appendix of 
Ref. 11). They are recapitulated in an alternative way in Appendix D. Using those 
formulas, we have for n = 1, 

(1) (R- 1)(£ + 3) . ( £2
- 4 2£- 1 ) . 

~em= 2(£ + 1)(2£ + 1)JHl- 2£(2£ + 1) + R(R- 1) Jt-l 

C-2 ( 1 1 ) . + Rc o)o + "' - + -- Rc mJm - 2D~1 + ijc ln z 
' L m m+ 1 ' ~ 

m=1 

imq ( £
2

+4 ) . imq ( (£+1)
2

+4 ) . 
+ -2- £2 (2£ + 1) J£-1 + -2- (£ + 1)2(2£ + 1) JHb (3·34) 

where D;j is an extension of the spherical Bessel function defined in §D.2.1 of Ap­
pendix D 

D;1 = ~ [jeSi(2z)- nc (Ci(2z)- "f -ln2z)], (3·35) 

where "f = 0.5772 · · · is the Euler constant, Ci(x) = - J;:' dtcostjt and Si(x) 
= Jt dt sin tjt, and Rm,k is a polynomial of the inverse power of z defined by 

Rm,k = z 2(nm)k- )mnk) 
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Chapter 1 Black Hole Perturbation 15 

[(m-k-1)/2] (m- k- 1- r)! r ( m + l- r) (-2z)m-k-1-2r 
=- I: (-1r 

2 

r=O r! (m -- k- 1- 2r)! T ( k + ~ + r) 
(3·36) 

form> k, and 
Rm,k = -Rk,m (3·37) 

form< k. 
Next we consider e~~· From Eqs. (3·33) and (3·34), we obtain e~~ as 

c(2) _ /(2) + . (2) + k(2) ( ) 
<.,.£m - R ~gl lm q ' (3·38) 

where JP) and g?) are the real and imaginary parts of e~~ in the Schwarzschild 

limit, respectively, and k~~(q) is the correction term due to non-vanishing q = ajM. 

For I!= 2 and I!= 3, JP) are given by 

!
(2) _ 389 . 113 . 1 . nnj 
2 - -70z2Jo- 420zJ1 + 7zJ3 + 4D 2 

_ ..!!._ Dnj 10 Dnj ~ Dnj 107 Dnj 
3z 2 + 3 1 + z 0 + 105 - 3 

107. 1 . 2 
-

210
J2lnz-

2
J2(lnz) , 

(2)- 1 . 323. 5065: (1031 445) . 65 65 
fs - 4zJ4 + 49zJ2 - 294z2J1 - 588z + 14z3 Jo + 6z2 no - 6z n 1 

3 Dnj 13 Dnj 9 Dnj 30 Dnj 13 Dnj 
-; 3 + 3 2 + ; 1 + z2 o - 21 -4 

nnj 13 . 1 . ( )2 
+4D3 -

42
]3lnz- 2)3 lnz , (3·39) 

where D~nj is defined in Appendix D, Eq. (D·20). As explained in §D.1 of Appendix 

D, the term g?) is given for any I! as 

g?) = -~jR + !?) lnz. (3·40) 
z 

The term k~~(q) is given for I!= 2 and I!= 3 by 

k(2) _ 191 i . _ m 2 q2 jo m q j 1 
2m- 180 mqJo 30 -10 

68 i . q2 . 73m2 q2 . 7 m q is i 2 . i 2 2 . 
- 63 m qJ2 - 392J2 - l764 J2 + 180 - 72 q J3 + 324 m q J3 

11 i . q2 j4 71m2 q2 j4 13 i 
+ 420 mqJ4 - 392 - 8820 + 6 mqn1 

( 
j1 13j3) . (-2 nj 13 nj) +mq - 5 - 9o lnz+~mq 5 n 1 -

45 
D 3 , (3·41) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.128.1/1929942 by M

PI G
ravitational Physics user on 25 April 2025



16 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

k(2) _ 3527 i m . _ 2m2 q2 JI _ m q J2 _ 5 i 2 . _L ~ 2 q2 
1
.
2 3m- 840 q)l 315 36 504 q 12 ' 2268 m 

379 i . q2 )3 7m2 q2 j3 3m q j4 i 2 . i 2 2 . 
- 360 m q 13 - 360 - 720 + 160 - 140 q 14 + 1120 m q 14 

97i . q2 j5 17m2 q2 j5 103i 25i 
+5040 mqJ5 - 360 - 5040 - 48mqno + 8mqn2 

_ (13mq)2 Smqj4) l i (-13 Dnj _ ~ Dnj) 
126 + 56 n z + mq 63 2 28 4 · (3·42) 

As noted previously, the source term T~mw has support only around r = ro, 
hence around z = wro = O(v). Therefore, to evaluate the source integral, we only 
need xin at z = O(v) « 1, apart from the value of the incident amplitude Ainc. 

Hence the post-Newtonian expansion of xin corresponds to the expansion not only 
in terms oft= O(v3 ), but also of z by assuming E « z « 1. In order to evaluate the 
gravitational wave luminosity to O(v8 ) beyond the leading order, we must calculate 
the series expansion of d~ in powers of z for n ~ 6- £ for each 2 ~ f :S 6. This 
follows from a simple power counting. The leading order contribution of the £-th pole 
is O(v2(~-2)) smaller than that of the quadrupole, while the n-th post-Minkowski 
terms are O(tnz-n) = O(v2n) relative to the lowest order terms in the near-zone. 
Hence the leading term of~~~ contributes at O(v2(£-2)+2n) and O(v8 ) is attained 
for£+ n = 6 (see Appendix C of Ref. 15)). 

To evaluate A inc, we need to know the asymptotic behavior of d~ at infinity. 

Since the accuracy of Ainc we need is O(t2), we do not have to calculate ~~~ and 

~~~ in closed analytic form. We need only the series expansion formulas for d~ and 

~~~ around z = 0, which are easily obtained from Eq. (3·33). This is also true for 

d~ for£= 4. Inserting d~ into Eq. (3·17) and expanding it by z and E assuming 
E « z « 1, we obtain 

(3) _ -q2 i 3 -i 7 m q i 2 2 m q3 m3 q3 

~2m - 30z - 30z m q + 30 + 180 - 60 m q + 36 - ----go 
mqlnz i 2 21 -=----- -m q nz 

30 30 

( 
319 10063 7 i q2 17m2 q2 83 i 3 

+z 6300 + 441000 m q- 180 + 1134 + 5880 m q 

61 i 3 3 ln z 106 i i 2) 
-13230m q +l5-1575mqlnz- 30mq(lnz) 

+0(z2
), 

4 

d~ = 8~z2 + O(z-1), 
. 2 2 . . 

(3)-~ m m q - _z_ m 3- _z_ m3 3 0 z ~3m - 1260 q + 1890 1260 q 3780 q + ( ), 

(3·43) 

(3·44) 

(3·45) 
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Chapter 1 Black Hole Perturbation 17 

(2)- ( 1 . lli q2 19m2q2) 2 3 
~4m- 1764- 15120 mq + 10584- 105840 z + O(z ). (3·46) 

Inserting these ~t;: into Eq. (3·17) and expanding the result in terms of E = 2Mw, 
we obtain the post-Newtonian expansion of Xin. The transformation from X in to 
Rin is done by using Eq. (3·10). 

Next, we consider A inc to 0( E2). Using the relation i£+1 '"" -i£-1 '"" ( -1 )f+nn2n-£ 

at z"' oo, etc., we obtain the asymptotic behavior of d~ and~~~ at z rv oo as 

c(1) (1) . ( (1) 1 ) .. 1 '>£m '""P£mJ£ + q£m- nz nc + ~J£ nz, 

~~~ '"" (P~~ + q~~ ln z- (lnz)2) i£ + (q~~ - p~~ ln z)n£ 

+ip~~j£lnz + i(q~~ -lnz)n£lnz, 

where 

(1) 7r 
P£m = -2, 

(1) _ 1 [ (f- 1)(€ + 3)] 2imq 
Qem- 2 1/;(f) + 1/J(f + 1) + f(f + 1) -ln2- f2(f + 1)2' 

£-1 1 
1/;(f) = L-- T 

k=1 k 

for any f, and 

(2)_457! 1 2 57r2 i 457ln2 
P2m - 210 - 2 + 24 - 18 1 m q + 210 

(3·47) 

(3·48) 

(3·49) 

(3·50) 

(3·51) 

i (ln 2) 2 
-1 ln2-

18 
mq ln2- -

2
-, (3·52) 

(2) -457 1r 1 1r 5 m q i i 2 i 2 2 1r ln 2 
q2m = 420 + 2 + 36 + 36 m1rq- 72 q +324m q + -2-, (3"53) 

(2) 521 1 2 5 1r
2 i 52 ln 2 i (ln 2? 

P3m = 21 - 2 + 24 -
72 

1m q + 
21 

- 1 ln 2 -
72 

m q ln 2 - -
2
-, 

(3·54) 
(2) -2611" 11r 67mq i i 2 17i 2 2 1r ln2 

q3m = 21 + 2 + 1440 + 144m7rq+ 360 q - 12960 m q + -2-. 

(3·55) 

Then noting that exp( -i¢),....., exp( -i(z*- z)) at z,....., oo, the asymptotic form of xin 

is expressed as 

X in = V z2 + a 2w2 exp( -i¢) { f£~ + E~~~ + E
2 d~ + · · ·} 

'""e-iz* (zh~2)eiz) [ 1 + E(p~~ + iq~~) + E2 (p~~ + iq~~)] 

+eiz* (zh~1)e-iz) [ 1 + E(p~~- iq~~) + E2 (p~~- iq~~)] , (3·56) 
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18 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

where h~1 ) and h~2 ) are the spherical Hankel functions of the first and second kinds, 
respectively, which are given by 

iz -iz 
h~1 ) = j£ + int-+ ( -1)£+1 ~, h~2 ) = j£- int-+ ( -1)£+1_e_. 

z z 
(3·57) 

From these equations, noting wr* = z* - E ln E, we obtain 

Ainc = ~i£+1e-idnE [ 1 + c(p~~ + iq~~) + E2(p~~ + iq~~) + .. ·] . (3·58) 

The corresponding incident amplitude Binc for the Teukolsky function is obtained 
from Eq. (3·13). 

§4. Gravitational waves to O(v11 ) in Schwarzschild case 

In this section we consider a circular orbit around a Schwarzschild black hole 
and derive the 5.5PN formula for the energy flux emitted to infinity. In this case, we 
can take the orbit to lie on the equatorial plane ( () = 1r /2) without loss of generality. 
Then E and lz are given by setting R(ro) = oRjor(ro) = 0 where R is given by 
Eq. (2·19). This gives 

E = (ro- 2M)/..jro(ro- 3M), lz = ~/V1- 3M/ro, (4·1) 

where ro is the orbital radius. The angular frequency is given by [l'P = (M/rg) 112 . 

Defining 8 btm by 

_ 1 1;2 ( 1r ) Ero obtm- 2 [(£- 1)£(£ + 1)(£ + 2)] oYfm 2' 0 ro _ 2M, 

-lbem = [(£- 1)(£ + 2)]
112 

-lYfm ( i' 0) ~:, 
-2bem = -2Yem ( i' 0) lzrlcp, (4·2) 

where sYfm(O, cp) are the spin-weighted spherical harmonics, 30) Zemw is found to take 
the form 

where 

Zem = . ; . { [-obem- 2i_lbem (1 + iwr6/(ro- 2M)) 
zwr0 B£~c 2 

+i_,b,mwro( 1 - 2M /ro) _, ( 1 - M /ro + ~iwro)] Ri~ 
+ [L1b£m --2 bem ( 1 + iwr6/(ro- 2M)) J roR~~' (ro) 

1 b 2Rin "( ) } +2-2 emro fw ro 

(4·3) 

(4·4) 
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Chapter 1 Black Hole Perturbation 19 

where prime denotes the derivative with respect to the radial coordinate r. In terms 
of the amplitudes Zem, the gravitational wave luminosity at infinity is given by 

dE= f:: t IZtml 2 

dt £=2 m=-f 47rw2 , 
(4·5) 

where w = mJl'P. Since the dominant frequency of the gravitational waves at infinity 
is 2flcp, an observationally relevant post-Newtonian parameter is x = (Mfl'P) 113 . We 
mention that our post-Newtonian expansion parameter is defined by v := (Mjr0 ) 112 . 

In the case of a circular orbit around a Schwarzschild black hole, however, we have 
v = x. Hence the parameter v is directly related to the observable frequency in the 
present case. 

Following the method given in §3, instead of directly calculating R~~ from the 
homogeneous Teukolsky equation, we calculate the corresponding Regge-Wheeler 
function X}~ first and then transform it to R~~. The homogeneous Regge-Wheeler 
equation, which is given by setting a= 0 in Eq. (3·4), takes the form, 31 ) 

(4·6) 

where 
V(r) = ( 1 _ 2A!__) (£(£ + 1) _ 6M) . 

r r 2 r3 
(4·7) 

The transformation (3·10) reduces to 32) 

R L1 ( d . ) r
2 

( d . ) X 
fmw = CO dr* + 2W ,::1 dr* + 2W T fw, (4·8) 

where co, defined in Eq. (3·7), reduces to co=(£- 1)£(£ + 1)(£ + 2)- 12iMw. The 
inverse transformation (3·11) reduces to 

(4·9) 

The asymptotic forms of xin are the same as given in Eq. (3·12) except that now 
we have k = w. The coefficients Ainc, Aref and Atrans are also respectively related to 
Binc, nref and Btrans as before. (See Eqs. (3·13), (3·14) and (3·15).) Note that the 
coefficient that appears in Eq. (3·15) now reduces to 

demw = 16M3(1- 2iMw)(1- 4iMw). ( 4·10) 

Corresponding to Eq. (3·16), we introduce the variable z* = z+dn(z-~:). Then 
Eq. (3·17) reduces to 

(4·11) 

and Eq. (3·19) becomes £(0)[~e] = ~:£( 1 )[~£]. Thus Eq. (3·24) simplifies considerably 
to become 

(4·12) 
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20 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

It may be worthwhile to note that the left-hand side can be expressed concisely as 

£(1)[,:-(n-1)] = -iz!!_ []__!!.__ ( iz 2,:-(n-1))] 
<,f. e d 3d e z <,f. • z z z 

( 4·13) 

The calculations to 0( E2) are already done in §3. When we consider the gravi­
tational wave luminosity to O(v11 ), we need to calculate Ainc to 0(E3) for P = 2 and 
3 and to 0( E2) and for P = 4. Thus we need the closed analytic forms of d3) for 

P = 2 and 3 and ~l2). The latter can be obtained in the same way as in the previous 
section. The procedure to obtain ~~3 ) is explained in detail in Appendix D. 

The real parts of d3
), J?), for P = 2 and 3 are given as 

!
(3) _ 214 F2,o[z(ln z )jo] _ 107 nr:_j4 _ 457 Dr:i2 _ 2629 D~j 16949 D~j 
2 - 105 630 70 630 + 4410 

_ 107 (ln Z) D~j + (l )2 Dnj _ 2 D~j _ 12 Dnnj _ 
18 

Dnnj + 2 D~nj 
105 n z 2 49 - 1 1 3 

8
Dnnnj 197j_3 2539j-1 107(lnz)j_1 3(lnz)2j_1 21}1 

- 2 - 126 + 3780 + 70 + 2 + 100 

349(lnz)j1 9(lnz)2j1 457j3 29(lnz)ja (lnz)2j3 j5 
+ 140 + 4 - 1050 + 252 - 12 + 504' 

(3) _ 26F3,o[z(logz)jo) 13Dr:._{ 14075 nr:_~ 
fa - 21 + 98 + 882 

1424 Dnj -1 

63 

2511 Dnj 269 Dnj 
----'1'- + 3 

70 70 
13 (log z) D~j 

21 
Dnj 710 Dnnj 6 Dnnj 

+(log z)2 Dnj - - 5- + 60 Dnnj + 34 Dnnj - 2 + 4 
3 18 - 2 0 21 7 

(4·14) 

Dnnnj 75 J-4 19 J-2 65 (log z) J-2 15 (log z)
2 

J-2 2789 jo 
- 8 3 + ~ - ~ - 14 - 2 - 3780 

221 (log z)jo 17 (log z)2 jo 7495 jz 4867 (log z) jz 
- 84 - 4 - 5292 + 1764 

355(logz)2j2 10963j4 15(logz)j4 3(logz)2j4 4j6 
+ 84 - 32340 + 196 - 28 + 1485' (4'15) 

where the definitions of the functions D~nj, etc., are given in Eqs. (D·20) and (D·24) 

of Appendix D. The imaginary parts g~3 ) are expressed in terms of JJI) and JJ2) as 

given in Eq. (D·9). As for the real part of ~l2 ), fd2), it is calculated to be 

(2) - 56 . ( 5036 30334 ) . (35252 30334 14401) . 
!4 - 165 zJ5 + -33 z4 + 1155 z2 J4 + 33 z5 - 165 z3 + 3465 z J3 

( 
5036 45461 36287) . ( 140 5 ) 49 

- 11 z5 + 693 z3 + 9240 z J1 + ~ - 18 z no - 6 z n2 
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-~Dnj 149 Dnj _ _!Q_Dnj 105 Dnj 210 Dnj _ 20 nj 1571 nj 

5 z 4 + 30 3 3 z 2 + z2 1 + z3 ° z Do + 3465 D -s 
nnj 1571 . 1 . ( 2 

+4D4 -
6930 

)4 lnz- 2 )4 lnz) . (4·16) 

Using the analysis given in §D.4.2 of Appendix D, the above results readily 

give us the asymptotic forms of d3) (£ = 2, 3) and d2) at z ~ oo, from which the 
amplitudes Ainc to the required order are calculated. The results are 

A inc 1. -i€(ln2€+'Y) [· { 5 2107 3 ( 29 107 2 ((3)) }] 
2 = --ze exp z E-- E -1!' + E -- --1!' + -- + ... 

2 3 420 648 1260 3 

[ 

1l' 2 (25 5 2 107 ) 
X 1-E-_j_E -+-1!' +-(r+ln2) 

2 I 18 24 210 

+E --1!'- -(r + ln2)7r-- + .. · 3 ( 25 107 1!'
3

) l 
36 420 16 ' 

A3nc = -e-t€(ln2€+'Y) exp i E-- E2-1!' + E3 --- -1!'2 + -- + ... . 1 . [ { 13 13 ( 29 13 ((3)) }] 
2 6 84 810 252 3 

[ 

1l' 2 ( 169 5 2 13 ) 
X 1-E-+E -+-1!' +-(r+ln2) 

2 72 24 42 

+E --7r--(r+ln2)7r-- + ... 3 ( 169 13 1!'
3

) l 
144 84 16 ' 

Amc = -ie-u(ln2f+'Y) exp i E-- ZE2 __ 7l' + ... . 1 . [ { 149 . 1571 }] 
4 2 60 13860 

[ 
1l' 2 (22201 5 2 1571 ) ] 

X 1 - E- + E -- + -1!' + -- (r + ln 2) + .. · . 
2 7200 24 6930 

( 4·17) 

The corresponding amplitudes Binc are readily obtained from Eq. (3·13). 
As in the previous section, from Eqs. (4·11) and (4·8), it is also straightforward 

to obtain the near-zone post-Newtonian expansion of xin and hence of Rin, assuming 
z « 1. As discussed there, we need the series expansion formulas for Rin for 2(n 
+£- 2) ~ 11, hence for n ~ 7-£ for each 2 ~ £ ~ 7. The resulting Rin for 2 ~ £ ~ 7 
which are necessary to calculate the luminosity to 0( v11) are given in Appendix E. 

Finally, from Eq. (4·5), we obtain the luminosity to O(v11) as 

jdE) =(dE) [1 - 1247 v2 + 41rv3 _ 44711 v 4 _ 81911!' v5 

\ dt dt N 336 9072 672 

(
6643739519 17121 1611'2 3424ln2 1712lnv) 6 

+ 69854400 - -105 + -3-- 105 - 105 v 

1628511' 7 
- v 

504 

( 
323105549467 232597 r 1369 1r

2 

+ - 3178375200 + 4410 - 126 
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39931 ln 2 4 7385 ln 3 232597 ln v) 8 
+ 294 - 1568 + 4410 v 

( 
265978667519 1r 6848 "( 1r 13696 1r ln 2 6848 1r ln v) 9 

+ 745113600 - 105 - 105 - 105 v 

( 
2500861660823683 916628467 "( 424223 rr2 

+ - 2831932303200 + 7858620 - 6804 
83217611ln2 47385ln3 916628467lnv) 10 

- 1122660 + 196 + 7858620 v 

( 
839930975040lrr 177293"' 1r 

+ 101708006400 + 1176 

8521283rr ln2 142155rr ln3 1772937rlnv) 11] 

+ 17640 - 784 + 1176 v ' 

( 4·18) 

where (dEidt)N is the Newtonian quadrupole luminosity given by 

(4·19) 

To compare the above result with those obtained previously by the standard post­
Newtonian method, we note that v = x = (Mfl'P) 113 in the present case. Then we 
find our result agrees with the standard post-Newtonian results up to O(x5 ) 33)- 38) 

in the limit t-tl M « 1. The contributions to the luminosity from individual £ niodes 
are given in Appendix E. 

§5. Convergence of the post-Newtonian expansion 

Using the results obtained in the previous section, we compare the formula for 
the gravitational wave flux with the corresponding numerical results and investigate 
the accuracy of the post-Newtonian expansion. 

A high precision numerical calculation of gravitational waves from a particle in a 
circular orbit around a Schwarzschild black hole has been performed by Tagoshi and 
Nakamura. lO) Since no assumption was made about the velocity of the test particle, 
their results are correct relativistically in the limit 11- « M. In that work, dE I dt was 
calculated only for£= 2 "'6. Here, for the orbital radius ro :::; lOOM, we calculate 
dE I dt again for all modes of £ = 2 "' 6 and for £ = 7 with odd m. The estimated 
accuracy of the calculation is about 10-11 , which turns out to be accurate enough 
for the present purpose. As for the radius ro > lOOM, we use the data calculated by 
Tagoshi and Nakamura 10) which contain modes from£= 2 to 6. 

In Figs. 1 and 2, we show the error in the post-Newtonian formulas as a function 
of the orbital radius r. The error of the post-Newtonian formula is defined as 

(5·1) 
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~O(yAQ) 

~ ·O(vA2) 
- ~ ·O(vA3) 
--)(--O(vA4) 
· ·+· ·O(vA5) 
~ ·O(vA6) 
- ·O·- O(vl\7) 
~·-O(vl\8) --+-- O(vl\9) 
···•··· O(v11.1 0) 
~O(vA11) 

10 

--

r/ M 
100 

23 

Fig. 1. The error of the post-Newtonian formulas as functions of the Schwarzschild radial coordinate 

r for 6 ~ r / M ~ 100. Contributions from f. = 2 to 7 modes are included. 

where (dEf.dt)n and (dE/dt) denote the (n/2)PN formula and the numerical result, 
respectively. In the plot of Fig. 2, only the contributions from f = 2 to 6 are included 
in both the post-Newtonian formulas and the numerical data. We can see that, at 
small radius less than r "' 10M, the error of the 1PN and 2.5PN formulas are larger 
than the other formulas. On the other hand, the Newtonian and the 2PN formulas 
are very accurate within this radius. This is because those formulas coincide with 
the exact one accidentally at a radius between 6M and 10M. The error of each 
post-Newtonian formula at the inner most stable circular orbit, r = 6M, becomes 

as follows: 12% (Newtonian), 66% (1PN), 8.6% (1.5PN), 3.4% (2PN), 42% (2.5PN), 
11% (3PN), 5.4% (3.5PN), 17% (4PN}, 8.4% (4.5PN), 6.5% (5PN), 4.1% (5.5PN). 
As is expected, the errors of the post-Newtonian formulas decrease almost linearly 
up to r "' 5000M in a log-log plot. This fact also suggests that the numerical data 
have accuracy of at least "' 10-18 at r "' 5000M. 

In order to examine exactly to what order the post-Newtonian formulas are 
needed to do accurate estimation of the parameters of a binary, using data from 
laser interferometers, we must evaluate the systematic error produced by incorrect 
templates. However, here we simply calculate the total cycle of gravitational waves 
from a coalescing binary in a laser interferometer band and evaluate the error pro­
duced by the post-Newtonian formulas. It has been suggested that whether the error 
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error 

1 o·18 

100 1000 
r/ M 

Fig. 2. The same figure for 100 S r / M < 5000. Contributions only from £ = 2 to 6 are included in 
both the post-Newtonian formulas and in the numerical data. 

in the total cycle is less t~an unity or not gives a useful guideline to examine the 
accuracy of the post-Newtonian formulas as templates 39) (see also Ref. 40)). 

We ignore the finite mass effect in the post-Newtonian formulas and interpret 
M as the total mass and J.l as the reduced mass of the system. The total cycle N 
of gravitational waves from an inspiraling binary is calculated by using the post­
Newtonian energy loss formula (dEjdt)n, and the orbital energy formula (dEjdv)n 
which is truncated at n/2PN order as 

N(n) -1vi dv fl'P (dEjdv)n 
- v1 7r J(dEjdt)nl' 

(5·2) 

where Vi = (M/ri) 112 , VJ = (M/rJ) 112
, and ri and rf are the initial and final 

orbital separations of the binary. We define the relative difference of cycle flN(n) 
as L1N(n) = JN(n) - N(n-l)J. We adopt rf = 6M and Ti is the one at which the 
frequency of wave is 10Hz and which is given by ri/M,...., 347(M0 jM)213 . 

The results for typical binary systems are given in Table I. We only show the 
results for q = 0. The cases for q # 0 are investigated in Shibata et al. 15) and Tagoshi 
et al.. 16) This table suggests that we need the 3PN ,....,4PN formula to obtain accurate 
wave forms for typical binaries whose total mass are less than 20M0 . Although 
the required post-Newtonian order is very high and it has not been achieved yet in 
the standard post-Newtonian analysis, this results show that the post-Newtonian 
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Chapter 1 Black Hole Perturbation 25 

Table"I. The relative difference of cycle LJ.N(n) for typical coalescing compact binaries. The last 
line shows the cycle calculated by Newtonian quadrupole formula. 

n (1.4M0,1.4M0) (10M0;iOM0) (L4M0,10M0) (1.4M0,70M0) 
2 356 54 216 212 
3 228 60 208 296 
4 11 5 15 31 
5 12 7 20 53 
6 11 8 22 75 
7 1.2 1.0 2.6 10 
8 0.12 0.14 0.3 2.2 
9 0.82 0.80 1.9 8.9 
10 0.09 0.08 0.20 0.87 
11 0.03 0.03 0.07 0.40 

N(O) 16000 600 3578 898 

approximation is applicable to the inspiral phase of coalescing compact binaries. In 
this sense, we can be optimistic. 

On the other hand, the convergence for the case of neutron star-black hole 
binaries, whose mass is above several ten M0 , is very slow. This is because ri/M 
become smaller for a larger mass black hole, and the higher relativistic correction 
becomes more important. From Table I, one might think that N(n) converges at 
n = 11 even for (m1, m2) = (1.4M0 ,70M0 ). However this is not true. Note that 
Table I shows only the relative difference between the post-Newtonian approximated 
cycles. If we calculate the difference between the post-Newtonian formula and the 
fully relativistic one, we find that the 5.5PN formula is not accurate enough for the 
case (m1, m2) = (1.4M0 ,70M0 ), as pointed out by Tanaka, Tagoshi and Sasaki. 13) 

Finally we comment on the initial frequency. The above results are obtained 
by setting the initial frequency to 10Hz. However, it may be difficult to observe 
gravitational wave at this frequency because of the seismic noise. If we set the 
initial frequency higher than 10Hz, the error i1N becomes slightly smaller. But 
since this dependence of i1N on the initial frequency is very weak, the above results 
are insensitive to the variation of the initial frequency. 

§6. Circular orbit on the equatorial plane around a rotating black hole 

In this section, we consider a circular orbit on the equatorial plane of a Kerr 
black hole and calculate the 4PN luminosity formula. 

We define the orbital radius as r = ro. As in §4, we have C = 0, and E and lz 
are determined by R(ro) = 0 and 8Rf8r lr=ro= 0 as 

1- 2v2 + qv3 

E = (1- 3v2 + 2qv3)1/2' 
l _ rov(l- 2qv3 + q2v4

) 

z - (1 - 3v2 + 2qv3)1/2 

where v = (Mjr0 ) 112 . From these, we can easily obtain rp(t) as 

Ml/2 ] 
rp(t) = fl"' t; fl"' = -:s(2 [ 1- qv3 + q2v6 + O(v9

) 

ro 

(6·1) 

(6·2) 
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26 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

When a= 0, this becomes n'f' = (Mfr5) 112 . 

The rest of the calculation is almost the same as in §4. The amplitude of the 

Teukolsky function Z~w at infinity is expressed as 

zoo 2·m5(w -mil) [Rin{A A A } 
fmw = J.L 2iwBinc nnO + mnO + mmO 

dRin d2Rin ] 
---{Amnl + Amml} + --2-Amm2 

dr dr r=ro ,fJ=1r /2 

= 8(w - mil)Z~w, (6·3) 

where Anno, etc., are given by Eq. (2·25). 
The total luminosity up to O(v8 ) is expressed as 

I dE) (dE) { . 73q 33q
2 

\ dt = dt N 1 + (q-mdependent terms) - 12 v
3 + +w v4 

3749q 5 (169?rq 3419q2) 6 
+~v - 6 + 168 v 

(
83819q 65?r q2 151 q3

) 7 

+ 1296 + 8 - 12 v 

(
3389?rq- 124091q2 17q4) 8} 

+ 96 9072 16 v ' 
(6·4) 

where (dEjdt)N is the Newtonian quadrupole luminosity, Eq. (4·19), and the q­

independent terms are identical to those in Eq. (4·18). 
From an observational point of view, it is more convenient to express the luminos­

ity in terms of the variable x = (Mil'f') 113 . Using the .relation between v = (M/ro) 112 

and x given by Eq. (6·2), the luminosity is expressed as 

I dE) (dE) { . 11 q 33 q
2 

\ dt = dt N 1 + (q-mdependent terms)- 4 x
3 + W x

4 

- 59q x5 + (- 65?rJ_ + 61lq2) x6 

16 6 504 

( 
162035 q 651T" g2 71 q3

) 7 

+ 3888 + -8- - 24 X 

( 
359 1r q 22667 q

2 
..L 1.7 q

4
) x8 } 

+ 14 + 4536 I 16 l 
(6·5) 

where 

( dE) = 32 (£) 2 
10 

dt N 5 M X ' 
(6·6) 

and the q-independent terms are again identical to those in Eq. ( 4·18) with the 

replacement v -+ x. The partial luminosities for individual modes are given in 
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Chapter 1 Black Hole Perturbation 27 

Appendix F. The spin dependent term at O(v3 ) agrees with the standard post­
Newtonian result. 41 ) 

Here it is interesting to investigate the origin of some of the spin-dependent 
terms. As an example, we consider the mode f = lml = 2. The luminosity from the 
f = lml = 2 modes is given by 

(~~) 
2
,
2 

+ ( ~~) ,,_
2 
~ ( ~~t {I+ (q-independent te•ms)-

8

3q x3 + zq' x4 

52q 5 ( 32nq 1817q2
) 

+ 27 x + --3-- 567 x
6 

( 
364856 q 2 8 q3

) 7 
+ 11907 + 8 7r q - J X 

(
208nq 105022q2 

4) 8 } 
+ "27- + 9261 + q X • (6·7) 

We can derive some of the spin-dependent terms in the above formula from the 
quadrupole formula; 42) dE/dt = (32/5)M2f4 .0~, where f is the orbital radius of a 
test particle in harmonic coordinates. If multipole moments of the black hole exist, 
the orbital radius changes due to the influence of those moments. The mass and 
mass current multipole moments of a Kerr black hole is given by M1 +iS1 = M(iat 
We can express the orbital frequency of the test particle in harmonic coordinates. 
We find that the dominant effect of the multipole moments of a Kerr black hole to 
dE/ dt can be expressed as 

The terms in this expression agree with the corresponding terms of our result such 
as ( -8/3)qx3 , 2q2x4 , ( -8/3)q3x 7 and q4x 8 . Thus, we may interpret the term 2q2x4 

as the effect of the quadrupole moment. The terms ( -8/3)q3x 7 and q4x 8 are not due 
to a single multipole moment, but to combined effects of the multipole moments. 

§7. Slightly eccentric orbit around a Schwarzschild black hole 

In this section, we present post-Newtonian formulas of gravitational waves from 
a particle in slightly eccentric orbits around a Schwarzschild black hole. We derive 
the 4PN formulas of the energy and angular momentum fluxes to 0( e2 ) where e is 
the eccentricity of the orbit. 

The solution of the geodesic equations for slightly eccentric orbits has been given 
by Apostolatos et al.. 43) Here we briefly sketch the derivation of it. Since we may 
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28 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

consider the orbit to lie on the equatorial plane without loss of generality, we put 
() = 1rl2 and C = 0 in the geodesic equations (2·18). Then we define a slightly 
eccentric orbit as follows: First of all, we assume that E and lz are set to be such 
that R( r) I r 4 , which plays the role of an effective potential for the radial motion, 
has the minimum at r = ro and that the maximum value of the orbital radius is at 
r = r 0 (1 +e), where e « 1. Thus, the following conditions hold 

8(Rir4 ) 
or (r = ro) = 0 and R(r = r 0 (1 +e))= 0. (7·1) 

From these equations, E and lz are expressed in terms of ro and e as 

E2 - (1- 2v2)2 ..L v2(1- 6v2) 2 - 2v2(1- 7v2) 3 0( 4) 
- 1 - 3v2 ' 1 - 3v2 e 1 - 3v2 e + e ' (7·2) 

l- M 
z- vJ1- 3v2 ' 

(7·3) 

where v = J M I ro. For convenience, we also define il = v3 I M. Then expanding the 
geodesic equations in powers of e, the solution is found to be 43) 

r(t) = ro[1 + e cos ilrt 

+e2{ ql ( v )(1 - cos !lrt) + q2( v) (1 -cos 2ilrt)}) + O(e3), (7·4) 

<p(t) = n.pt- epl(v) sin !lrt 

+e2{p2( v) sin ilrt + P3( v) sin 2!2rt} + O(e3), (7·5) 

where 

ilr = !2(1- 6v2)112, (7·6) 

3(1- 3v2)(1- 8v2) 
n<p = il[1- f(v)e2] ; f(v) = 2(1- 2v2)(1- 6v2)' (7·7) 

1- 7v2 1- llv2 + 26v4 

ql(v) = 1- 6v2' q2(v) = 2(1- 6v2)(1- 2v2)' (7·8) 

2(1 - 3v2) 2(1 - 3v2)(1 - 7v2) 
Pl(v) = (1- 2v2)J1- 6v2' p2(v) = (1- 2v2)(1- 6v2)312' 

5 - 64v2 + 250v4 -- 300v6 

P3(v) = 4(1- 2v2)2(1- 6v2)3/2 (7·9) 

As is well known, since ilr =f. il'P, the orbit does not close. 
Now we evaluate the source term of the Teukolsky equation. In the present case, 

Anno, etc., given in Eqs. (2·25) reduce to 

(7·10) 

(7·11) 
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S~~ = L!LtSem(O = 1r /2), 

S~~ = L~Sem(O = 1r /2), 

s~~ = S'em(e = Jr/2). 

Then noting that the orbits of our interest have the properties, 

r(t + Lltr) = r(t), drp I drp I . 
dt t=t+Lltr = dt t=t 

1 

where Lltr = 27r/flr, Eq. (2·26) can be rewritten as 

z _ 11 100 

dteiwt-im<p(t)W: fmw - 2 . Binc fmw 
'tW fmw -oo 

= 11. 27r fnLltr dteiwt-im<p(t)w: ~ o(w- w ) 
2 · Bmc At fmw ~ n 1 

'tW fmw 4..1 r 0 n 

where 
Wn = nflr + mfl'P. (n = 0, ±1, ±2, · · ·) 

We see that Zemw takes the form as given in Eq. (2·28) with Zemw given by 

Z = 11flr loLltr dteiwt-im<p(t)W: 
fmw 2 . Binc fmw · 

'tW fmw 0 

(7·12) 

(7·13) 

{7·14) 

{7·15) 

{7·16) 

{7·17) 

{7·18) 

(7·19) 

(7·20) 

(7·21) 

(7·22) 

29 

When Zemwn are obtained, the energy and angular momentum fluxes averaged 
over t » Lltr are calculated by using Eqs. (2·31) and (2·32), respectively. Here, we 
show these fluxes accurate to O(e2) and to O(v8) beyond Newtonian: 

( ~~) = j;(O) + e2 j;(2) + O(e3), 

( d~z) = jiO) + e2 ii2) + O(e3). 

(7·23) 

(7·24) 

We note that j~O) = j;(O) In where n = v3 I M. We have already given the 5.5PN 
formula for j;(O) in §4, Eq. (4·18). Hence our task here is to evaluate the O(e2 ) 
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corrections. From the forms of r(t) and cp(t) given in Eqs. (7·5), we readily see that 
Zemwn = O(elnl) for n = ±1, ±2. Thus, we only need the modes n = 0, ±1: As for 
the n = 0 modes, we must retain terms up to O(e2 ), while for then = ±1 modes, 

we only need terms up to O(e). Then the 4PN formulas for i;(2) and j~2 ) are found 
as 

2 E(2) - 2 (dE) 
e PN -e dt N 

{ 
37 65 v2 1087 1r v3 465337 v4 11860711" v5 1732877911" v 7 

X 24- 21 + 48 - 9072 - 1344 48384 

( 
98546617999 65056 1 608 1r

2 1712 ln 2 234009 ln 3 
+ 69854400 - 315 + -9- + 315 - 560 

65056 ln v) 6 ( 6653525574791 1180151 3409311"2 

- 315 v + - 2118916800 + 98 - 126 

1035547ln2 3986901ln3 118015lnv) 8 } 

- 4410 + 1120 + 98 v ' (7·25) 

and 

2 j(2) _e
2 (dE) 

e zPN- f2 dt N 

{ 
5 749v2 497rv3 232181v4 7737rv5 3006377rv7 

X - S + 96 + 8 6048 + 336 1008 

(
8017536229 19367 'Y 18111"2 

+ 12700800 - 210 + -6-

20009 ln 2 78003 ln 3 19367 ln v) 6 
+ 210 - 280 - 210 v 

( 
12713730793 3463711 'Y 1467511"2 

+ - 61122600 + 8820 - 252 

_ 2312441ln2 35449083ln3 3463711lnv)vs}· 
980 + 15680 + 8820 

(7·26) 

In Appendix G, we show each (£, m, n) component of the energy and angular mo­
mentum fluxes. Note that there was an error in the coefficients of the e2v4 terms in 
Ref. 17). This error is corrected in Eqs. (7·25) and (7·26) above. 

To express the energy and angular momentum fluxes in terms of the variable 
x = (MD'P) 113 , we use Eq. (7·7). To O(e2 ), it can be easily solved for vas 

v = x [1 + }f(x)e2 + O(e3
)]. (7·27) 
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Chapter 1 Black Hole Perturbation 31 

Then to O(x8 ) the energy and angular momentum fluxes are expressed as 

( ~~) ~ ( ~~ L [ 1 + ( e-independent terms) 

2 ( 157 6781 x2 2335 1r x3 14929 x4 773 1r x5 

+e 24 - ----wB- + 48 - 189 3 

156066596771 x6 106144 'Y x6 992 1r
2 x 6 

+ 69854400 315 + 9 
80464 x6 ln 2 234009 x6 ln 3 106144 x6 ln x 

315 560 315 
32443727 1r x 7 304535511107 4427 x 8 507208 1 x8 

48384 671272842240 + 245 
312717r2 x8 151336 x8 ln 2 12887991 x 8 ln 3 

63 441 + 3920 

507208 x8 
ln x) l 

+ 245 ' (7·28) 

and 

jdJz) (dJz) [ . \ dt = dt. N 1 + (e-mdependent terms) 

2 (23 3259 x2 209 1r x3 1041349 x4 785 1r x5 

+e 8 - 168 + 8 - 18144 - 6 

91721955203 x6 41623 'Y x 6 389 1r
2 x6 24503 x6 ln 2 

+ 69854400 210 + 6 210 
78003 x6 ln 3 41623 x6 ln x 91565 1r x7 

280 210 168 
105114325363 x 8 696923 'Y x8 4387 1r

2 x8 

72648576 + 630 18 

7051 x8 ln 2 3986901 x8 ln 3 696923 x8 ln x)] 
- 10 + 1960 + 630 ' (7·29) 

where (dJz/dt)N is the Newtonian angular momentum flux expressed in terms of x, 

~ 2 

(d~z )N = 3
5
2 (:r) Mx7, (7·30) 

and the e-independent terms in both (dE/dt) and (dJz/dt) are the same and are 
given by the terms in the case of circular orbit, Eq. (4·18), with the replacement 
v-+ x. 

Finally, we consider the stability of circular orbits. We note that the following 
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32 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

relation holds: 

( ~~) - n, ( d~,) = '1:. ~~· cz~il' -IZ~i I}' + O( e4
) = H( v )e

2 + O( e4
), 

(7·31) 
where W± = mflr.p ± flr and z;!) = Zemw±. Here H ( v) is an important quantity which 
determines the stability of circular orbits under the radiation reaction. Assuming 
the adiabatic evolution of the orbit, the evolution equations for ro and e due to the 
gravitational radiation reaction are written as 43) 

where 

2- 27v2 + 72v4 - 36v6 

g(v) = 2(1- 2v2 ) 2 (1- 6v2 ) ' 

G(v) = E(2)- njpl = H(v)- f(v)E(o). 

Using Eqs. (7·25) and (7·26), the 4PN formula of G(v) is calculated as 

G ( ) =(dE) [ 13 _ 2441 v
2 

793 1r v3 234131 v4 121699 1r v5 

PN V dt N 6 224 + 48 18144 1344 

414029 7r v 7 ( 36300112493 72011 1' 673 7r
2 

6912 + 46569600 - 630 +I~ 

56603 ln 2 _ 78003 ln 3 _ 72011 ln v) v6 

630 560 630 

( 
18638348721901 7157639')' 17837 7r2 

+ - 6356750400 + 8820 - 84 

(7·32) 

(7·33) 

(7·34) 

(7·35) 

1085179 ln 2 20367531 ln 3 _ 133120 ln 4 7157639 ln v) v8] 

+ 1764 + 15680 441 + 8820 . 

(7·36) 

Note that [g(v)E(o) + G(v)]/ E;(O) ---+ 19/6 for v---+ 0; i.e., in the Newtonian limit, the 
radiation reaction always reduces the eccentricity. 44) By a numerical calculation, 
Apostolatos et al. 43) found that there exists a critical radius r c below which the 
circular orbit becomes unstable; rc ~ 6.6792M. On the other hand, we find the use 
of the 4PN formulas for E;(O) and G(v) gives rc,....., 7.38M. This indicates that a much 
higher order PN formula will be necessary to determine rc with good accuracy. 
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Chapter 1 Black Hole Perturbation 33 

§8. Slightly eccentric orbit around a rotating black hole 

In this section, we consider a slightly eccentric orbit on the equatorial plane 
of a Kerr black hole and calculate the leading order corrections of the eccentricity 
to the energy and angular momentum fluxes up to O(v5 ) beyond Newtonian. The 
calculation is parallel to the one given in the previous section. 

We consider the motion of a particle in the equatorial plane () = 1r /2, hence we 
have C = 0. We define the radius r = ro as the one at which the potential R/r4 is 
minimum; 8(R/r4 )/8r lr=ro= 0. We define the eccentricity e such that r = ro(1 +e) 
is a turning point of the radial motion at which R(r = ro(1 +e)) = 0. We assume 
e « 1. Using these definitions of ro and e, E and lz are expressed as 

E = E(o) + eE(l) + e 2 E(2) + O(e3 ), 

lz = t1°) + el11
) + e2l12

) + O(e3
), 

where E(n) and z1n) (n = 0, 1, 2) are given by 

E(o) - 1 - 2v2 + qv3 
- (1- 3v2 + 2qv3 )(1/2) ' 

E(l) = 0, 

(2) _ v2(1- 3v2 + qv3 + q2v4)( -1 + 6v2 - 8qv3 + 3q2v4) 
E - I ' 2(1- 3v2 + 2qv3)3 2(-1 + 2v2- q2v4) 

z(O) - rov(1 - 2qv3 + q2v4) 
z - (1 - 3v2 + 2qv3)(112) ' 

z(l) = o 
z ' 
(2) _ q ro v5(q- 3v + qv2 + q2v3)( -1 + 6v2

- 8qv3 + 3q2v4) 
l - I , 
z 2(1- 3v2 + 2qv3)3 2( -1 + 2v2 - q2v4) 

where v = (M/ro) 112. The post-Newtonian expansions of E(n) and l~n) up to the 
required order are 

M 3M2 qM512 
2 ( M 5M2 3qM512) 6 

E = 1- -2 + -8 2 -~ + e -2 - -4 2 + 512 + O(v ),(8·1) 
ro ro ro ro ro ro 

1 2 [ 3M 3qM312 (27 2) M 2 15qM512 
lz = (Mro) I 1 + -

2 
- 312 + -

8 
+ q -2 - 5/2 

ro r0 ro 2r0 

2 (q2 M2 3qM5I2) 6] 
+e 22 - 512 + 0( v ) . 

ro 2r0 

(8·2) 

Now we solve the geodesic equations for a slightly eccentric orbit. The radial 
equation is 

(dr) 2 
= !!__ 

dt T 2 ' 
(8·3) 
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34 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

We expand r(t) as 

(8·4) 

and R/T2 in terms of e and v using Eqs. (8·1) and (8·2). Collecting terms of the 
equal order in e, we obtain 

(8·5) 

and 
1 dr(l) dr( 2

) (1) (2) (1) (1) 2 
----- = -r r + qo + q1r + q2(r ) (8·6) n; dt dt ' 

where flr, qo, q1 and q2 are given in the post-Newtonian series forms as 

_ M 112 [ _ 3M 3qM312 
_ (9 + 3q2)M2 15qM512 

6 ] . 
flr- 3/2 1 r + 3/2 2r2 + 5/2 + O(v ) ,(8 7) 

r 0 o r 0 o r 0 

_ M 2qM312 (6 + q2 ) M 2 20qM512 
6 

qo- - 1 +-- 3/2 + 2 - 5/2 + O(v ), 
ro ro ro ro 

(8·8) 

_ 2M [ 2M _ 3qM312 
...1.. 4M2 _ 6qM512 

6 ] 
q1 - 1 + 3/2 I 2 5/2 + 0( V ) ' 

ro ro r0 ro r0 
(8·9) 

_ 3M 2qM312 (10 + q2 )M2 26qM512 
6 

q2- 1-- + 3/2 - 2 + 5/2 + O(v ). 
ro ro ro ro 

(8·10) 

We obtain r(l)(t) from Eq. (8·5) as 

r(l)(t) =cos rlrt, (8·11) 

where we set r(t = 0) = ro(1 +e). Substitution of Eq. (8·11) into Eq. (8·6) and 
yields after integration 

(8·12) 

where q3 = -qo and q4 = q2j2. 
In the same way, we can solve the angular motion tp(t). From Eq. (2·18), we 

have dtpjdt = P/T, which can be expanded in terms of e using Eqs. (8·1), (8'·2), 
(8·4), (8·11) and (8·12). Integrating the resulting equation, we obtain 

tp(t) = rl'Pt + ep1 sin flrt + e2p2 sin flrt + e2p3 sin2flrt + O(e3), (8·13) 

where 

4M 6qM312 (17 + q2)M2 48qM512 
6 

PI = -2-- + 3/2 - 2 + 5/2 + O(v ), 
ro ro ro ro 
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Chapter 1 Black Hole Perturbation 35 

2M 2qM312 (1 - q2)M2 6qM512 
6 

P2 = 2 +-- 3/2 + 2 + 5/2 + O(v ), 
ro ro ro ro 

5 M 2qM312 (9 + 7q2)M2 59( -1 + q2)M3 
6 

P3 = -4 + -4 - 3/2 - 8 2 + 8 3 + O(v ), 
~ ~ ~ ~ 

(8·14) 

and 

_ (M) 1/2 [ q M3/2 
ilr.p - -ro 1 - -=-r-o...,-3/_,_2-

2 ( 3 9M 9qM31
2 3 (6 + q2) M 2 60qM512

) 6 ] 
+e -2 + 2- 3/2 + 2 - 5/2 + O(v ) · 

ro 2r0 
ro r0 

(8·15) 

As in the case of the previous section, the fact that flr I= flc.p implies that these 

eccentric orbits are not closed. 
Using the above solution of the geodesic equations, we evaluate the source term 

of the Teukolsky equation. We set 0 = 1r /2 in the expressions of Anno, etc., in 

Eqs. (2·25). Again, parallel to the discussion in §7, the orbits of our interest have 

the properties, 

r(t + L1tr) = r(t), dcpl dcpl 
dt t=t+Lltr = dt t=t 

1 

where Lltr = 27r/flr. Hence Eq. (2·26) reduces to the form 

Zemw = Zemwc5(w- Wn), 

where 
Wn = nflr + mflc.p, (n = 0, ±1, ±2, · · ·) 

and 
Z - ~-tflr loLltr dteiwt-imc.p(t)lV: 

lmw - 2 . Binc lmw 
2W lmw 0 

with Wemw given by Eq. (2·27). 

(8·16) 

(8·17) 

(8·18) 

(8·19) 

Using the solution of the geodesic equation for r(t), we expand Wemw in terms 

of e. The result takes the form 

( 
(1) dr(1)) 2 ( (2) dr(2) (1) 2 

Wemw = fo + e ftr + hdt + e far + f4dt + j5(r ) 

(
dr(1))

2 
1 dr(l) ) 3 

+!6 dt +hr< )dt+fs +O(e ), (8·20) 
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36 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

where fo "' fs are time-independent coefficients. Inserting this form to Eq. (8·19) 
we obtain 

where 8n,n' is the Kronecker delta. We see from this equation that Zcmwn = O(elnl) 
just as in the Schwarzschild case. Therefore we only need to retain the n = 0, ±1 
modes to evaluate the luminosity up to O(e2 ). 

We calculate the energy and angular momentum fluxes to O(v5 ) beyond the 
quadrupole formula and to 0( e2) in the eccentricity. The time-averaged energy and 
angular momentum fluxes are given by Eqs. (2·31) and (2·32), respectively. In order 
to express the post-Newtonian corrections to the luminosity, we define TJ£mn as 

( ~~) Cmn = ~ ( ~~) N TJC,m,n' (8·22) 

where (dEjdt)N is the Newtonian quadrupole luminosity given by Eq. (4·19). In the 
following, we show TJ£mn for m 2:: 0 modes. TJc,m,n for m < 0 are obtained from the 
symmetry T/C,m,n = TJ£,-m,-n, which follows from the property of Wn in the present 
case, given by Eq. (7·21). 

For P = 2, the 2.5PN formulas for TJc,m,n are found to be*) 

107v2 
3 3 4784v4 

2 4 ry2,2,0 = 1-~ + 47rv - 6qv + 
1323 

+ 2q v 

428 1r v5 4216 q v5 

21 + 189 

•) As mentioned in the previous section, we have detected an error in the formula for '172,2,0 in 
Ref. 17). The term -14270/147e2 v4 there is in correct. Accordingly, formulas for dE/dt and dlz/dt 
below are also corrected in this paper. 
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Chapter 1 Black Hole Perturbation 37 

( 
932v2 14270v4 

+e2 -10 + ~- 467rv3 + 84qv3
-

147 
- 23q2 v 4 

4748 1r v 5 2675 q v 5
) 

+ 21 + 189 , 

_ e2 ( 729 _ 3645 v2 2187 1r v3 _ 3645 q v3 
"'

2
•
2

•
1 

- 64 64 + 32 32 

24057 v 4 2187 q2 v 4 65617r v 5 9477 q v 5 ) 

+ 256 + 64 - 16 + 112 , 

= 2 (~ 1041v2 97rv3 _ 153qv3 

"'
2

'
2
'-

1 e 64 + 448 + 32 32 

2224681 v 4 99 q2 v 4 615 1r v 5 27857 q v 5 ) 

+ 112896 + 64 + 112 - 336 , 

v2 q v3 17 v 4 q2 v 4 1r v 5 793 q v 5 

"'
2

•
1

•
0 = 36 ---u-- 504 + 16 + 1s- 9072 

2 (-2v2 
2qv3 93v4 

q
2

v 4 197rv5 27113qv5
) 

+e -9- + -3- + 112 - -2- - 36 - 18144 ' 

_ e2 (4v2 
_ 4qv

3 
_ 172v4 

2 v4 167rv5 2794qv5
.) 

"'2•1•1 - 9 3 63 + q + 9 + 567 , 

2 ( 1 145 v2 1r v3 3 q v 3 282521 v 4 3 q2 v 4 

"'2•0,±1 = e 96 - 672 + 48 + 16 + 169344 -~ 

_ 83 1rv5 
_ 1255 qv5

) 

168 504 ' 

and "12,1,-1 becomes O(v6 ). Putting together the above results, we obtain (dEjdt)t 
= Lmn(dEjdt)emn for f = 2 as 

(dE) =(dE) { _ 1277v
2 

4 rr 3 _ 73qv
3 

37915v
4 

dt 2 dt N 
1 

252 + V 12 + 10584 

33 q2 v 4 25617r v 5 201575 q v 5 

+ 16 126 + 9072 

2 (37 2581v2 10877rv3 211qv3 325393v4 105q2 v4 

+e 24 - 252 + 48 - 6 + 21168 + 8 

_ 298577rv
5 + 11293qv~)}. (8.23) 

168 672 

For f = 3, we obtain 

1215 v2 

"13,3,0 = 896 
1215 v4 3645 1r v5 

112 + 448 
1215q v5 

112 
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2 ( -10935 v2 37665 v4 142155 1r v 5 134865 q v 5 ) 

+e 448 + 256 - 896 + 448 ' 

_ e2 (640v2 
_ 46720v4 51207rv5 

_ 1280qv5
) 

"73
•
3

•
1 

- 21 189 + 21 3 ' 

= e2 (15v
2 

1055v
4 

307rv
5 

_ 435qv5
) 

"73
•
3
·-

1 14 + 126 + 7 14 ' 

_ 5 v4 
_ 40 q v

5 e2 ( -65 v4 _~_ 520 q v 5
) 

"73'2'0 - 63 189 + 63 I 189 l 

2 (3645v
4 

1215qv
5

) 

"73'2' 1 = e 1792 - 224 ' 

( 
5v

4 
5qv

5
) 

"73 '2'- 1 = e
2 

1792 - 672 ' 

v2 v4 1r v 5 17 q v 5 

"73•
1

•0 = 8064 - 1512 + 4032 - 9072 

2 ( -v2 65v4 
1rv

5 199qv5
) 

+e 4032 + 16128 - 1152 + 36288 ' 

2 ( v2 23v4 
21rv

5 122qv5
) 

"73•1•1 = e 126 - 126 + ~ + 567 ' 

2 ( v
4 

qv
5

) 
"73 '0 '±1 = e 2688 - 1008 ' 

and "73,1,-1 becomes O(v6 ). Thus we obtain 

(dE) = (dE) { 1367v
2 

_ 32567v
4 

(164037r _ 896q) v5 

dt 3 dt N 1008 3024 + 2016 81 

2 (1801v
2 

_ 78509v
4 

(400837r _ 8913q) vs)} .(8.24) 
+e 252 864 + 448 56 

For f = 4, we have 

1280v4 37120e2 v4 

"74 '4 '0 = -567- 567 

48828125 e2 v4 

"7
4

'
4

'
1 = 580608 

32805 e2 v4 

"74,4,-1 = 7168 

5 v4 25 e2 v4 

"74 '2'0 = 3969 - 3969 ' 
5e2 v4 

"74'2'-1 = 254016 ' 
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Chapter 1 Black Hole Perturbation 39 

and 174,2,1 becomes O(v6 ). Hence we have 

(dE) =(dE) {8965v
4 

2946739e
2

v
4

} 

dt 4 dt N 3969 + 127008 . 
(8·25) 

Finally, gathering all the above results, we have the luminosity up to O(v5) as 

jdE) =(dE) {1 - 1247v
2 

...L 4 1rv3 _ 73qv
3 

_ 4471lv
4 

...L 33q
2

v
4 

\ dt dt N 336 I 12 9072 I 16 

81917rv5 3749qv5 
2 (37 65v2 10877rv3 2llqv3 

- 672 + 336 + e 24 - 21 + 48 6 

465337 v4 105 q2 v~ _ 118607 1r v5 
_ 95663 q v5

) } 

9072 + 8 1344 672 . (8·26) 

If we set q = 0, the e2 correction terms in the above formula completely agree with 

the corresponding terms in Eq. (7·25) in the previous section. 
To compare our results with those derived in the standard post-Newtonian 

method, it is convenient to change the parameter from v to x = ( M n'P) 113. The 

relation between v and x is given by 

(8·27) 

Then we obtain 

where (dE/dt)N is the quadrupole flux expressed in terms of x, Eq. (6·6). We find 

that the terms which are proportional to e2 agree with the formulas derived by Peters 

and Mathews 45) at leading order, Galt 'sov et al. 7) and Blanchet and Schafer at v2 

order, 46) Blanchet and Schafer at v3 order for q = 0 47) and Shibata at v3 order for 

q =/= 0, 48) if we expand their formulas by e assuming e « 1 and 1.t/ M « 1. 
From Eq. (2·32), the partial mode contributions to the angular momentum fluxes 

for£= 2, 3 and 4 are calculated to be 

(dJz) = (dJz) {1 - 1277v
2 

4 1rv3 _ 61qv
3 37915v

4 33q
2 v

4 

dt 2 dt N 252 + 12 + 10584 + 16 
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25611!'v5 22229qv5 
2 ( 5 137v2 4911'v3 57qv3 

- 126 + 1296 + e -8 + 24 + 8 - -4-

235675 v4 203 q2 v4 
_ 2043711' v5 

_ 164449 q v5
)} 

14112 + 32 504 4536 ' 

(
dJz) = (dJz) { 1367v

2 
_ 32567v

4 
(1640311' _ 88049q) 5 

dt 3 dt N 1008 3024 + 2016 9072 V 

e2 (67v2 
_ 66497v4 (4319371' _ 1675571q) 

+ 32 2016 + 1008 18144 

(
dJz) = (dJz) {8965v

4 
478195e

2
v

4
} 

dt 4 dt N 3969 + 42336 ' 

where (dJzfdt)N is defined by 

(
dJz) = 32j.t

2 
M

5
1

2 
= 32 (}!_) 2 

Mv7. 
dt N 5r~/2 5 M 

{8·29) 

Total angular momentum luminosity is then given by 

jdJz) = (dJz) { 1 - 1247v
2 

...L ( 4 11' _ 61q) v3 (- 44711 33q
2

) 4 
\ dt dt N 336 I 12 + 9072 + 16 v 

(
-819111' 417q) 5 2 ( 5 749v2 (4911' 57q) 3 + 672 +56 v +e -8+--oo--+ 8-4 v 

(
- 232181 203q

2) 4 (77311'- 28807q) 5)}. (8·30) + 6048 + 32 v + 336 224 v 

The e2 terms in the above also agree with the corresponding terms in Eq. (7·26). 
The angular momentum flux expressed in terms of x = (Mn.p) 113 is given by 

(8·31) 

where (dJzfdt)N is the Newtonian flux expressed in terms of x, Eq. (7·30). 

§9. Circular orbit with small inclination from the equatorial plane 

In this section, we consider the case of a circular orbit at r = ro with small 
inclination from the equatorial plane. We evaluate (dEjdt) and (dJzfdt) to O(v5 ) 

beyond Newtonian. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.128.1/1929942 by M

PI G
ravitational Physics user on 25 April 2025



Chapter 1 Black Hole Perturbation 41 

Iri this case, the orbital plane precesses around the symmetric axis. The degree 
of precession is determined by the value of the Carter constant C. If r 0 and C are 
given, the energy E and the z-component of the angular momentum lz are obtained 
by the two equations, R = 0 and oR/or = 0, where R is a function defined by 
Eq. (2·19). We introduce a dimensionless parameter y defined by 

C Q2 = z2z + a2(1- E2). y = Q2; (9·1) 

We assume y is a small number. Since Q2 "' z; and C "' z; + z;, this is physically 
equivalent to assuming z; + z; « z;. Since we do not need the exact expressions for 
E and lz in terms of ro and y, we show them to the first order in y as well as to 
O(v5). They are given by 

M 3M2 M312a ( y) 6 E=1--+---- 1-- +O(v), 
2ro 8r6 rg/2 2 

(9·2) 

lz = (Mro)l/2 [(1- ~) + 3J\,~ (1- ~) - 3Ml/2a_(1- y) 
2 2ro 2 3/2 ro 

27M
2 

( y) a
2 

15M
3
1
2
a l +~ 1- 2 + r 2 (1- 2y)-

2 512 (1- y) + O(v6
) , (9·3) 

0 0 ~ 

where note that a= Mq (lql < 1). 
To solve the geodesic equations under the assumption y « 1, we first set () 

= 1r /2 + y112 ()
1 and consider the geodesic equation for e. It then becomes 

_ = _ Q2 _ a2(1 - E2) + z . (
d()

1
)

2 1 [ sin2(yl/2()
1
){ z2 }] 

dT E2 y cos2(yl/2()1) (9·4) 

Since the right-hand side of Eq. (9·4) contains only even-functions of y 112()
1

, we can 
solve it iteratively by expanding ()1 as 

(9·5) 

This method is similar to the one we have used in §7 or 8. However, here we only 
consider the lowest order solution ()(O). This means we take into account the effect 
of inclination up to O(y), as seen from the structure of the geodesic equations. The 
equation for ()(O) is 

(9·6) 

or dividing it by ( dt / dT) 2, 

(
d()(O) )2 = Q2 (1- ()2 ) 

dt u 2 (O) ' 
(9·7) 

where 
2 2 

a + ro { 2 2 } u = -a(aE- lz) + d(ro) E(r0 +a ) - alz . (9·8) 
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Then the solution is easily obtained as 

O(o) = sin(.Oot); 
Q 

ilo= -, 
a 

where we have chosen O(o) = 0 at t = 0. Thus we have 

0 = ~ + y112 sin(.Oot). 

(9·9) 

(9·10) 

Note that the solution (9·10) implies that the inclination angle Oi is indeed given by 

oi = y112 in the present approximation. 
Next, we consider the geodesic equation for c.p. Taking account of the terms up 

to O(y), it becomes 

where 

and 

_ a 2 2 
~ = -(aE -lz) + .d(ro) {E(r0 +a ) - alz} 

~ 1 
n'P = - + -yfh , 

a 2 

The solution to Eq. (9·11) with c.p = 0 at t = 0 is 

c.p = n'Pt- y 4~o sin(2.0ot). 

(9·11) 

(9·12) 

{9·13) 

(9·14) 

Note that n'P -=/= .00 . This means the precession of a test particle orbit around the 

spin axis of the black hole. Specifically, to the order required for the present purpose, 

we have 

(9·15) 

We see that n'P - flo ~ 2M afr3 for ro -+ oo and y -+ 0, which is just the Lense­

Thirring precessional frequency. 49) 

Now we are ready to calculate the source integral for the amplitude Zt.mw· Anal­

ogous to the case of an eccentric orbit considered in §7 or 8, Eq. (2·26) can be 

simplified further by noting that the orbits of our interest have the properties, 

O(t + Llt0 ) = O(t), c.p(t + Llto) = c.p(t) + ,;1c.p, (9·16) 
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Chapter 1 Black Hole Perturbation 43 

where L1.to is the orbital period of the motion in the 8-direction and L1.cp is the phase 
advancement during LJ.to. In other words, we have 

(9·17) 

Then we obtain 

Ztmw = L8(w- Wn)Ztmwn' (9·18) 
n 

where 

Wn =nile+ milr.p, (n = 0, ±1, ±2, · · ·) (9·19) 

and 

Z = ttil~ loLlt dteiwt-imr.p(t)W': 
fmwn 2 · Bmc fmwn 

2Wn fmwn 0 
(9·20) 

with Wtmwn being given by Eq. (2·27). 
Let us discuss the final form of Ztmwn. In the present case, up to O(y) the 

integrand Wtmwn has the form, 

where go "'g5 are complicated functions of ro. Using an approximation, 

we have 

lo
Llt dteiwt-im<p(t)w fmwn 

0 

= ~: [ { 8no + Y ;2: (8n,-2 - 8n,2) }go+ y
1
/
2 ;i (8n,-1 - 8n,l)gt 

1 112 no 
+ y4(28n,O- 8n,-2- 8n,2)g2 + Y 2(8n,-1 + 8n,t)g3 

no n~ ] + Y 
4
i (8n,-2- 8n,2)g4 + Y4(28n,O + 8n,-2 + 8n,2)g5 

(9·21) 

(9·22) 

+ O(y3/2). (9·23) 

Thus the amplitude Ztmwn is found to have the form, 

z = [(zo.o + yZo,2)8 + Y112 (z1,18 + z1,-1 8 _ 1) £mwn n,O n,1 n, 

+y( Z 2·28n,2 + Z 2·-28n,-2) + O(y312)], (9·24) 
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where zi,j are functions of ro. Here, it is worth noting the symmetry of Zemwn· The 
spin weighted spheroidal harmonics have a property -2scg:::,n ( 0) = ( -1 )£ -2S~~n ( 1r 

-0). Then, from Eqs. (9·20) and (9·22), we have Ze-mw-n = (-l)nHzemwn· 
Now we evaluate the energy and angular momentum fluxes at infinity. The 

energy and angular momentum fluxes averaged overt» Llto are given by Eqs. (2·31) 
and (2·32), respectively. Then we see from Eq. (9·24) that the n = ±2 modes 
contribute to the luminosity at O(y2). Thus, when we calculate the luminosity to 
O(y), we need to include only the n = 0, ±1 modes. In order to express the post­
Newtonian corrections to the luminosity, we define Tfemn as 

( dE) 1 (dE) dt fmn = 2 dt N Tf£mn ' (9·25) 

where (dEjdt)N is the Newtonian quadrupole luminosity given by Eq. (4·19). 
For P = 2, the results are as follows. If lm + nl > 2 or m + n = 0, Tf£mn becomes 

of O(v6 ) or higher. The remaining Tfemn which contribute to the 2.5PN luminosity 
formula are given by 

107 4784 42871" 4216 
T/2±2 o = 1 - 21v2 + 47rv3 - 6qv3 + 1323 v4 + 2q2v4 - ~v5 + 189 qv5 

+y -1 + -v2 - 47rv3 + 15qv3 - --v4 - 11q2v4 
( 

1ro 4~4 

21 1323 
4287r 5 13186 5) 
+~v - 189qv , 

( 
1 2 17 4 7r 5 17 5) 

112±2+1 = y 36 v - 504 v + 18 v + 1134 qv ' 

1 2 1 3 1 7 4 1 2 4 7r 5 793 5 
112±1 0 = 36v - 12qv - 504v + 16q v + 18v - 9072qv 

( 
5 2 1 3 85 4 1 2 4 57r 5 13931 5) 

+y - 72 v + Bqv + 1008 v - 32 q v - 36 v + 18144 qv ' 

( 
1 70 2 3 3 4 784 4 11 2 4 

112±1±1 = y 1-
21

v + 47rv - l2qv + 
1323 

v + 2q v 

42871" 5 11078 5) 
-~v +l89qv , 

( 
1 2 1 3 17 4 1 2 4 7r 5 7 45 5) 

112 o± 1 = y 24 v - 12 qv - 336 v + 24 q v + 12 v - 1008 qv · (9·26) 

Putting together the above results, we obtain (dEjdt)e = Lmn(dEjdt)emn for P = 2 
as 

For P = 3, the non-trivial 11emn are given by 

1215 2 1215 4 364571" 5 1215 5 
113± 3 0 = 896 v - 112 v + 448 v - 112 qv 
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( 
3645 2 3645 4 109357!" 5 3645 5) 

+y - 1792 v + 224 v - 896 v + 112 qv ' 

5 4 
173±3=f1 = 42 v y, 

- 5 4 40 5 ( 20 4 100 5) 
173± 2 0 - 63 v - 189 qv + y - 63 v + 189 qv ' 

( 
3645 2 3645 4 109357!" 5 6075 5) 

173± 2±1 = y 1792 v - 224 v + 896 v - 224 qv ' 

( 
5 2 5 4 57!" 5 25 5) 

173± 2=F 1 = y 16128 v - ~J024 v + 8064 v + 18144 qv ' 

1 2 1 4 7l" 5 17 5 
173± 1 0 = 8064 v - 1512v + 4032 v - 9072qv 

( 
11 2 11 4 11rr 5 95 5) 

+y - 16128 v + 3024 v - 8064 v + 9072 qv ' 

( 
25 4 80 5) 

173±1±1 = y 126 v - 189 qv ' 

( 
1 2 1 4 7l" 5 11 5) 

173 o±1 = y 2688 v - 504 v + 1344 v - 1008qv · 

The other 17f.mn are of O(v6 ) or higher. Then we obtain 

(9·28) 

(dE) = (dE) { 1367 v2 _ 32562_ 4 16403rr 5 _ 896 5 ( _ ¥_)} (9.29) 
dt 3 dt N 1008 3024 v + 2016 v 81 qv 1 2 · 

For P = 4, we have 

1280 4 
174±4 0 = 567 v (1- 2y), 

2560 4 
174±3±1 = 567 v y' 

5 4 
174±3=t=l = 1134 v y, 

5 4 
174±2 0 = 3969 v ( 1 - 8y)' 

5 4 
174±1±1 = 882 v y, (9·30) 

and the others are of O(v6 ) or higher. Hence we obtain 

(
dE) (dE) 8965 4 
dt 4 = dt N X 3969 V . 

(9·31) 

45 

Finally, gathering all the terms, the total energy flux up to O(v5 ) is found to be 

j dE)= (dE) ( 1 _ 1247 v2 + 4rrv3 _ 73 qv3 ( 1 _ ¥_) _ 44711 v4 

\ dt dt N 336 12 2 9072 

33 2 4 527 2 4 81917!" 5 3749 5 (1 y)) + 16 q v - 96 q v y - 672v + 336 qv - 2 · (9·32) 
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Using the above results for TJemn' the time-averaged angular momentum flux is 

calculated from Eq. (2·32). The partial mode contributions of the £ = 2, 3 and 4 

modes are calculated to give 

( dJz) = (dJz) [1 - '!j_ _ 1277 v2 ( 1 - '!j_) + 41rv3 ( 1 - '!j_) 
dt 2 dt N 2 252 2 2 

3 (61 61 ) 37915 4 ( y) 2 4 (33 229 ) 
-qv 12 - By + 10584 v 1 - 2 + q v 16 - 32 y 

-7rv5 2561 ( 1 _ '!!_) 5 (22229 _ 27809 )] 
126 2 + qv 1296 864 y ' 

( d~z) 
3 

= ( d~z) N [ ~~~; v2 ( 1 _ ~) _ 3
3
2
0
5
2
6
4
7 v4 ( 1 _ ~) 

7rv5 16403 ( 1 _ '!!_) _ v5 (88049 _ 9817 )] 
+ 2016 2 q 9072 756 y ' 

( d~z) 
4 

= ( d~z) N [ ~~~~ v4 ( 1 _ ~) l (9·33) 

where (dJzfdt)N is defined in Eq. (8·29). The total angular momentum flux is then 

given by 

(9·34) 

We note that the result is proportional to (1 - y/2) in the limit q --+ 0. This is 

simply because the orbital plane is slightly tilted from the equatorial plane by an 

angle (Ji "'y112 , hence dJz/dt"' (dJtotfdt) cosfk 

§10. Adiabatic backreaction 

In the preceding sections, we have evaluated the energy flux (dEjdt) and the 

z-component of the angular momentum flux (dJz/ dt) emitted to infinity by a particle 

for various cases. By emitting gravitational waves, a particle orbit will suffer from 

radiation reaction. In the limit of small 11-/ M, the reaction time scale will be much 

longer than the characteristic orbital time scale; treact "' M 2 /11- » Llt. Hence the 

evolution of the orbit will be well described by the adiabatic backreaction. 

In the case of orbits around a Schwarzschild black hole or orbits confined on 

the equatorial plane around a Kerr black hole, it is straightforward to calculate 

the evolutionary path under radiation reaction because the orbits are completely 

specified by the energy E and the z-component of the angular momentum lz, hence 
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Chapter 1 Black Hole Perturbation 47 

their time derivatives can be simply evaluated by equating them with -(dEjdt) 
and -(dJz/dt), respectively. However, once we consider motions off the equatorial 
plane of a Kerr black hole, the orbits cannot be specified by E and lz alone but the 
specification of the Carter constant C becomes necessary. Unlike E or lz, since C 
is not associated with the Killing vector of the spacetime, one cannot calculate the 
radiation reaction to C by simply calculating the gravitational waves at infinity. This 
implies that we have to derive a local radiation reaction force term to the geodesic 
equation by evaluating the metric perturbations around the particle, as is done in the 
derivation of radiation reaction force in the standard post-Newtonian method. For 
almost Newtonian orbits, applying a post-Newtonian radiation reaction force, Ryan 
derived the evolution equation for the Carter constant. 50) However, no relativistic 
treatment has been done so far. This is a challenging issue. An approach to this 
issue is discussed in Chapter 7. 

In this section, instead of attacking this very difficult problem, we discuss some 
general properties of the adiabatic radiation reaction in a restricted class of orbits. 
Namely we consider orbits which are circular or those having small eccentricity. We 
clarify the conditions for circular orbits to remain circular under radiation reaction. 
A detailed discussion on this matter has been given by Kennefick and Ori. 51 ) We 
give a less detailed but more general discussion below. 

We recall that the radial velocity ur = dr / dr is written in terms of the first 
integrals of motion in the test particle limit as 

(10·1) 

where Ji = (E,lz,C), and R(Ji,r) is independent of(} and¢. First let us consider 
orbits which are circular in the test particle limit. These orbits are determined by 
the conditions, 

oR . 
or (r,r) = 0. (10·2) 

Eliminating r from these equations gives an implicit relation among the Ji. For 
example, 

(10·3) 

where r(Ji) is obtained by solving the second of Eq. (10·2) for r. This equation 
determines a two-dimensional hypersurface S in the 3-dimensional space M of the 
Ji. The adiabatic evolution of an orbit is characterized by slow evolution of Ji, 
i.e., ji = O(f.l), where f.l is the mass of the particle. Then a necessary condition 
for circular orbits to remain circular under radiation reaction is that we have j(Ii) 
= J)i = O(f.l2 ). In other words, the vector ji on S is tangent to S to O(f.l). This 
condition can be shown to hold by the following theorem. 

Theorem: If the radiation reaction to the r-component of the acceleration is of order 
f,l; ar := dur jdr = O(f.l), i.e., the r-component of the radiation reaction force is 
well-defined and finite, then for orbits which are circular in the test particle limit; 
i.e., ur = O(f.l), the radiation reaction to Ji is constrained by the equation, 

oR i ·. 2 
{)Ji (I , r )I• = O(f.l ) , (10·4) 
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48 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

where the argument r is to be replaced by r(Ji) after differentiation. 

Proof It is almost trivial. Just taking the r-derivatives of both hand sides of 
Eq. (10·1) gives Eq. (10·4). Q.E.D. 

Thus, since 

(10·5) 

and the second term in the parentheses vanishes by definition, we have j = O(t-t2). 

This theorem alone, however, does not mean that circular orbits remain circular, 
since we have constrained the first integrals to be those for ci!cular orbits from the 
beginning. Let us explain the reason. Since we may regard Ji a ve<:tor field in M, 
what we need for circular orbits to remain circular is the regularity of Ji in the vicinity 
of the hypersurface S. In other words, if the vector field ji is not differentiable on S, 
an orbit on S may spontaneously deviate away from S. A simple illustrative example 
is the case h = JI:l.at h = 0 where h is the component of Ji perpendicular to S. 

Thus, provided Ji is regular in an open neighborhood of S, the above theorem 
implies that a circular orbit in the test particle limit remains circular under adiabatic 
radiation reaction. In this case, the radiation reaction to the Carter constant, 6, is 
determined by the radiation reaction to the energy, E, and the z-component of the 
angular momentum, l~. Specifically we have 

C = (~ ( E (r 2 + a2
) - alz) (r2 + a2

) - 2a (Ea -lz)) E 

+ ( -2 ~ ( E (r2 + a2
) - alz) + 2 (Ea -lz)) l~. (10·6) 

Yet this is not the end of the story. What we have shown is that ji lies on S. 
But if ji slightly off the hypersurface S is diverging away from S, circular orbits 
will be unstable. Thus the condition for. the stability of circular orbits is that S 
is an attractor plane of the vector field Ji. However, the notion of divergence or 
convergence of a vector depends on the metric of the space M, but we have no guiding 
principle to determine the metric. This implies that the notion of the attractor or 
the stability is ambiguous. 

Nevertheless, extrapolating from the case of Newtonian orbits, there seems to 
exist a natural choice of the metric. Namely, as the distance of the orbit from the 
hypersurface S of circular orbits, we define the eccentricity of an orbit as given in 
§§7 and 8. With this choice of the metric, let us consider the adiabatic radiation 
reaction problem in more specific terms. 

Let us parametrize an orbit in terms of the mean radius ro, the eccentricity e 
and the square root of the Carter constant y := C 112 , instead of the energy E, the 
angular momentum lz and the Carter constant C. The mean radius ro is defined by 
the equation, 

(10·7) 

where the prime denotes the partial derivative with respect tor. This definition says 
that r is maximum at r = r0 . The eccentricity e is defined by setting the maximum 
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Chapter 1 Black Hole Perturbation 49 

radius tor= ro(l +e), i.e., 

0 = R(Ii, ro(l +e)). (10·8) 

This definition guarantees that e = 0 corresponds to a circular orbit. Assuming 
e « 1, the above equation can be expanded in powers of e as 

0 = R(Ii,ro) + !R"(Ii,ro)(roe)2 + ~-R(3)(Ji,ro)(roe)3 + ~R(4)(Ji,ro)(roe)4 + · · ·, 
2 3. 4. 

(10·9) 
where R(n) is the n-th derivative of R with respect to r. The parameters (r0 , e, y) 
are chosen because the geodesic trajectory xll = zll ( T) allows perturbative expansion 
in powers of e and y at least for e « 1 and y « 1. Therefore the first integrals of 
motion [i = (E,lz,C) will be regular functions of the parameters (ro,e,y). On the 
other hand, if we consider (ro, e, y) as functions of Ji, it should be noted that e is not 
a regular function of Ji in a neighborhood of circular orbits because of the absence 
of a term linear in e on the right-hand side of Eq. (10·9). 

Now we consider the adiabatic evolution of e under the radiation reaction. Tak­
ing the T-derivative of Eqs. (10·7) and (10·9), we obtain 

(10·10) 

(10·11) 

where R~,i = 82Rj8Ji8r, etc. Equation (10·10) determines r'o as 

. __ m,i ji 
ro- R" . 

0 
(10·12) 

Substituting this into Eq. (10·11), we obtain the expression fore as 

. 1 [ e roRb
3

) 
e = 2R" - Ro,i + -2 -R, Ro,i 

ero o o 

+e2 { +0 2 ~.i + (ro + r5~'}1~,i + r5 ( ~ ~) - ~ ( ~) )') Ro,i} 

+0( e3)] ji. ( 10·13) 

Since the trajectory zll ( T) is assumed to be analytic in ( ro, e, y), it is reasonable 
to further assume that ji are regular functions of (ro, e, y). Then we can expand ji 
with respect to e as 

ji(ro, e, y) = ji(O)(ro, y) + eji(ll(ro, y) + e2 ji(2)(ro, y) + · · ·. (10·14) 
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Then we obtain 

e = _1_ [-~Ro ji(O) + (-Ro .ji(1) + ~ roRW Ro .ji(O)) 
2R" ,t ,t 2 R" ,t ro o e o 

+e (-Ro ji(2) + ~ roRW R ji(l) 
,t 2 R" O,t 

0 

{ -~ 2 11
. ( ~ ro 2

RW) 1 2 (~ R~4) _ ~ (~') 2) ·} 'i(o)) + 2 ro Ro,t + ro + 2 ~ Ro,i + ro 6 R~ 4 R~ Ro,t I 

+0(e2
)]. (10·15) 

As shown by the theorem above, Eq. (10·4), the leading term of order e-1 vanishes 
provided the radiation reaction force is finite: 

• "(0) Roir = o. (10·16) 

The next order term determines whether the circular orbit remains circular or not. 
If it does not vanish, the eccentricity will spontaneously develop as 

. "(1) e=-Roir . , (10·17) 

Here the regularity of ji comes into play. As noted above, e is singular on the 
hypersurface S. Hence if ji is regular on S, j(ll(ro, y) should vanish. By a detailed 
analysis, it is shown in Ref. 51) that this is indeed the case. The physical reason is 
rather simple: If one considers a slightly eccentric orbit, there appears a frequency 
of wobbling motion due to the eccentricity, say ile. In general the ratio of fle to the 
frequency of the motion in the e or cp direction is an irrational number. Hence the 
part of the metric perturbation which is proportional to e will have frequencies that 
are integer multiples of fle, and the same property is shared by the corresponding 
term of the backreaction force linear in e. Since any sinusoidal oscillation has zero 
mean when averaged over time longer than its period, this implies there will be no 
term linear in e in the adiabatic expression of ji. 

Thus we have 

e = [-Ro . ji(2) + {- ~ro2 Ro". + (ro + ~ r6RW) P~ . } ji(o)] e + O(e2) 
,t 2 ,t 2 R" .. "',t ' 

0 
(10·18) 

and circular orbits will remain circular under radiation reaction. As for the stability 
of circular orbits, whether the eccentricity decreases or increases is determined by the 
sign of the coefficient of eon the right-hand side. Thus it is necessary to calculate the 
radiation reaction to the Carter constant to determine the stability. As mentioned 
in the beginning of this section, this is a challenging issue. Finally, we should again 
note that the meaning of stability does depend on the definition of the eccentricity, 
i.e., how we define the distance from the hypersurface of circular orbits S. 
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Chapter 1 Black Hole Perturbation 51 

§11. Spinning particle 

So far we have considered only a monopole particle orbiting a black hole. How­

ever, in a realistic binary system of compact bodies such as a neutron star-neutron 

star, black hole-neutron star or black hole-black hole binary, both bodies may have 

non-negligible spin angular momenta. Hence it is desirable to take into account not 

only the spin of a black hole but also the spin of a particle in the calculations of 

gravitational waves from a particle orbiting a black hole. 

To incorporate the spin of a particle, one must know (1) the equations of motion 

and (2) the energy momentum tensor of a spinning particle. Fortunately, we know 

that (1) have been derived by Papapetrou, 19) Dixon 20) and Wald 52) and (2) has also 

been derived by Dixon. 20) Hence, by using the expression for the energy momentum 

tensor of a spinning particle as the source term in the Teukolsky formalism, 3) we can 

calculate the gravitational waves emitted by a spinning small mass particle orbiting 

a rotating black hole. One may regard this particle as a model of a small Kerr 

black hole, but it may be appropriate here to give a word of caution. A Kerr black 

hole of mass J..l and the spin parameter S, where S is defined so that J.LS gives the 

spin angular momentum, has quadrupole (C = 2) and higher multipole moments 

(C > 2) proportional to J.LSe as well. Since we neglect the contributions of these 

higher multipole moments here, our treatment will be valid only up to O(S) if we 

regard the particle as a Kerr black hole. To incorporate the contributions of all 

higher multipole moments to represent the Kerr black hole is a future problem to be 

investigated. 
Here we review the results obtained by Tanaka et al.. 18) We concentrate on the 

leading effect due to the spin of the small mass particle. We consider a class of 

circular orbits which stay near the equatorial plane with the inclination solely due to 

the spin of the particle, i.e., those orbits which would be confined in the equatorial 

plane if the spin were zero. Then we calculate the gravitational wave luminosity to 

O(v5) with linear corrections due to the spin. 

11.1. Equation of motion and source term of a spinning particle 

To give the source term of the Teukolsky equation, we need to solve the equations 

of motion of a spinning particle and also to give an expression for the energy momen­

tum tensor. In this section we give the necessary expressions, following Refs. 20),52) 

and 53). 
Neglecting the effect of the higher multipole moments, the equations of motion 

of a spinning particle are given by 

{11·1) 

where v~-' ( T) = dz~-' ( T) / dT, T is a parameter which is not necessarily the proper time of 

the particle, and, as we will see later, the vector pi-'( T) and the antisymmetric tensor 

S~-'v ( T) represent the linear and spin angular momenta of the particle, respectively. 
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Here D / dr denotes the covariant derivative along the particle trajectory. 
We do not have the evolution equation for vll(r) yet. In order to determine 

vll(r), we need to impose a supplementary condition which determines the center of 
mass of the particle, 20) 

SIL''(r)p,Ar) = 0. (11·2) 

Then one can show that P~tPIL = const. and S~tvS~tv const. along the particle 
trajectory. 52) Therefore we may set 

pll = J.LUJL' ullull = -1, 

SILl/ = EILI/ rxrPP sa- ' P~tSIL = 0, 

5 2 - S c~t -
1 

S 51.w (11·3) - W7 
- 2J.L2 ~tv ' 

where J.L is the mass of the particle, ull is the specific linear momentum, and SIL is 
the specific spin vector with S its magnitude. Note that if we use SJL instead of S~tv 
in the equations of motion, the center of mass condition (11·2) will be replaced by 
the condition 

P~tSIL = 0. (11·4) 

Since the above equations of motion are invariant under reparametrization of 
the orbital parameter T, we can fix T to satisfy 

(11·5) 

Then, from Eqs. (11·1), (11·2) and (11·5), vll(r) is determined as 20) 

1 ( 1 ) -1 v1L(r)-u1L(r) = 2 J.L
2 + 4Rx.;£;11 (z(r))SX€(r)S'11(r) SILv(r)Rvpa-K(r)uP(r)S17K(r). 

(11·6) 
With this equation, the equations of motion (11·1) completely determine the evo­
lution of the orbit and the spin. Note that vll = ull + 0(52), hence vll and ull are 
identical to each other to O(S). 

As for the energy momentum tensor, Dixon 20) gives it in terms of the Dirac 
delta-function on the tangent space at xll = z~L(r). For later convenience, in this 
paper we use an equivalent but alternative form of the energy momentum tensor, 
given in terms of the Dirac delta-function on the coordinate space: 

(11·7) 

where vo:(x, r), po:(x, r) and so:f3(x, r) are hi-tensors which are spacetime extensions 
of vll(r), pJL(r) and S~tv(r) which are defined only along the world line, xll = z~L(r).*) 

•) In the rest of this section, we use JL, v, cr, · · · as the tensor indices associated with the world 
line z(r) and a,/3,"(,··· as those with a field point x, and suppress the coordinate indices of z(r) 
and x for notational simplicity. 
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To define va(x, z(T)), pa(x, z(T)) and saf3(x, z(T)) we introduce a hi-tensor gall(x, z) 
which satisfies 

(11·8) 

For the present purpose, further specification of g01l(x, z) is not necessary. Using this 
hi-tensor g01l(x, z), we define pa(x, T), vn(x, T) and saf3(x, T) as 

pa (X, T) = gall (X, Z ( T)) pll ( T) , 

V
0 (X, T) = gall (X, Z ( T)) vll ( T), 

saf3(x, T) = gall (X, z( T) )g/3
11 

(X, z( T) )sllv ( T). (11·9) 

It is easy to see that the divergence free condition of this energy momentum 
tensor gives the equations of motion (11·1). Noting the relations, 

V' 13g01l(x, z(T))8(4)(x, z(T)) = 0, 

a (8C
4
>(x,z(T))) _ _ .!!._ (8(

4
>(x,z(T))) 

V (X) \fa ;----;; - d ;----;; , 
y-g T y-g 

(11·10) 

the divergence of Eq. (11·7) becomes 

Since the first and second terms on the right-hand side must vanish separately, we 
obtain the equations of motion (11·1). 

In order to clarify the meaning of p!J and Sll11
, we consider the volume integral of 

this energy momentum tensor such as fE(To) gcfTaf3dEf3, where we take the surface 
E(To) to be perpendicular to u0 (To). It is convenient to introduce a scalar function 
T (X) which determines the surface E (To) by the equation T (X) = To' and OT I oxf3 
= -Uf3 at x = z(To). Then we have 

r gcfT0 (3dEf3 =I d4xyCg ~Tf38(T(x)- To)gcfTnf3(x) 
JE(To) uX 

= J dr' { .!( r' - ro) [P" + p1Pv•luv - ~ ~~· S""] } 
= p/l(To), (11·12) 
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where we used the center of mass condition and the equation of motion for Sllv. We 
clearly see pll indeed represents the linear momentum of the particle. 

In order to clarify the meaning of Sllv, following Dixon, 20) we introduce the 
relative position vector 

(11·13) 

where o-(x, z) is the squared geodetic interval between z and x defined by using the 
parametric form of a geodesic y(u) joining z = y(O) and x = y(1) as 

111 dy0 dyf3 
o-(x, z) := - g0 f3-d -d du. 

2 0 u u 
(11·14) 

Then noting the relations 

lim X 11 = 0, lim X 11 - 611 
x-+z x-+z ,/3 - f3' (11·15) 

it is easy to see that 

s11v = 2 ~ x[llg:lraf3dE13 . 
• Er0 

(11·16) 

Now that the meaning of SJ.Lv is manifest. From the above equation, it is also easy 
to see that the center of mass condition ( 11· 2) is the generalization of the Newtonian 
counterpart, 

(11·17) 

where p is the matter density. 
Before closing this subsection, we mention several conserved quantities of the 

present system. We have already noted that pJ.Lpll = -J.t2 and S11Sil = S2 are 
constant along the particle trajectory on an arbitrary spacetime. There will be an 
additional conserved quantity if the spacetime admits a Killing vector field ~11 , 

(11·18) 

Namely, the quantity 

Q ·- 11 
1 SJ.LVt ~ . - p ~J.L - 2 <,J.L;v, (11·19) 

is conserved along the particle trajectory. 20) It is easy to verify that Q~ is conserved 
by directly using the equations of motion. 

11.2. Circular orbits near the equatorial plane 

Let us consider circular orbits around a Kerr black hole with a fixed Boyer­
Lindquist radial coordinate, r = ro. We consider a class of orbits that would 

. stay on the equatorial plane if the particle were spinless. Hence we assume that 0 
:= ()- 1r /2 ,....., 0( S j M) « 1. Under this assumption, we write down the equations of 
motion and solve them up to the linear order in S. 

In order to find a solution representing a circular orbit, it is convenient to intro­
duce the tetrad frame defined by 

0 ( /L1 . 2 /L1) 
e 11 = y E' 0, 0,-asm ByE , 
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e
1

JL = (o, ~' o, o), 
e2

JL = (o, 0, vE, o), 
e3

1-1 = (-~sinO, 0, 0, (11·20) 

where E = r 2 + a2 cos2 0 and ea = (ea ea ea ea ) for a = 0 "' 3 Hereafter, we 
' 1-1 t' r' e' 'P • 

use the Latin letters to denote the tetrad indices. 
For convenience, we introduce w1 "' W6 to represent the tetrad components of 

the spin coefficients, w abc = ecfebl/ ec Y;JL' near the equatorial plane: 

o 1 -2 a2
- Mr 

wo1 =Woo = w1 + 0(0 ), W1 = r2.11/2 ' 

w3lo = w3o1 = w13o = Ww3 = wol = -wm3 = w2 + 0(02), 

0 2 1 2 - -2 
w 02 = w 00 = w12 = -w11 = 0 w4 + 0(0 ), 

.11/2 
W3 := -2-, 

r 
a2 

W4 := -3, 
r 

0 2 0 3 2 3 - -2 
W32 = W3o = -w23 = -w2o = w03 = -wo2 = 0 w5 + 0(0 ), 

(r2 + a2) 
W6 :=- 3 . 

r 
2 3 - ~ 

w33 = -w32 = 0 w6 + 0(0 ), 

Since the following relation holds for an arbitrary vector ftL, 

a.11/2 
W5 := ---3-, 

r 

(11·21) 

the tetrad components of D fJL / dT along a circular orbit are given explicitly as 

eoJL~r = jO- (Af1 + OCJ2) + 0(02), 

e 1JL~JIL = j1- ( Af0 + Bf3 + Ef2
) + 0(02

), 

e2JL~JIL = j2- (0Cf0 + 0Df3
- Ef1

) + 0(02
), 

e31l~JIL = j3- ( -Bf1
- 0Df2

) + 0(02
), 

where A, B, C, D and E are defined by*) 

A:== w1v
0 + W2v3, 

(11·22) 

•) The symbols A '"" E used here to define the auxiliary variables are applicable only in this 

subsection, and not to be confused with quantities defined with the same symbols such as E for 

energy, in the other sections. 
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B := w2v0 + w3v3
, 

C := w4v0 + w5v3
, 

D := w5v0 + w6v3
, 

E := W3V
2

, 

and we have assumed that v1 = 0 and v2 = 0(0). 

(11·23) 

For convenience, we rewrite the equations of motion by changing the spin vari­
able. Instead of the spin tensor, we introduce a unit vector parallel to the spin, c;a, 
defined by 

or equivalently by 

( a sa 1 a bscd 
:= S = -2t-tSE bcdu ' (11·24) 

(11·25) 

where Eabcd is the completely antisymmetric symbol with the sign convention E0123 

= 1. As noted in the previous subsection, if we use the spin vector as an independent 
variable, the center of mass condition (11·2) is replaced by Eq. (11·4), that is 

Then the equations of motion reduce to 

where 
na ·- R*a vbuc(d _ _ 1_Ra vbScd 
n .- bed - 2t-tS bed ' 

(11·26) 

(11·27) 

(11·28) 

and R:bcd = 1RabefEef cd is the right dual of the Riemann tensor. It will be convenient 
to write explicitly the tetrad components of R*abcd· Since 0 = O(S), we only need 
R:bcd at 0(0°). Then the non-vanishing components of R*abcd are given by 

1 
* R~ R* R* R* 1 R* M 0(0-2 ) -2Ro123 = - .. "0213 = """0312 = 1203 =- 1302 = -2 2301 =- r3 + · 

(11·29) 
Although we do not need them, we note that the following components are not 
identically zero but are of 0(0): 

Further, we may set uJ.L = vJ.L in the equations of motion (11·27). 

11.2 .1. Lowest order in S 
We first solve the equations of motion for a circular orbit at r = ro at the lowest 

order in S. For notational simplicity, we omit the suffix 0 of ro in the following. 
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For the· class of orbits we have assumed, we have v1 = 0 and v2 = O(i}). Then the 
non-trivial equations are 

d 2 -( =0, 
dr 

A 
0 

-B 

(11·30) 

(11·31) 

The equation (11·30) determines the rotation velocity of the orbital motion. By 
setting~:= v3 jv0, we obtain the equation 

WI+ 2w2~ + W3e = 0, (11·32) 

which is solved to give 

~ = ±../Mr- a 

JLi (11·33) 

The upper (lower) sign corresponds to the case that v3 is positive (negative). Then, 
with the aid of the normalization condition of the four momentum, vl1v11 = -1 
+0(82), we find 

0 1 
v = -=== 
~' 

3 ~ v = . 
~ 

(11·34) 

Note that, in this case, the orbital angular frequency flcp is given by a well-known 
formula, 

n- ±viM 
'P - r3/2 ± VM a . (11·35) 

On the other hand, the equations of spin (11·31) are solved to give 

(11·36) 

where (..L, (II, q and c2 are constants, and 

a = A = :::r:v3 (3 B = ±vo J B2 - A 2 ' ' = J B2 - A 2 ' 

¢> = flpr, rlp = J B2 - A2 = J ~ . (11·37) 

The supplementary condition va(a = 0 requires that c2 = 0. The condition (a(a = 1 
implies (l +(IT = 1. Further since the origin of the time r can be chosen arbitrarily, 
we set c1 = 0. Thus, we obtain 

( ~~ ) = (II ( a;~~: ) · 
( 3 -(3 sin¢> 

(11·38) 

Here, we should note that flp i- !lcp in general if a i- 0 or S i- 0 (see below). 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.128.1/1929942 by M

PI G
ravitational Physics user on 25 April 2025



58 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

11.2.2. First order in S 

Having obtained the leading order solution with respect to 8, we now turn to 

the equations of motion up to the linear order in 8. We assume that the spin vector 

components are expressed in the same form as were in the leading order but consider 

corrections of 0(8) to the coefficients a, (3 and Dp. As we have noted, Eq. (11·6) tells 

us that va can be identified with ua to 0(8). In order to write down the equations 

of motion up to the linear order in S, we need the explicit form of Ra, which can be 

evaluated by using the knowledge of the lowest order solution. They are given as 

R0 = R3 = 0(0), 

R1 = 31\; v0v3(
2 + 0(0), 

r 

R2 = 3~fv0v3( 1 + 0(0). 
r 

(11·39) 

First we consider the orbital equations of motion. With the assumption that 

v1 = 0 and v2 = 0(0), the non-trivial equations of the orbital motion are 

il1 = Av0 + Bv3 
- 8R1 = 0, 

il2 = (Cv0 + Dv3 )0- 8R2
. 

(11·40) 

(11·41) 

The first equation gives the rotation velocity as before, while the second equation 

determines the motion in the 0-direction. 
Again using the variable~= v3 jv0 , Eq. (11·40) is rewritten as 

2 8j_M · 
Wl + 2W2~ + W3~ + 3-3-~ = 0, 

r 

where 8j_ := 8(j_. The solution of this equation is 

c = (±v'Mr- a) (1 38j_ VM) 0(82) 
"' J3 =F 2r3/2 + . 

(11·42) 

(11·43) 

Using the relations (11·34), it immediately gives v0 and v3 . From the definition of 

the tetrad, we have the following relations, 

(11·44) 

Thus, the orbital angular velocity observed at infinity is calculated to be 

(11·45) 
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Chapter 1 Black Hole Perturbation 59 

In order to solve the second equation {11·41), we note that v2 = v'EiJ :::::- rO and 

C o D 3 = - M 1 + 2e O(S) 
v + v r2 1 - ~2 + . (11-46) 

Then we find that Eq. (11·41) reduces to 

·.:. M 1 + 2e- S11M ~ 
rO = -----~()-3----- cos¢ 

r2 1 - ~2 r3 1 - ~2 ' 
(11·47) 

where S11 = S(ll· This equation can be solved easily by setting 0 = Oo cos¢. Recalling 
that n; = Mjr3 + O(S), we obtain 

(11·48) 

Thus we see that the orbit will remain in the equatorial plane if S11 = 0, but deviates 
from it if S11 # 0. We note that there exists a degree of freedom to add a homogeneous 

solution of Eq. (11·47), whose frequency, flo = V # 11~~2
2 , i~ different from flp and 

which corresponds to giving a small inclination angle to the orbit, indifferent to 
the spin. Here, we only consider the case when this homogeneous solution to 0 
is zero, i.e., those orbits which would be on the equatorial plane if the spin were 
zero. Schematically speaking, the orbits under consideration are those with the total 
angular momentum J being parallel to the z-direction, which is sum of the orbital 
and spin angular momentum J = L + S (see Fig. 3). 

Next we consider the evolution of the spin vector. To the linear order in S, the 
equations to be solved are 

( 0 = A(1 + C(20- Sv0(a Ra, 

(1 = A(o + B(3 + E(2, 

(2 = ( C(o + D(3) 0- E(1' 

( 3 = -B(1 - D(20- Sv3(a Ra. 

The third equation is written down explicitly as 

( 2 = -8( 11 ,.. sin¢cos ¢, 

where 

Thus we find 

(11·49) 

(11·50) 

{11·51) 

(11·52) 

Since the spin vector sa is itself of O(S) already, the effect of the second term is 
always unimportant as long as we neglect corrections of O(S2 ) to the orbit. 

The remaining three equations determine a, (3 and flp. Corrections of O(S) 
to a and (3 are less interesting because they remain to be small however long the 
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z 
J L+S 

Fig. 3. A schematic picture of the precession of orbit and spin vector, to the leading order in S. 

The vector J represents the total angular momentum of the particle. The vector L is orthogonal 

to the orbital plane and reduces to the orbital angular momentum in the Newtonian limit. In 

the relativistic case, however, these vectors should not be regarded as well-defined. 

time passes. On the other hand, the correction to flp 'will cause a big effect after 

a sufficiently long lapse of time because it appears in the combination of flpT. The 

small phase correction will be accumulated to become large. Hence, we solve flp to 

the next leading order. Eliminating ( 0 and ( 3 from these three equations, we obtain 

[ (B2- A2) - n;] = ~l_ ( AC ~ BD - n;w3) . (11·53) 

Then after a straightforward calculation, we find 

fl2 _ M { 1 _ 3Sl_ ±VM (2r2
- 3Mr + a2

) + ar112(M- r)} 
P - r3 r3/2 r2 - 3M r ± 2a...(iir · 

(11·54) 

As noted above, flp # flcp for S 1_ # 0. The difference flp - flcp gives the angular 

velocity of the precession of the spin vector, as depicted in Fig. 3. 

11.3. Gravitational waves and energy loss rate 

We now proceed to the calculation of the source terms in the Teukolsky equation 

and evaluate the gravitational wave flux. For this purpose, we must write down the 

expression of the energy momentum tensor of the spinning particle explicitly. We 

rewrite the tetrad components of the energy momentum tensor in the following way: 

Tab= fdT{u(avb)<)(4)(x-z(T)) -e(aeb)'V Sllvvp<)(4)(x-z(T))} 
~ ~ v p 11 ~ 
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= 11./dT{ [u(aVb) -L W (aVb)sde _ W (asb)dve] £5(
4
)(X- z(T)) 

,.,. 'de de A 

- ~a" ( S"(•v'IJ(41(x- z(r)))} 

=: J-tjdT {Aab
0(

4
l(x- z(T)) + - 1-ap, (Bp,abo4(x- z(T)))}. (11·55) 

A A 

61 

The last line gives the definition of Aab and Bp,ab. Then the source term of the 
Teukolsky equation is given by Eq. (2·14) with Eqs. (2·15). 

As we will see shortly, the terms proportional to 811 in the energy momentum 
tensor do not contribute to the energy or angular momentum fluxes at linear order 
inS. In other words, the energy and angular momentum fluxes are the same for all 
orbits having the same S .1.. Thus, we ignore these terms in the following discussion. 
Further we recall that the particle can stay in the equatorial plane if 811 = 0. Hence 
we fix () = 1r /2 in the following calculations. 

Using the formula (2·13), we obtain the amplitude of gravitational waves at 
infinity as 

Z-= z-nn + z-mn + z-mm 
emw = fmw fmw fmw' (11·56) 

where 

- nn - i..;2if ~ ( - n) ( dt ) -1 [A - . Bt . B'P - Br i_] Ztmw - . u w mJt, d nn zw nn + zm nn nn a 
wBf.r::;_w T r 

[Lt -4 (Lt 3 saw)] 1 Rin X 1P 2P -2 fm ---;\ fmw 
0=1r!2 rt...l 

r=ro 

-mn iy'ir ~( n) (dt)-1 [A . Bt . B'P Br a] Ztmw = . u w - mJ t -d mn - zw mn + zm mn - mn -a 
wBf.~ T r 

( t aw) 1 [ a 2iK 4] Rin x L2-2Stm - !A 2-a --~ - - fmw 
0=1r /2 v Ll r t...l r 

r=ro 

and 
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a 2 ) v'Ll~ + ~ ' 

(11·58) 

The Lorentz factor dtjdr which appears in Eqs. (11·57) is calculated from Eqs. (11·44) 

as 
dt 
dT 

(11·59) 

In general, as we have seen in the preceding sections, when the orbit is quasi­

periodic the Fourier components of gravitational waves will have a discrete spectrum, 

Zemw = L 8(w- Wn)Zemwn · (11·60) 
n 

Then the time-averaged energy flux and the z-component of the angular momentum 

flux are given by the formulas (2·31) and (2·32), respectively. In the present case, 

since we may regard the orbits to be on the equatorial plane, the index n degenerates 

to the angular index m and Wn is simply given by mn'P (n = m). Hence we eliminate 

the index n in the following discussion. Here we mention the effect of nonzero s 11 . If 

we recall that all the terms which are proportional to 811 have the time dependence 

of e±iflpr, we find that they give the contribution to the side bands. That is to say, 

their contributions in Zemw are all proportional to 8(w- mn ± np)· Then, since the 

energy and angular momentum fluxes are quadratic in Zemwn, they are not affected 

by the presence of 811 as long as we are working only up to linear order in S. 

As before, in order to express the post-Newtonian corrections to the energy flux, 

we define 'rJfmw as 

(dE) 1 (dE) 
dt bn = 2 dt N 'rJem' 

(11·61) 

where (dE/dt)N is the Newtonian quadrupole formula defined by Eq. (4·19). 

We calculate rJem up to 2.5PN order. Keeping the S-dependent terms, the results 

are 

(s) ( 19 3 4 2134 5) A 

rJ = - -v + 9qv + --v s 2±2 3 63 ' 

(s) _ ( 1 , 3 1 4 535 5) A 

'rJ2±1- -12v - Bqv - 1008v s, 

(s) _ 10935 5 A 

'rJ3±3 - - 896 v s' 

(s) _ 20 5 A 

'rJ3±2- 63 v s, 

(s) 1 5A 
'r]3±1 = -8064 v s, (11·62) 
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where q = ajM and s := Sj_jM. The rest of 17~~ are all of higher order. We should 
mention that if we regard the spinning particle as a model of a black hole or neutron 
star, S is of order 1-L· Therefore the correction due to S is small compared with the 
S-independent terms in the test particle limit t.J./M «: 1. 

Putting all together, we obtain 

(11·63) 

Since v is defined in terms of the coordinate radius of the orbit, the expansion with 
respect to v does not have a clear gauge-invariant meaning. In particular, for the 
purpose of the comparison with the standard post-Newtonian calculations it is better 
to write the result by means of the angular velocity observed at infinity. Using the 
post-Newtonian expansion of Eq. (11·45) 

Mil'P = v
3 

( 1- (~s + q) v
3 + ~qsv4 + 0 ( v

6
)) , 

Eq. (11·63) can be rewritten as 

j dE) = (dE) [1 _ 1247 x2 + (41r _ !!.q _ ~s) x3 
\ dt dt N 336 4 4 

( 
44711 33 2 31 A) 4 

+ - 9072 + 16 q + Bqs x 

( 
8191 59 13 A) 5] + ---1r+ -q- -s x 
672 16 16 ' 

(11·64) 

{11·65) 

where x = (Mil'P) 113 , and (dE/dt)N is the Newtonian quadrupole formula expressed 
in terms of x, Eq. (6·6). Since there is no side-band contribution in the present case, 
the angular momentum flux is simply given by (dJz/dt) = il:p 1(dEjdt)aw. The 
result (11·65) is consistent with the one obtained by the standard post-Newtonian 
approach 41 ), 54) to the 2PN order in the limit 1-L/ M --+ 0. The s-dependent term 
of order x5 is the one which is newly obtained by the black hole perturbation ap­
proach.18) 

§12. Black hole absorption 

When a particle moves around a Kerr black hole, it radiates gravitational waves. 
Some of those waves are absorbed by the black hole. We calculate such absorption of 
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gravitational waves induced by a particle of mass 1-L in circular orbit on the equatorial 
plane around a Kerr black hole of Mass M. 

The post-Newtonian approximation of the absorption of gravitational waves into 
the black hole horizon was first calculated by Poisson and Sasaki in the case when a 
test particle is in a circular orbit around a Schwarzschild black hole. 21 ) In this case, 
the effect of the black hole absorption is found to appear at 0( v8 ) compared to the 
flux emitted to infinity and it turns out to be negligible for the orbital evolution of 
coalescing compact binaries in the near future laser interferometer's band. On the 
other hand, the black hole absorption appears at O(v5) if a black hole is rotating. 
That calculation was done by Tagoshi, Mano and Takasugi. 24) 

In order to calculate the post-Newtonian expansion of ingoing gravitational 
waves into a Schwarzschild black hole, Poisson and Sasaki 21 ) used two types of 
representations of a solution of the homogeneous Teukolsky equation. One is ex­
pressed in terms of the spherical Bessel functions which can be used at large radius, 
and the other is expressed in terms of a hypergeometric function which can be used 
near the horizon. Then two types of expressions are matched at some region where 
both formulas can be applied. They obtained formulas for a solution of the Teukol­
sky equation which can be used to calculate ingoinggravitational waves to O(v13 ), 

although they gave formulas for ingoing waves only to O(v8). 

Here, we first review the method found by Mana, Suzuki and Takasugi, 23) since 
it is the only existing method by which higher order post-Newtonian terms of the 
gravitational waves absorbed into a rotating black hole can be calculated. We note 
that this method is also the only existing method that can be used to calculate the 
gravitational waves emitted to infinity to an arbitrarily high post-Newtonian order. 
Then we calculate the energy flux absorbed into the horizon to O(v13 ), i.e., O(v8 ) 

beyond the lowest order flux absorbed into the horizon, for circular orbits on the 
equatorial plane of a Kerr black hole. 

12.1. Analytic solutions of the homogeneous Teukolsky equation 

Analytic series solutions of the homogeneous Teukolsky equation were found by 
Mano, Suzuki and Takasugi 23) and various properties of the solution were discussed 
by Mana and Takasugi. 55) Here, we follow the notation of Ref. 55) except that we 
focus on the case of spin weight s = -2. In this method, the solution of the radial 
Teukolsky equation (2·3) is represented by two kinds of expansion. One is given 
by a series of hypergeometric functions and the other by a series of Coulomb wave 
functions. The former is convergent at horizon and the latter at infinity. Then 
the matching of these two solutions is done exactly in the overlapping region of 
convergence. 

First we consider the solution expressed in terms of hypergeometric functions. 
The solution which satisfies the ingoing wave boundary condition at horizon is ex­
pressed as 

Rin v =eio,;x (-X )2-iq ( 1 _ X )i£_ 

00 

x L a~F(n+v+1-iT,-n-v-iT,3-2iE+;x), (12·1) 
n=-oo 
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Chapter 1 Black Hole Perturbation 

where F(a, b, c, x) is the hypergeometric function and 

w(r-r+) 
X = - -----'-------'--'-- ' 

fK, 

E-mq 
T= 

t.±T 
f± = -- (12·2) 2 . 

The coefficients a~ obey a three terms recurrence relation, 

(12·3) 

where 

v it.K-(n + v- 1 + it.)(n + v- 1- it.)(n + v + 1 +iT) 
a = --~------~~~~~~----~~~------~ 

n (n+v+1)(2n+2v+3) ' 

(3~ = -,\ - 2 + ( n + v) ( n + v + 1) + t.2 + E ( E - mq) 

t.(E- mq)(4 + t.2 ) 

+(n+v)(n+v+1)' 

v it.K-( n + v + 2 + it.) ( n + v + 2 - it.) ( n + v - iT) 
'Y =-

n (n+v)(2n+2v-1) · 
(12·4) 

The series converges if v satisfies the equation, 

Rn(v)Ln-1(v) = 1, (12·5) 

where Rn(v) and Ln(v) are the continued fractions defined by 

R ( v) = a~ = - 'Y~ 
n a~_ 1 (3~ + a~Rn+1(v)' 

L (v) = a~ = - a~ 
n a~+1 (3~ + "f~Ln-1 (v) 

(12·6) 

65 

The range of convergence is 0 :S ( -x) < oo for physical x. We can prove that if v is 
a solution to Eq. (12·5), then so is -v- 1. Since we can set n in Eq. (12·5) to an 
arbitrary integer, a convenient choice is to put n = 1. Further, for convenience, we 
may set a0 = a0v-

1 = 1. It then follows that we have 

(12·7) 

This implies Rinv = Rin-v-l = Rin. Consequently, for (-x) > 0, Eq. (12·1) can be 
rewritten as 

(12·8) 

where 

R v -iu;,i;( -)v+iE+ (- 1)-s-iE+ 
0 =e x x-

= T(3 - 2iE+ )T(2n + 2v + 1) v 

X n~= T(n + V + 1- iT)T(n + v + 3- it) an 

xx-n F (-n- v- iT -n- v + 2- if -2n- 2v- ..!.) ' ' ' - ' X 
(12·9) 
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where 
x = 1 -- x = w(r- r-) . 

EK, 
(12·10) 

Since v- ( -v- 1) = 2v + 1 is not an integer in general, the solutions R0 and R0v-
1 

form a pair of independent solutions. 
The other series solution which is convergent at infinity is expressed in terms of 

the Coulomb wave functions 56) 

Rv = - 1 _ EK, '"" (- ·)n 1/- - U n v F, ( -) 
( ) 

2-iE+ 00 ( 1 • ) 

C Z Z nf:::oo ~ (v + 3 + iE)n an n+v Z ' 
(12·11) 

where z = w(r- r_) = EK,X, (a)n = T(n + a)/T(a), and Fn+v(z) is the Coulomb 
wave function given by 

F, ( ) _ -iz(2 )n+v T(n + 1/ + 3 + iE) 
n+v z - e z z r(2n + 2v + 2) 

x<P(n + v + 3 + iE, 2n + 2v + 2; 2iz), 

where <I>( a, b, z) is the regular confluent hypergeometric function. 57) A crucial obser­
vation made by Mano, Suzuki and Takasugi 23) is that the coefficients a~ obey the 
same recurrence relation as that for the hypergeometric type solution, Eq. (12·3). 
The series (12·11) converges in the range z > EK, if vis a solution of Eq. (12·5). The 
solution R(; can be decomposed into a pair of solutions, a purely incoming wave at 
infinity R'f- and a purely outgoing wave at infinity R':_. Explicitly, we have 

where 

00 

x L ina~(2ztw(n + v + 3 + iE, 2n + 2v + 2; 2iz), 
n=-oo 

00 

Rv 2v -'IrE -in(v-1) iz -v+iE+ (- )2-iE+ '"" ·n _ = e e e z z - EK, L....t ~ 

n=-oo 

x t- 1
- ~E~n a~(2z)nw(n + v- 1- iE, 2n + 2v + 2; -2iz), 

v+3+u n 

(12·12) 

(12·13) 

(12·14) 

where w(a, b, z) is the irregular confluent hypergeometric function. 57) By definition, 
the upgoing solution Rup is given by 

(12·15) 

We see that the above two kinds of solutions are convergent in the common region 
1 < x < oo. Then comparing the asymptotic behavior of R0 and R(; for x----+ oo, we 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.128.1/1929942 by M

PI G
ravitational Physics user on 25 April 2025



Chapter 1 Black Hole Perturbation 67 

find that they have the same characteristic exponent, "' x"', hence des~ribe the same 
solution up to the normalization factor. Therefore by comparing each power of x we 
have 

where 

K _ (2o;;)_"'_2-r22ir T(3- 2ic+)T(r + 2v + 1)T(r + 2v + 2) 

v - T(v + 1- iT)T(v + 3- ic)T(r + v + 3 + ic) 

T(v + 1 + iT)T(v- 1 + ic) 
X -=-:--:------'-------:---=----;------'---:-

T(r + v + 1 + iT)T(r + v- 1 + ic) 

x(f (r+2v+1)n(v-1-ic)na"') 
n=r (n-r)! (v+3+ic)n n 

( 

i' (-l)n (v -1- ic)n )-l 
x n~oo (r- n)!(r + 2v + 2)n (v + 3 + ic)n a~ ' 

where r can be any integer and Kv is independent of the choice of r. 

(12·16) 

(12·17) 

The gravitational wave absorbed into the black hole is expressed by Eq. (2·12). 
Hence we need to know the amplitudes Binc and Btrans of Rin and ctrans of RUP' 

defined in Eq. (2·7). The asymptotic ingoing amplitude at horizon, Btrans of Rin is 

readily obtained from Eq. (12·1) as 

Btrans = (~~)
28 

eiE+ InK f: a~. 
n=-oo 

(12·18) 

Similarly, the asymptotic outgoing amplitude at infinity, ctrans of RUP is obtained 

from Eq. (12·14) as 

(12·19) 

On the other hand, a bit of work is necessary to obtain the asymptotic incoming 
amplitude at infinity, Binc of Rin. Setting the asymptotic behavior of R(; at z -+ oo 

as 
(12·20) 

we find 

(12·21) 
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Because of Eq. (12·7), A± and A±v-1 are related to each other as 

A -v-1 - -. -irrv sin 7r(Z1 + iE) All 
+ - ze . ( . ) +, sm 1r v- ZE 

A=v-1 = ieirrv A~ . (12·22) 

With the help of the above relations, we find from Eqs. (12·8) and (12·16) the 
asymptotic amplitudes of Rin at infinity as 

(12·23) 

So far our discussion has been on exact analytic series expressions for the homo­
geneous Teukolsky functions. Now we consider their post-Minkowski expansion by 
assuming E « 1. Provided we set a0 =: 1, we see from Eqs. (12·4) that o:~, ~~ = O(E) 
and (3~ = 0(1) unless the value of v is such that the denominator in the expression 
of o:~ or~~ happens to vanish or (3~ happens to vanish in the limitE--+ 0. Except for 
such an exceptional case, it is easy to see from Eq. (12·3) that the order of a~ in E in­
creases as lnl increases. Thus the series solution naturally gives the post-Minkowski 
expansion. 

For the moment, let us assume that the above mentioned exceptional case does 
not happen for n = 0. Then we have R1(v) = O(E) and Lo(v) = 0(1/E). This 
implies (30 + !oL- 1(v) = 0(E2 ). Then assuming L_1(v) = O(E), we must have 
(30 = 0(E2 ). Using the expansion of .A given by Eq. (3·1), we then find v = £ + 0(E2 ) 

or v = -£ - 1 + 0( E2). Since we know that -v - 1 is a solution if v is so, we may 
take the solution v = £ + 0( E2) without loss of generality. Then the assumptions 
that R1(v) = 1/Lo(v) = O(E) and L--1(v) = O(E) are justified. Further it is easily 
seen that Rn(v) = O(E) for all n > 0. On the other hand, for n < 0, o:~ = 0(1) at 
n = -£- 1 and (3~ = 0(E2 ) at n = --2£- 1. Thus we have L-e-1(v) = 0(1) and 
L-u-1(v) = 0(1/E). To summarize, we have 

all 
Rn(v) =-!- = O(E) for all n > 0, 

an-1 
all all 

L-e-1(v) = -~- 1 = 0(1), L-u-1(v) = -~e- 1 = 0(1/E), 
a_e a-2£ 

all 
Ln(v) = -!- = O(E) for all the other n < 0. (12·24) 

an+1 

With the above results, the post-Minkowski expansion of the homogeneous Teukolsky 
functions can be obtained with arbitrary accuracy by solving Eq. (12·5) to a desired 
order and by summing up the terms to a sufficiently large lnl. For our present 
purpose, we need v which is accurate to 0(E2 ). Solving Eq. (12·5) to this order, we 
find 

E2 [ 4 
lJ = £ + 2£ + 1 - 2 - £ ( f + 1) 
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Chapter 1 Black Hole Perturbation 69 

(£- 1)2(£ + 3)2 (£- 2)2(£ + 2)2] 
+ (2£ + 1)(2£ + 2)(2£ + 3) - (2£- 1)2£(2£ + 1) . 

(12·25) 

Interestingly, v is found to be independent of the azimuthal eigenvalue m to 0( E2). 

The post-Newtonian expansion in the near zone is given by further assuming 
f « z « 1 in the series solution (12·11) and expand it in powers z. For evaluation 
of the black hole absorption, we need the post-Newtonian expansion of Rup which 
is obtained from Eq. (12·14). The explicit post-Newtonian formula for Rup and the 
asymptotic amplitudes Binc, Btrans and ctrans to 0( t 2) are given in Appendix H. 

12.2. Absorption rate to O(v8 ) 

In this subsection, we evaluate the energy absorption rate by a black hole. The 
energy flux formula is given by Teukolsky and Press 58) as 

(
dEhole) = '"""J d 2Slm 128wk(k2 + 4E'2)(k2 + 16E'2)(2Mr +)51ZH 12 (12·26) 
dtdf? 1;;:, W 27r ICI2 fmw ' 

where E' = "'/(4r +) and 

ICI 2 = ((.~ + 2)2 + 4awm- 4a2w2) [A2 + 36awm- 36a2w2] 

+(2A + 3)(96a2w2 - 48awm) + 144w2(M2 - a 2
). (12·27) 

The calculation of Z~w is parallel to the calculation of Zfuuu except that Rin 

is replaced by Rup. The solution of the geodesic equations are given in §6. Using 
that solution, we have the amplitude of the Teukolsky function at the horizon in 
Eq. (2·12) as 

zH - 27rBtrans6(w- mil) [Rup {A A- A- - } 
f'fi'!W - 2iwBincctrans fmw nnO + mnO + mmO 

dRup d2 Rup ] 
- dfmw {Am, n 1 + Am, m 1} + d £~Am, m 2 

r r r=ro ,O=rr /2 

= 6(w - mf?)Z~. (12·28) 

From Eqs. (12·26) and (12·28), the time averaged energy absorption rate becomes 

j ~~) = L [128wk(k
2 

+ 4€2)~2

2+ 16E'
2
)(2Mr +)

5
IZ]Iml 2] 

\ H fm I · I w=mil 

= L (dE) . (12·29) 
o dt fm 
<-m ' 

As in the case of the Teukolsky function at infinity, we can show that Zjf -m -w 
' ' 

= ( -l)e Z~m,w· Then, from Eq. (12·29), we have (dE/dt)e,-m = (dE/dt)e,m· 
In order to express the post-Newtonian corrections to the black hole absorption, 

we define 'Tlr m as 
' 

(dE) _ 1 (dE) 5 H dt == 2 dt v 'Tle,m , 
f,m N 

(12·30) 
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where (dE/dt)N is the Newtonian quadrupole luminosity at infinity, Eq. {4·19). In 
Appendix I, we show 'rJfm· 

The total absorption rate to O(v8 ) beyond the lowest order is given by 

jdE) =(dE) v5 [-~q3 _!q+(-q-33q3)v2 
\ dt H dt N 4 4 16 

( 
7 4 1 3 85 2 4 1 13 2) 3 

+ 2 q + 2 qB2 + 2 + 6 q B2 + 
12 

q + 3 q /'\; + 2 /'\; + 2 /'\; q v 

+ (- 4651 q3 _ 43 q _ 17 q5) v4 

336 7 56 

( 
569 2 371 4 3 3 3 33 4 

+ 
24 

q + 
48 

q + 18 q B2 - "4 q B1 + 2 /'\; + 2 + "4 q /'\; 

163 ) 
+6qB2 + B i'i;Q2 + qB1 v5 

( 
2718629 428 2 2 428 

+ - q - 4 B2 +- /' q + - 1r q + - q ln 2 - 4 qC2 
44100 105 3 105 

3 ' 4 2 428 3 428 3 3 2 
-12 q C2 - 36 q B2 - 56 q B2 + 

35 
q 'Y + 

35 
q ln 2 + 2 q 1r 

428 428 428 3 q7 428 3 2 
+ 

105 
qlni'i; + 

105 
qA2 + 

35 
q lni'i; +6 -;z + 

35 
q A2 - 8qB2 

3 2 856 856 3 B2 q3 q 
-24 q B2 + - q ln v + - q ln v - 4- - 32- - 31 -

105 35 /'\; /'\; /'\; 
q5 5 4 2 7 3 4 2 

+57-+ q /'\; + q B1 - - K q- - /'\; q - - q B1 
/'\; 3 6 3 

-48 q2 B2 + 28 q4B2 - 24 q3C2 -8 qC2 + 24 q6 B2 
K K /'\; K K 

2400247 3 299 5) 6 
19600 q + 16 q v 

(
225 5B 41 6 86 8741 2 3485 4 167 6 

+ 28 q 3 - 28 K q + 7 + 56 q + 42 q + 112 q 

86 45 9 5 899 B 803 3B 1665 3B 
+7 /'\; + 56 qB3 - 28 q 81 + 168 q 1 - 224 q 1 + 224 q 3 

2372 3B 16 5B 719 4 22201 2 796 B) 7 
+21q 2-7q 2+ 12 q K+168Kq +2Iq ~ V 

( 
20542807 1061 13 2 995 

+ - q - 12 B2 - 2 B1 + -- 'Y q + - 1r q + - q ln 2 
88200 35 6 21 

3 308 4 1496 2 12197 3 3873 3 
-12 qC2 - 36 q C2 - - q B2 - -- q B2 + -- q /' + -- q ln 2 

3 9 140 28 
47 3 2 1391 428 5029 3 37 q7 1284 3 

+-q 1r + --qlni'i;+ -qA2 + --q lni'i;+-- + --q A2 
8 105 35 140 6 /'\; 35 

2 3 2 4574 8613 3 B2 341 q3 
-24 qB2 - 72 q B2 + -- q ln v + -- q ln v- 12- - --

105 70 K 4 /'\; 
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637 q 741 q5 73 4 283 2 -- - + - - + - q B1 - qC1 - - q B1 
6 /'i, 4 /'i, 6 18 

+~ q3 B12 + 107 qAl - 10~ q3 Al - 3 q6 Bl + 13 q4 Bl - ~ q2 Bl 
2 105 140 /'i, 2 /'i, 2 /'i, 

qC1 3 q3C1 2 3 3 B1 q2 B2 
-2- + - -- - 2 qB1 + - q c1 - 2- - 144 --

/'i, 2 /'i, 4 /'i, /'i, 

+
84 

q4 B2 _ 
72 

q3C2 _ 
24 

qC2 + 
72 

q6 B2 _ 2945984497 3 
/'i, /'i, /'i, /'i, 6350400 q 

1385 5 25 7) 8] +-u q + 252 q v ' (12·31) 

where 

An = ~ ['1/J(O) (3 + niq ) + '1/J(O) (3 - niq ) l ' 
2 y'1 -- q2 yT=q2 

Bn = ~ ['1/J(O) (3 + _!!_iq ) - '1/J(O) (3 - niq ) l ' 
2~ vT- q2 yT=q2 

Cn = ~ ['1/J(l) (3 + niq ) + '1/J(l) (3- niq ) l ' 
2 vr=- q2 yT=q2 

(12·32) 

and '1/J(n)(z) is the polygamma function. We see that the absorption effect starts at 

0( v5 ) beyond the quadrapole formula in the case q -=I 0, while for q = 0, the above 
formula reduced to 

(12·33) 

as was found by Poisson and Sasaki. 21 ) We note that the leading terms in (dEjdt)H 
are negative foc q > 0, i.e., the black hole loses the energy if the particle is corotating. 

This is because of the superradiance for modes with k < 0. In Appendix J, we also 
show (dEjdt)H written in terms of x :::::: (M.f.?cp) 113 . 

It is not manifest from Eq. (12·31) that if it has a finite limit for lql --+ 1. But 

by using the formulas, 

lim '1/J(O) (3 + mq ) = lnn -ln/'i, + i..!!_!!_, 
q--+±1 y'1 - q2 lql 2 

(12·34) 

lim '1/J(k) (3 + niq ) = 0, (k -=I 0) 
q--t± 1 yT=q2 (12·35) 

we obtain the limit of (dE/dt)H as 
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(
3424 q 1712 q 3424 q 

+ 105 "jqT ln(2) + 105 'Y lqf + 105 lqf ln( v) 

-3647533 .!L- 28~ .!L 7r- 16/3 2.!l__) 6 
22050 Jql 6 Jql 7r Jql v 

( 
84955 55873 ) 7 

+ 336 + 672 7r v 

( 
14077 .!L ln(2) 16441 .!L 34987 .!L ln( ) _ 193 2 .!L 

+ 60 Jql + 140 'Y Jql + 210 Jql v 12 7r Jql 

-4057965601 .!L - 1289 .!L ) 8] (12·36) 
6350400 Jql 9 Jql 7r v . 

Appendix A 
-- Spheroidal Harmonics --

In this appendix, we describe the expansion of the spheroidal harmonics -2S&;; 
to O((aw)2 ). 

The spheroidal harmonics of spin weight s = -2 obey the equation, 

[ 
1 d { . e d } 2 2 . 2 e (m- 2 cos e)2 

sine de sm de - a w sm - sin2 e 

+ 4aw cos e - 2 + 2maw + >.] -2Sb;; = 0. (A·1) 

We expand -2Sl~ and A as 

-2Sb;; = -2Pem + awSi~ + (aw) 2S~~ + O((aw)3), 

A= Ao + awAl + a2w2 >.2 + O((aw) 3
), (A·2) 

where -2Pem are the spherical harmonics of spin weights= -2. We set the normal­
izations of -2Pem and -2S'fut as 

(A·3) 

Inserting Eq. (A·2) into Eq. (A·l) and collecting the terms of the same order to 
(aw) 2 , we obtain 

[.Co + Ao]-2Pem = 0, 

[.Co+ Ao] S~~ = -(4cose +2m+ Al) -2Pem 

(A·4) 

(A·5) 

[.Co+ Ao] S~~ = -(4cose +2m+ Al)Si~- (>.2- sin2 e) -2Pem, (A·6) 

where 
.Co= _1_.!!_ (sine!!_)- (m- 2cose)2- 2. 

sine de de sin2 () 
(A·7) 

The lowest order equation (A·4) says we have >.o = (£- 1)(£ + 2). 
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Chapter 1 Black Hole Perturbation 73 

The first order correction to the eigenvalue, AI, is obtained by multiplying 
Eq. (A·5) by -2Pern from the left-hand side and integrating it over e. The result 
is 

A __ 
2 

R(R + 1) + 4 
1 - m R(R + 1) . (A·8) 

To obtainS~~' we set 

(A·9) 

We insert this into Eq. (A·5), multiply it by -2Pe'rn and integrate it over e. Then 
noting the normalization of the spheroidal harmonics, we have 

c~:n = { (R' _ 1)(£' + 2) ~ (R _ 1)(£ + 2) j d(cos 0) -2Pe'rn cosO -2Pern, 
0, 

Hence c~:n is non-zero only for R' = R ± 1, and we obtain 

HI_ 2 [(R+3)(R-1)(R+m+1)(R-rrp+1)] 1/2 

cern - (R + 1)2 (2£ + 1)(2£ + 3) ' 

£-1 __ ! [(£ + 2)(£- 2)(£ + m)(R- m)] 112 

cern - £2 (2£ + 1)(2£- 1) . 

R' i- R, 

R' =f. 

The next order equation can be solved similarly. The second order correction to 
the eigenvalue, A2, is obtained by multiplying Eq. (A·6) by -2Ptrn from the left-hand 
side and integrating it over e. We find 

A2 = -4 j d( cos 0)-2Pern cos 0 S~~ + j d( cos 0)-2Ptrn sin2 0 -2Pern 

= -2(£ + 1)(c~~1 ) 2 + 2R(c~;;:/) 2 + 1- j d(cos0)-2Pern cos2 0 -2Pern, 

(A·lO) 

where the last integral becomes 

J 2 1 2 { R + 4 )( R - 3 )( £2 + R - 3m2) 
d(cos0)-2Pern cos 0 -2Pern == 3 + 3 R(R + 1)(2£ + 3)(2£ _ 1) . 

As before, to obtain S~~, we set 

(A·ll) 

Inserting Eqs. (A·9) and (A·ll) into Eq. (A·6), multiplying it by -2Pf'rn and integrate 
it over e' we obtain 

d~:n = Ao(R) ~ Ao(R') [-(2m+ A.1 (£)) ( c~~1 6e,Hl + c~;;:/Je',f-l) 
-4c~~1 j d(cos0)-2Pt'rn cosO -2PHlrn- 4c~;;:/ j d(cos0)-2Pf'rn cos 0 -2Pe-1rn 

+ j d( cos 0)-2Pt'rn sin2 e -2Pern] (A·12) 
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for f 1 =f. f. The integrals in this equation are given by 59), 60) 

J ( ) 2f + 1 ( I I ) ( I I d cos() -2p£'m cosO -2Pem = 
2
f' + 

1 
f, 1, m, 0 f, m f, 1, 2, 0 f, 2), 

J d(cos0)-2P£'m sin2 () -2Pem = ~6£',£ 
.----

~ ::1 : ~ (f, 2, m, Ole', m)(f, 2, 2, Olf', 2), 

where (]I,h,m1,m2IJ,M) is a Clebsch-Gordan coefficient. For£= 2 and 3, the 

non-vanishing d~:n (f1 =f. f) are given explicitly as 

for f = 2, and 

d£+1 = m (4- m)1/2(4 + m)1/2 
fm 120y'2I ' 

d~~2 = 1 (4- m)1/2(4 + m)1/2(5- m)1/2(5 + m)1/2 
180V'IT ' 

d£-1 =- m (3- m)1/2(3 + m)1/2 
fm 324.J7 

for£= 3. As for d~m' it is determined by the normalization of -2S£r';;_, i.e., 

Then we have 

2"' £' 3 } + 2(aw) ~ dem-2Pf'm-2P£m + O((aw) ) 
£1 

= 1 + (aw) 2 L (c~:n)
2 

+ 2(aw)2d~m+ O((aw)3
). 

£1 

£ 1{(£+1)2 (£-1)2} dem = - 2 c£m + Cem · (A·13) 
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Appendix B 
-- The Operators Q(2), Q(3) and Q(4 ) --

In this appendix, we show the operators Q(n) for n = 2, 3 and 4 which appear 
in Eq. (3·19). 

(2) [ ( . 32 i m q . . 2 2 6 q2 2 Q = -28zmq- R + 8dmq + 4z£ mq- 13q - -£-- 12£q 

-£2q2+ 6 £3q2+ 2 £4q2+ 8 m2q2+ + _ 32m2q2 8m2q2) 1 
£2 f z4 

( 
24mq 20mq 2 2 16iq2 

+ 16mq+~+-R-~-8fmq-4£ mq-14iq --£-

2 2 2 2 4 i AIm q2 
+4ifq +2if q +2iAI mq - £2 

2 i A 1 m q2 
4 

. 2 2 56 i m 2 q2 4 i m 2 q2 ) 1 
+ f - 'l m q + £2 - f z3 

+ ( 24 i m q + 17 q2 + 10 q2 _ 13 f q2 _ 9£2 q2 _ 3£3 q2 _ £4 q2 _ A2 q2 

£2 2 R 4 4 4 4 2 

3 f A2 q2 £2 A2 q2 3 £3 A2 q2 £4 A2 q2 
2 

, 2 
4 + 4 +--4-+ 4 - AlffiQ 

4Almq2 2Almq2 24m2q2) 1] 1 
+ £2 f - £2 z2 (£ + 1)2(£2 + f- 2) 

+ [ (-24 i Ao m q - 4 i Ao 2 m q + 4 i Ao 3 m q - 12 Ao q2 - 6 Ao 2 q2 

2 2 2 2 2) 1 ( . 2 . \ 2 2 + 24 Ao m q - 4 Ao m q z3 + 24 Ao m q - 12 z Ao q - 2 z -"O q 

. 3 2 . 2 2 . 2 2) 1 ] 1 d 
+2zAo q +2zAo A1mq +24zAom q z2 (Ao+ 2)2A5 dz 

q2 d2 
(B·1) 

(3) [ ( i 5 q
2 

5m
2 

q
2 

11 i 3 11 i 3 3) 1 Q = -mq+-- ..1..-mq --m q -
l=2 2 8 9 ' 24 54 z4 

(
- ( m q) 5 i 2 65 i 2 2 m q3 16 m 3 q3) 1 

+ 24 + 48 q - 216m q - -2- + 81 z3 

( 
i q2 17m2 q2 65 i 3 17 i 3 3) ll d 

+ 24 mq- 48 + 216 ~- 378 mq +252m q z2 dz 

[ (
. 7 q2 25m2 

q
2 4 i 3 _ 29 i 3 3) _.!._ 

+ 'l m q + 4 - 18 + 3 m q 54 m q z5 
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(
-5mq 19i 2 103i 2 2 19mq3 101m3q3) 1 

+ 12 + 24 q - 108 m q - 12 + 162 z4 

( 
-q2 41m2 q2 127 i 3 601 i 3 3) 1 

+ 8 + 108 - 189 mq + 2268 m q z3 

(
- (mq) i 2 17i 2 2 .A3q3 65mq3 17m3 q3) 1] 

+ 24 - 48 q + 216 m q + -8- + 378 - 252 z2 ' 

(B·2) 
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(
-(mq) i 2 11i 2 2 5mq3 m 3 q3 7i 4 

+ 96 - 192q + 28Sm q +loS- 3888 + 432q 

i A 4 1349 i 2 4 509 i 4 4 ) 1 l d 
+ 72 3 m q - 13608 m q + 15309 m q z 2 dz 

[(
-3q2 7m2 q2 47i 3 19i 3 3 7q4 65m2 q4 

+ -4- + 12 - 24 mq + 27 m q - 16 + 72 

71m4 q4
) 1 (- (mq) 7i 2 3i 2 2 29mq3 659m3 q3 

- 324 z6 + 4 - 16 q + 8 m q + 12 648 

29 i 4 49 i 2 4 53 i 4 4) 1 
- 48 q + 27 m q - lOS m q z5 

(
-5i 5q2 41m2 q2 2287i 3 2039i 3 3 

+ 48mq+ 96 + ~2 + 3024 mq - 4536 m q 

101 q4 3991 m 2 q4 15853 m 4 q4
) 1 

+ 288 - 3024 + 40824 z4 

(
-i 2 53i 2 2 2mq3 431m3 q3 349i 4 

+ 32 q + 432 m q - -27 + 3888 + 3024 q 

i A 4 7235 i 2 4 2549 i 4 4) 1 
+72 3mq - 13608 m q + 15309 m q z3 

( 
-i q2 11 m 2 q2 5 i 3 i 3 3 7 q4 A4 q4 

+ 96 m q + 192 - 288 + 108 m q - 3888 m q - 432 + M 

A3mq4 1349m2 q4 
_ 509m4 q4

)]_] 

72 + 13608 15309 z2 · (B·4) 

Appendix C 
-- 4PN Formulas for R~r:n --

77 

In this appendix, we show the post-Newtonian expansion of Rin in the near zone, 
where z = wr «: 1, for a Kerr black hole which is needed to evaluate gravitational 
waves at infinity to O(v8 ). For convenience, we recover the indices £m on Rin and 
give the formulas for wR}r:n. 

in z4 i 5 11 z6 i 7 23 z8 i 9 
wR2m = 30 + 45 z - 1260 - 420 z + 45360 + 11340 z 

13 z 10 i 59 z12 
--- zll + ----

997920 598752 311351040 

(
-z3 i 3 i 4 mqz4 41z5 277i 5 

+E 15 - 60 m q z - 60 z + ~ - 3780 + 22680 m q z 

31i 6 7mqz6 17z7 61i 7 
-3780 z - 1620 + 5670 - 54432 m q z 
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41i 8 47mqz8 1579z9 703i 9) 

+ 54432 z + 204120 - 10692000 + 17962560 m q z 

2 ( z2 i 2 q2 z2 m2 q2 z2 i 3 m q z3 i 2 3 
+t: 30 + 40 m q z + 6o - 240 - 60 z - ----w-- + 90 q z 

i 2 2 3 7937z4 53i 4 101q2z4 4213m2q2z4 

-120m q z + 55125 - 9072 m q z - 35280 + 635040 

4673i 5 13mqz5 5i 2 5 3503i 2 2 5 1665983z6 

+ 55125 z - 2835 - 63504 q z + 1143072 m q z - 55566000 

1777i 6 q2 z6 643m2q2 z6 107 z4 lnz 
544320 mq z - 5040 - 653184 6300 

107i 51 1177 z6 1nz) 
- 9450 z n z + 264600 

3 ( ( -i q2 m2 q2 i 3 i 3 3) 
+t: 180 m q - 60 + 24o - 144 m q + 1440 m q z 

( 
i 2mq i 2 19i 2 2 11mq3 m3 q3) 2 

+ 120 + 135 - 360 q + 1440 m q + 1080 - 540 z 

3 ( 10933 578569 i 677 q2 529m2 q2 

+z -49000 - 7938000 mq- 52920 - 63504 

317i 3 167i 3 3 1071nz 107i 1 )) 
+ 63504 mq - 84672 m q + 3150 + 12600 mq nz 

4 ( -i m2 q2 i 3 i 3 3 
+t: 720 mq + 2880 + 288 mq - 2880 m q 

q4 m 2 q4 m 4 q4 ) 

+ 480- 720 + 11520 , 
(C·1) 

. z5 i 6 z 7 i 8 29 z9 

wR3~ = 630 + 1260 z - 3780 - 16200 z + 2494800 

i 47 z 11 + zlo ____ _ 
554400 194594400 

(
-z4 i 4 i 5 llmqz5 19i 6 

+t: 252 - 1890 mq z - 756 z + 22680 + 90720 mq z 

i 7 mq z7 647 z8 247i 8) 

-9450 z - 16200 + 14968800- 17962560 mq z 

2 ( z3 i 3 q2 z3 m 2 q2 z3 i 4 17m q z4 

+t: 315 + 945 m q z + 1260 - 15120 + 2520 z - 15120 

i 2 4 31 i 2 2 4 81409 z5 

+ 2160 q z - 272160 m q z + 11113200 
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313i 5 41q2z5 617m2q2z5 13z5 lnz) 
907200 m q z - 226800 + 8164800 - 26460 

3 ( -z2 i 2 q2 z2 m2 q2 z2 i 3 2) 
+t: 1260- 1680 mqz - 840 + 10080 - 5040 mq z ' (C·2) 

. z6 i 13 z8 i 71 z 10 
Rm + 7 9 

W 4m = 11340 28350 Z - 1247400- 467775 Z + 194594400 

( 
- z5 i 5 11 i 6 m q z6 

+t: 3780 - 45360 m q z ·- 13.6080 z + 64800 

131 z7 697i 7) 
+ 18711000 + 124740000 mq z 

2 ( z4 i 4 q2 z4 m2 q2 z4) 
+t: 3528 + 18144 mq z + 21168 - 635040 ' (C·3) 

7 . 9 
~ Z I 8 Z 

wR5m = 207900 + 623700 z - 2316600 

+t: ( 5~:~0 - 103~500 m q z
6

) ' 
(C·4) 

8 
Rin Z 

W 6m = -40_5_4_0_5_0 (C·5) 

Appendix D 
-- The Ingoing Regge- Wheeler Functions to O(t:3 ) --

In this appendix, we present a method to calculate the ingoing Regge-Wheeler 
functions to 0( t:3) which are needed to calculate the luminosity to 0( v11 ) beyond 
Newtonian in the Schwarzschild case. In the Schwarzschild limit, q -t 0, and solving 
Eq. {3·24) recursively is in principle straightforward. Since the general homogeneous 
solution to the left-hand side of it is given by a linear combination of the spherical 
Bessel functions je and ne, one can immediately write the integral expression for 

~~n)_ Noting that jen£- nd~ = 1/z2, we have 

(D·1) 

where the source term W(n) in the Schwarzschild case is given by 

We perform the above indefinite integral and set the appropriate boundary condition 
by examining the asymptotic behavior at z -t 0 order by order. 
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D.l. General remarks 

Let us first consider the boundary conditions of dn). In the Schwarzschild case, 
the original Regge-Wheeler ingoing wave function x~n is related to ~t as 

(D·3) 

and it has the asymptotic behavior given by Eq. (3·12), which in the present case 
reduces to 

for z* -too, 
for z* -t -oo. 

(D·4) 

Thus, noting that z* = z + Eln(z- E), the boundary condition of ~}n is that it is 
regular at z* -t-oo (z -t E). To implement this boundary condition to ~}n, we need 

a different series expansion of it; a series in terms of the variable x := r/2M = z/E 

around x = 1. We write this expansion as 

(D·5) 

On the other hand, there are two independent solutions expanded by functions writ­

ten in terms of z. We denote the solution whose zeroth order is given by Jt (nt) as 

~jl (~n£). Then the general solution is given by Cj~jl + Cn~nl· As can be shown by 

using the result of Poisson and Sasaki, 21 ) do} does not have terms matched with 

~nl· A term matched with ~nl first appears from dl}. For x -t oo (+-+ E ~ z), 

do} (x) behaves as xl = zRE-R ,....., cl~jl· On the other hand, Ed1
} contains the 

term that behaves as EX-R-1 = El+2z-R-1 ,....., El+2~nl· Therefore, in the sense of the 

post-Minkowskian expansion, the inner boundary condition affects the ingoing wave 
solution at and beyond 0(E2R+2). However, in the post-Newtonian sense, since we 

evaluate ~R in the near zone, i.e., for z = O(v), the contribution from ~nl becomes 
O(v4H 5) relative to ~jl· Since £ 2:: 2, we find that the inner boundary condition 
affects the homogeneous solution at and beyond O(v13) in the near zone.*) 

Since JR = O(zl) as z -t 0, we have x~n -t 0(EH1)e-iz*' or A}rans = 0(El+1). 

On the other hand, from the asymptotic behavior of JR at z = oo, we find A}nc and 
A~ef are of order unity. Then using the Wronskian argument, we obtain 

(D·6) 

Thus IA~ncl = IA~efl until we go to 0(E2H 2) or more. This fact implies that we can 
make A~nc and A~ef to be complex conjugate to each other to 0(E2H 1). Hence the 

imaginary part of xt' which reflects the boundary condition at horizon, appears 
at 0( E2H 2 ) because the Regge-Wheeler equation is real. This is consistent with the 
argument given in the above paragraph. Provided we choose the phase of x~n in this 

• l In Ref. 11), it was erroneously argued that the outgoing gravitational waves are unaffected 

by the inner boundary condition until we reach O(t6
) = O(v18

). As shown here, this is true only in 

the post-Minkowskian sense. 
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way, lm ( ~~n)) for a given n S 2f! + 1 is completely determined in terms of Re ( ~Y)) 
for r < n- 1. 

T-;- see this explicitly, let us decompose ~~n) into the real and imaginary parts: 

c(n) _ f(n) + . (n) 
C.,£ - £ ~g£ . (D·7) 

Inserting this expression into Eq. (D·3) and expanding the result with respect to E 

by assuming z » E, we find 

x}n = e-idn(z-€) z (Je + E(jp) + ig~1)) + E2(jj2) + ig?)) + E3(jj3) + ig~3)) + .. ·) 

~ z (it+ <JP) + <2 (tF) + gj1l In z- ~j,(ln z)2
) 

3 ( (3) 1 2 (1) lnz. (2) 1 (1)) ) +E f - 2(lnz) fe + --;--Je + lnzge - -;ge + .. · 

+iz ( <(gj1l -it In z) + ,, (gj'l +~it- tP) In z) 

+E3 (g~3)- ~(lnz)2g?) -lnzf?) + t/(1) 

+ c~2 + ~(lnz)3) it)+·-} (D·B) 

Hence we must have 

(D·9) 

For completeness, we also give the relation between the functions Jt) and the con­
ventional post-Newtonian expansion of x}n: 

00 

xt = L Enx;n); 

n=O 

x;o) = zf}0
) = ZJ£, X~l) = zf?), x?) = Z (f?) + ~je(ln z) 2

) , 

xY> = z (1?> + ~J?>(lnz) 2 
-- l:z je), (D·lO) 

Now we turn to the asymptotic behavior at z = oo. Let the asymptotic form of 

Jt> be 

f (n) p(n) · Q(n) ( 1 2 3) e --+ e Je + e ne as z -+ oo. n = , , (D·11) 
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Then noting Eq. (D·9) and the equality e-i€ ln(z-€) = e-iz* eiz, the asymptotic form 
of x~n is expressed as 

Xt -t ~e-iz* (zh~2)eiz) [1 + E { pp) + i ( Q~l) + lnz)} 

+E2 { ( pj2l - Q~1 ) ln z) + i ( Q~2) + pp) ln z)} 

+E3 
{ (!?)- Q~2) lnz) + i ( Q~3) + Pj2) lnz + ~(lnz)3)} + · · ·] 

+~eiz* ( zh~l) e-iz) e-2idn(z-E) [ 1 + E { pp) - i ( Q~l) - ln z)} 

+E2 { ( pj2l + Q~1 ) ln z) - i ( Q~2) - pp) ln z)} 

+E3 
{ (Pj3) + Q~2) lnz)- i ( Q~3)- PP) lnz- ~(lnz) 3)} + · · ·]. 

(D·12) 

Using the asymptotic behavior of h~1 ) and h~2 ) given in Eq. (3·57), the incident 
amplitude Ate can be readily extracted out as 

Ate= ~iHle-idnE [ 1 + E { PP) + i ( Q~l) + lnz)} 

+E2 { ( pj2l - Q?) ln z) + i ( Q~2) + pp) ln z)} 

+E3 
{ (Pj3)- Q~2) lnz) + i ( Q~3) + Pj2) lnz + ~(lnz)3)} + · · ·], 

(D·13) 

where note that the definition of r*, Eq. (2·9), in the limit q-+ 0 is 

( 
r- 2M) 

wr* = w r + 2lvfln 
2
M = z*- ElnE, (D·14) 

which gives rise to the phase -iE ln E of A}ne. 
An important point to be noted in the above expression for Ate is that it contains 

ln z-dependent terms. Since A}ne should be constant, P}n) and Q~n) should contain 
appropriate ln z-dependent terms which exactly cancel the ln z-dependent terms in 
the formula (D·13). 

D.2. Basic formalism for iteration 

Here we derive the formulas necessary to perform the iteration scheme. 

D.2.1. Definitions 

We introduce the following functions, 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.128.1/1929942 by M

PI G
ravitational Physics user on 25 April 2025



where 

Chapter 1 Black Hole Perturbation 

fn
z 1 

Bjn:= zjonodz = --S, 
0 2 

Bnn:= rz znonodz = -Bjj + lnz, Jz. 

fn
2

z sin y 100 sin y 1r 
S= dy-=- dy-+-, 

0 Y X Y 2 

fn
2z COS y - 1 100 COS Y 

C= dy =- dy---~-ln2z, 
0 Y 2z Y 

83 

(D·15) 

(D·16) 

and the lower bound z* of the integral for the definition of Bnn is adjusted so as to 
make Bnn equal to the last expression of the line. 

As an extension of these integral sinusoidal functions, we further introduce the 
following functions: 

BjJ:= {z dzzjoDg, 
Jz. 

(D·17) 

(D·18) 

where J stands for a sequence of j and n, say, J = jnnj, and we have also introduced 
an extension of the spherical Bessel functions by 

(D·19) 

and 

(D·20) 

We adopt the following rule to determine the lower bound of the integrals in Eq. 

(D·18). Whenever we can put z* = 0, we do so, which is always possible when the 
sequence J ends with j. On the other hand, in the case when J ends with n, there 
may appear in the integrand the square of no which causes logarithmic divergence if 

we set z* = 0. In such cases, we use the relation, 

2 1 ·2 
no= 2- Jo' z 

(D·21) 

to replace nfi with the right-hand side and extract out the logarith~ically divergent 

term due to 1/ z2 • Then we set z* = 0 for the jB term, while we set z* = 1 for the 
1 j z2 term so as to make the resulting logarithmic term zero at z = 1. For J of two 
indices, this is how we have defined Bnn in Eq. (D·15). For J of three indices, this 

applies to Bnjn· Specifically it is given by 

1 2 
Bnjn = Bjjj- Bjj lnz + 2(Inz) . (D·22) 
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For convenience, in what follows we call BJ the generalized integral sinusoidal func­
tions and Df the generalized spherical Bessel functions. 

Note that all the BJ whose J end with n can be expressed in terms of those 
whose J end with j. For example, for J of three indices, we have 

Bjjn = -Bnnj + lnzBnj, 

Bjnn = 2B3jj + Bnnj - ln ZBjj , 

Bnnn = 2Bnjj - Bjnj - ln zBnj , (D·23) 

together with Eq. (D·22). Using these relations, we can express all the Df whose J 
end with n in terms of those whose J end with j. 

Further we introduce the following indefinite integral operator, 

Fk,e[X] := nk j dzjeX - Jk j dzneX (D·24) 

for a function X. Note that Eq. (D·1) is expressed in terms of this operator as 

(D·25) 

We also introduce the following operator, 

Hk [Y] := nk dzD0 Y- Jk dzD0 Y, J J J . J J- (D·26) 

where Y stands for a linear combination of the generalized Bessel functions with the 
coefficients given by linear combinations of zm(lnz)n (m ~ 1, n 2': 0) andY denotes 
the quantity which is obtained by replacing j, n, DiJ and nnJ with n, j, nnJ and 
DiJ, respectively, in the expression of Y. By definition we see that 

(D·27) 

D.2.2. Basic formulas 

The spherical Bessel functions satisfy the recursion relation, 

2m+ 1 
(m-1 + (m+1 = (m, 

z 
(D·28) 

where (m = Jm or nm. Note that 

_ ( 1)m+1 · nm- - J-m-1' (D·29) 

The same recursion relation holds for the generalized spherical Bessel functions, 

DC.J n<J - 2m+ 1 nC.J 
m-1 + m+1- m' z 

(D·30) 

where ( = j or n. Further the relations the same as Eqs. (D·29) hold forD~, 

nnJ = (-)m+l niJ DiJ = (-)m nnJ . m -m-1• m -m-1 (D·31) 
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Chapter 1 Black Hole Perturbation 

The derivative recursion relation for the spherical Bessel functions is 

and this extends to the generalized spherical Bessel functions as 

_!!:_Dn(J = _1_ {£Dn(,J- {£ + 1)Dn(,J} + Re,o D(,J 
dz e 2£ + 1 f--1 £+1 z o , 

_!!:_Di(,J = - 1- {£Di(,J- (£ _~_ 1)Di(J}- Re,-1 DU 
dz f 2£ + 1 f-1 ' £+1 z o . 

Useful integral formulas for the spherical Bessel functions are 

2 J dz (m(~ = {m _ n)(: + n + 1) ((m(~+1 + (m-1(~)- m ~ n (m(~, 
(m i= n, -n- 1) 

j dz (e(; = 2f ~ 1 { j dz (o(o - z ( (o(o + 2 };:
1 

(m(:n + (e(;) } , 

2 

Jdz z(m(~ = jdz z(m-1(~-1- _z_ ((m-1(~-1 + (m(~), 
m+n 

{D·32) 

(D·33) 

j dz z(e(; = j dz z(o(o- ~ { (o(o + 1=
1 
(~ + m ~ 1) (m(:n + ~(e(;}, 

85 

j dz z(e(;_1 = j dz z(oC1- z
2 

{ (oC-1 + 1=
1 4m~~ 1 (m(:n-1 + 2g ~ 1 (e(f-1}, 

j dz z(e(;+l ~ j dz z(-1(0- z
2 

{ (-1(o + t;
1 4~2~ 1(m-1(:n + 2g ~ 1 (e(;+1}, 

(D·34) 

where (m or (:n stands for Jm or nm. 
The following polynomial of 1/ z plays an important role in the calculations: 

Rm,k= z2(nmJk- Jmnk) 

[(m-k-1)/2] {m- k- 1- r)! r (m +!- r) (-2z)m-k-1-2r 
=- L: (-1r 2 

r=O r! (m-k-1-2r)!F(k+~+r) 
(D·35) 

form> k and 
Rm,k = - Rk,m {D·36) 

for m < k. By construction, a recursion formula similar to that satisfied by the 
spherical Bessel functions holds: 

2k+ 1 
Rmk-1 + Rmk+1 = --Rmk · 

' ' z ' 
(D·37) 
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Note that the indices m and k can be negative as well. As examples, we write down 
the explicit forms for some special cases: 

Rk,k = 0, Rk,k+1 = 1, Rk,k-1 = -1, 
2k -1 

Rkk-2 = ----. , z 

D.2.3. Source terms 

The source term can be rewritten as 

W(n) =z2 [ d2 + ~_:£ + (1- R(R + 1) )] ~~n-1) 
e dz2 z dz z2 z 

[
_:£ _ 2 R(R + 1)- 4] c(n-1) . [2 !£ 1] c(n-1) + d z + <.,.f + ~ z d + <.,.g z z z 

(D·38) 

(D·39) 

The contribution to ~~n) from the first term is given by z- 1 ~~n- 1 ). So we focus on 
the second and third terms. Note that the operators of the second and third terms 
have opposite parities; the second term is odd while the third term is even under the 
transformation z -t -z. To perform the integration of these terms, we introduce the 
concept of the standard form of source terms as follows. 

First consider the first iteration, n = 1. Since ~~o) = Je and since we only need 

to calculate the real part of~?), we only need to consider the second term. Using 
the recursion relations (D·28) and (D·32), it may be rewritten in the form, 

o:ozJe + f3oJe-1 + f3de+l · (D·40) 

Then using the integral formulas (D·34), the integrals Fe,e[zje] and Fe«,e[je±l] are 
readily evaluated to give 

Fe,e [zje] = D7j- ~ { Re,oJo + };
1 
(~ + m ~ 1) Re,mJm}, 

Fe,e [jk] =- (R _ k)(£
1
+ k + 1)Jk· (k = R ± 1) (D·41) 

The real part of~?) is expressed in terms of these functions, while the imaginary 
part is (ln z)Je as given by Eq. (D·9). The result is Eq. (3·34) with q = 0. 

At the second iteration, n = 2, we insert the real part of~?) to the second term 
in Eq. (D·39) and the imaginary part i(ln z)je to the third term, to evaluate the real 

part of ~~2 ). Let us focus on the contribution of the terms of the form Re,mJm in ~?) 
for the moment. Since Re,m are polynomials in 1/ z, we cannot apply the integral 
formulas (D·34) directly. So, by using the recursion relation (D·28) we get rid of the 
inverse powers of z. Then we find the corresponding source term may be expressed 
in the form, 

z(ii-Je-1 + ii+jf+l) + L /3mJt+2m · 
m;t'O 

(D·42) 
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Chapter 1 Black Hole Perturbation 87 

Similarly, at the third iteration, n = 3, the terms in d2) having the form zkjn (k::; 0) 
will give rise to the source term which can be written in the form, 

z(aoJt + a-i-e-2 + a+i-e) + L f3miH2m-1, (D·43) 
mf--l 

which is a generalization of Eq. (D·40). Because the operator of the second term in 
Eq. (D·39) has the odd parity, the source terms for n = 2 and 3 take different forms. 
We call Eqs. (D·42) and (D·43) the standard forms. For convenience we call the 
former the even standard form and the latter the odd standard form. Now turning 
to the terms with Dfn or (ln z )jm, since they satisfy the same recursion relation as 
Jm do, the same idea can be extended to them in a natural sense. The standard 
form for them is then defined by Eqs. (D·42) and (D·43) with Jm replaced by Dfn or 
(lnz)im· Note that n;i at n = 2 plays an analogous role of it at n = 1. Hence the 
odd standard form of D?;j appears at n = 2. On the other hand, since the second 
and third terms in Eq. (D·39) have opposite parities, the parity of the standard form 
of (lnz)jm is equal to that of im· 

To summarize, the source term at the second iteration consists of the standard 
forms of 

im : even, (ln z )jm : even, D";j : odd. (D·44) 

The integration of these terms can be done by using the formulas given in §D.3 
below. The resulting e~2 ) are given by Eqs. (3·39) for f = 2, 3 and Eq. (4·16) for 
f = 4. Then we find there appear new types of the source term at the third iteration, 
which are 

zD;nj, n;;i, z(lnz)2jt, (lnz)2JHI, z(lnz)D;i1 , 

in addition to the opposite parity terms of Eq. (D·44), 

im: odd, (lnz)jm: odd, D?;j : even. 

D.3. Reduction of integrals 

(D·45) 

(D·46) 

In this subsection, we reduce the expressions Ft,dsource terms] to those written 
in terms of Dfn. For this purpose we need to evaluate integrals such as 

(D·47) 

As an example let us show how this is evaluated. Using the basic integral formulas 
(D·34), we integrate it by part as 

Fk,dzDfJ] = nk j dz zjoD0J - ik j dz znoD0J 

[ ( 2) { e--1 ( 1 1 ) 1 } + ik - ~ nojo + f
1 

m + m + 1 nmim + -pndt 

-n• (- z:) {ioio + L, (~ + m ~ 1) imim + ~idt}] BnJ 
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+·(-~){%no+};,(~+ m~ 1 )nmnm+~ntne} 
-nk (-~) {io% + %, (~ + m~ 1) imnm + ~jene}] B;; 

-nk [1 dz (- z;) {jono + ,i:, (~ + m ~ 1) imnm + ~jene} zjoDt 

-I dz (-~) {jojo + };, (~ + m ~ 1) imim + ~jti+%Dt] 

+ik [1 dz (- z;) { nono + f, (~ + m ~ 1) nmnm + ~nene} zjoDt 

-I dz (- z;) { nojo + f, (~ + m ~ 1) nmim + ~nde} znoDt] 

= Dl:nJ + ~ { RokDoJ + };
1 
(~ + m~ 1) RmkDr:/ + ~RekDtJ} 

1 J ( £-
1 

( 1 1 ) 1 ) - 2jk zdz ~1 m + m + 1 Rmonm + £ Rtont De{ 

nnJ 1 nJ . 1 1 nJ 1 nJ 
{ 

R.-1 } 

= Dk + 2 RokDo + f-
1 
(m + m + 1) RmkDm + fRtkDe 

1 [ R.-
1 

( 1 1 ) 1 l +-Hf L -+-- Rmoim+-Rtoit · 
2 m=1 m m+ 1 f 

(D·48) 

The reduction of the H f term in the last expression is done similarly. In the following, 
we give formulas for each type of the source terms. 

D.3.1. im-terms 

The source terms have the standard form (D·42) or (D·43). 
Using Eqs. (D·34), their integrals are evaluated as 

1 
Ft,l [(m] =- (f _ m)(f + m + 1) (m, (m /= f, - f- 1) (D·49) 

Fe,e [z(t] = n;t.- ~ { Re,o(o + f
1 
(~ + m ~ 1) Re,m(m}, (D·50) 

Ft,e [zit-1] = -D£n- { -Rt,ono + f
1 
4m~m- 1 Re,mim-1}, (D·51) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.128.1/1929942 by M

PI G
ravitational Physics user on 25 April 2025



Chapter 1 Black Hole Perturbation 89 

_ nj { . ~ 4m } Fe,t [zne-d -De - Re,oJo + .f:;:.
1 4

m 2 _ 
1 

Re,mnm-1 , (D·52) 

., { e 4m } Ft,t [z(£+1] = -D~ - Rt,-1(o + f
1 4

m 2 _ 
1 

Rt,m-1(m , (D·53) 

where ( represents j or n. Note also that rather general formulas, 

1 
Fk,d(m] = (£ _ m)(£ + m + 1) {Rk,f.(m+1 + Rk,f.-1(m} 

__ 1_Rk,t, 
£ _ m z ..,m, (m =f.£, - £- 1) (D·54) 

1 { £-
1 

( 1 1 ) 1 } Fk,t[z(p_] = D~C- 2 Rk,o(o + f-
1 

m + m + 1 Rk,m(m + p_Rk,t(e , 

(D·55) 

hold. 

D.3.2. (lnz)jm-terms 

The source terms are in the form (D·40) or (D·42) with Jm replaced by (lnz)jm. 
First we give the general formula for Fe,t [ (ln z )Jml· Using the first formula in 

Eqs. (D·34), we obtain 

. 1 ( 1 ) . 
Fe,e[(lnz)Jm] = (£-m)(£+m+ 1) -lnz+ (£+m+ 1) Jm 

1 [ 2z ] + £ _ m Fe,e -£ + m + 1 Jm+1 + Jm (D·56) 

for m =f.£, - £- 1. 
Next we consider the remaining term of the odd parity. With the aid of the 

second formula in Eqs. (D·34), after the integration by part, we have 

Fe,e[z(lnz)je] = Fe,o[z(lnz)jo]- l~z· { Re,oJo + f
1 

( ~ + m ~ 1) Re,mJm} 

+ (t
1 
~) D~j - ~ { 2 (t

1 
~) - 1} Re,oJo 

1 e-
1 

( 1 1 ) { ( e 1) 1 } 
-4f1 m + m+ l 2 k=~+1 k + m(m+ 1) Re,mJm· 

To evaluate the first term, we use the following trick. Note that 

BjnJ = foz dz zjo (noBjJ- JoBnJ) 

= rz dz zno (JoBjJ + noBnJ) - rz dz BnJ lo lo z 

(D·57) 
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r dB J 
= BnjJ- (lnz)BnJ + Jo dz(lnz) d; , (D·58) 

where we have assumed J do not end with n, i.e., J -::1 n, jn, · · ·. In the same way, 

Thus we obtain 

t dB·J 
BjjJ = -BnnJ + (lnz)BjJ- Jo dz(lnz) d: . 

fz dBnJ 
Jo dz(lnz)~ = BjnJ- BnjJ + (lnz)BnJ, 

{z dB·J 
Jo dz(lnz) d: == -BjjJ- BnnJ + (lnz)BjJ. 

Using Eqs. (D·60), we find 

Fe,o[z(lnz)jo] = --n;ii- nti + (lnz)D;i. 

As for the remaining terms of the even parity, we have 

Fe,e[z(lnz)je+l] = -D;nj + D~jj --lnzD~j 
e 4m 

-Re,-1{lnz)jo -lnz L 
4

m2 _ 
1 

Re,m-1Jm 

(D·59) 

(D·60) 

(D·61) 

m=1 
e 

. "----.. 4m . 1 . 
+Fe,-dzJo] + L.... 4m2 _ 1 Fe,m-1[ZJm] + 2R + 1 Fe,e[ZJH1], 

m=1 
... . .. 1 

Fe,e[z(lnz)je-1] = D~JJ- n;nJ- (lnz)Dp + 2(1nz)2je 

£-1 4m 
- Re -1 (ln z )jo + ln z "'""' 

4 2 Re mJm-1 
' L.... m -1 ' 

m=l 

£- 1 4 1 
-Fe,o[zno] + L 4

m 2m_ 1 F
e,m[Zjm-1] + 2£ + 1 Fe,f[zje-1]· 

mool 

D.3.3. (ln z)2jm-terms 

The source terms we have to evaluate are z{lnz) 2je and {lnz)2je±l· 

Using the first formula in Eqs. (D·34), we obtain 

(D·62) 

2. 1 { [ 2 2lnz 2 ] . 
Fe,e[(lnz) Jm] = (£- m)(£ + m + 1) -(lnz) + £ + m + 1 - (£ + m + 1)2 Jm 

[ 
. . 2ZJm+1 ] } 

+2Fe,e (ln z) { -2ZJm+1 + (£ + m + 1)Jm) + £ + m + 1 

(D·63) 

for m -::1 £, -£ - 1. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.128.1/1929942 by M

PI G
ravitational Physics user on 25 April 2025



Chapter 1 Black Hole Perturbation 91 

Als'o, with the aid of the second formula in Eqs. (0·34), we find 

[ ( ) 2 .] [ ( )2. ] (ln z)
2 

{ . eL-
1 

( 1 1 ) . } Fee z lnz Je =Feo z lnz Jo --- ReoJo + - + -- RemJm 
' ' 2 ' m m+ 1 ' 

m=1 

£-
1 

( 1 1 ) +Feo [z(lnz)jo] +"' - + -- Fern [z(lnz)jm] 
' L. m m+ 1 ' 

m=1 

1 
+gFc,e [z(lnz)je]. (0·64) 

The evaluation of the first term in the above equation is done as follows. Using 
a technique similar to the one used to derive Eqs. (D·60), we obtain 

rz 2 dBnJ Jo dz (lnz) ~ = 2 [--BnnnJ- BjjnJ + BnjjJ- BjnjJ] 

+2 (lnz) [BjnJ- BnjJ] + (lnz) 2 BnJ, 

r 2 dBjJ Jo dz (lnz) ~ = 2 [--BjnnJ + BnjnJ + BjjjJ + BnnjJ] 

-2 (ln z) [BnnJ + BjjJ] + (ln z)2 BjJ. 

Using these, we can rewrite the first term as 

Fe,o[z(lnz) 2jo] = 2 ( -D~nnj + D~jnj + D~jjj + Dtjj) 

-2(lnz) (Dtj + D~jj) + (lnz) 2D~j· 

We need one more formula to evaluate (0·64): 

1 
Fc,m[z(lnz)jm] =Fe,o[z(lnz)jo]-

4
m 2 Re,mJm 

(D·65) 

(0·66) 

- 1~z { Rc,o]o +}; (t + k: 1) Rc,klk + ~ Re,mJm} 

+ (£: _1_) D~j- _1_ {2 (£: _1_) - 1} Rc,o)o 
k=1 k 4 k=1 k 

1 m-
1 

( 1 1 ) { ( m 1) 1 } . -4 L k +A:+ 1 2 L p + k(k + 1) Re,kJk· 
k=1 p=k+l 

(0·67) 

0.3.4. D!:J -terms 

The source terms are the even and odd standard forms of D::,/,, and zD~nj and 
D nnj 

HI· 
Necessary formulas are 

e 
D [ DnJ l DjnJ R nnJ '"' 4m R DnJ re,e z C+l =- e - £,-1 0 - £.... 4m2- 1 e,m-1 m 

m=l 
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1 [ { ~ 4m . Re+I,O . }] +He z ~14m2 _ 1 Rm,oJm-1 + 2.e + 1 Je , 

£-1 4 
F [ DnJ ] DnjJ R DjJ "' m R nnJ DnJ 

£,£ z £-1 = e - e,o 0 - £..... 4m2- 1 £,m m-1 + e 
m=1 

+H/ [z {J;2 4~2m_ 1 Rm-l,O)m + ~--1 '~ Je}] ' 

Fe,e[D~] =- (.e- m)(£1+ m + 1) D~ 
HJ [ z ( v · v · ) Rm,o ··] - e (.e _ m)(£ + m + 1) -'tm+1,0J£ + -'tm,OJ£-1 - .e _ mJe , 

Fu[zD£1
] = D£nJ + -

2
1 

{RoeD01 + ~ (__!_ + -
1
-) RmkD~} 

' ' £..... m m+ 1 ' 
m=1 

+H/ [~ (J;
1 
(~ +~~~ 1 )Rm,oJm+~Re,oJe)], 

Fe,e[Dfid = 2(£ ~ 1) D£i1 + H/ [ -·2(.e: 1) (Ro,e+2Je + Ro,e+de-1) + Ro,e+de], 

Fe,e[D£!1] = - ;fD£!1 + H/ [;.e (Ro,de + Ro,e-de-1)- Ro,e-de] . (D·68) 

In order to evaluate the terms involving the integral operator Hf, we recast its 
argument into the form, 

z(cL2J-2 + CL1J-1 + aoJo + ai]1) + L f3nJn· 
nf0,-1 

Then all the necessary terms can be easily evaluated as 

(D·69) 

H j[. ]- 1 ( R . . R ) Re,m . 
e Jm - m(m + 1) - e,m+LJO + e,mno + mz Jo, (m i= 0, -1) 

and 

Hi[zji] =-Din+ Re,ono- Rc,do, 

Hi[zjo] = n;j, 

Hi[zj_i] = -D~i, 

Hi[zJ-2] =-Dr- JoRe,-2 + J-1Re,-1, 

Hnj [ . ] _ Dnjj _ Rc,o Dnj 
e ZJ1 - e o ' z 

Hnj[ ·] _ Dnnj c ZJo - e ' 
Hnj[ . ] - Djnj e ZJ-1 -- e ' 
H;j [ z j _ 2] = (unnecessary for our present calculation), 

(D·70) 
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Chapter 1 Black Hole Perturbation 

Hnj[. ] 1 (R Dnj R nj) k Jm = m(m + 1) k,m 1 + k,m-lDo 

1 R Dni 1 Hi [ . ] 
- mz k,m 0 + m(m + 1) k ZJm. (D·71) 

The last term HMzjm] can be reduced recursively to those given in Eq. (D·70). 

D.3.5. z(lnz)D~-terms 

What we need to evaluate are Fc,t[z(lnz)D;i1J. 
First we consider Fe,e [ z(ln z)D;~ 1 ]. It is evaluated as 

Fe,e[ z(ln z )D;_t1] 

[ nj] { nj ~ 4m n ·} = Fe,-1 z(lnz)D0 - (lnz) Re,-1D0 +!;;:
14

m 2 _ 
1 

Re,m-1Dnf 

£ 

+Fe,-1 [zD~i] + L 4: 2m_ 1 Fe,m-1 [zD~] + 2£ ~ 1 Fc,c [zD;~ 1 ] 
m=1 

+Hf [z(lnz) ttl 4m~~ lRm,OJm-1 + 2P. ~ 1 R£+1,0J£}] , (D·72) 

where the first term is further expressed in terms of Df as 

Fc,-1 [z(lnz)D~j] = -D;nnj + D~jnj- (lnz)~nj. 

The other unknown terms in Eq. (D·73) are also evaluated as 

(D·73) 

[ nj] _ jnj {R l)nj ~1 

4k R Dnj Re,m-1 Dnj} Ft,m-1 zDm --De - £,-1 o + ~ 4k2 _ 1 f.,k-1 k + 2m_ 1 m 

+Hf [z {~
1 

4k:~ 1 Rk,OJk-1 + 2~~0 
1 Jm-1}] , (m ~ 1) 

Fc,-1 [zD~j] = -D~nj, 

Hf [z(lnz)jo] = Fe,o[z(lnz)jo] = --D;jj- Dtj + (lnz)D;j, 

Hf [(lnz)jm] = (lnz) { m(~ + 1) ( -Re,m+IJO + Re,mno) + ~; )o} 

j [ 2z . ] 2m + 1 ( . ) 
+He m(m + 1)Jm+l + m2 (m + 1)2 Re,m+l]O- Re,mno 

- Re,m jo. (D·74) 
m 2 z 

In the same way, we can evaluate Fe,e [z(lnz)D;~ 1 ] as 

Fe,e[z(lnz)D;!.1] 

93 
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=Ft,o [z(lnz)Df/] - (lnz) { Re,?Dr:_j1 + ~1 4~2m_ 1 
Rt,mD~_ 1 } 

[ nj J ~ 4m [ nj J 1 [ nj J +Ft,o zD_1 + L.t 
4
m 2 _ 

1 
Fe,m zDm_ 1 + 

2
£ _ 

1 
Ft,P zDp_ 1 

m=1 

+Hi [z(lnz) (jo + ~2 4m~m_ 1 Rm-1,ojm + 2£ ~ 1 Rt-1,ojp)] ,(D·75) 

where the unknown terms on the right-hand side are evaluated as 

Ft,o [z(lnz)Dbj] = -D;jjj- Dtjj + (lnz)D;jj, 

~ [ Dnj ] Dnjj { R Dnj _j_ ~
1 

4k R Dnj Rt,m Dnj } 
P,m Z m-1 = p - P,O -1 1 L.t 4k2 _ 1 P,k k-1 + 2m_ 1 m-1 

k=1 

+Hi [ z (jo + E1 

4k;~ 1 Rk-1,0jk + ~~·~ jm)] , (m 2: 1) 

Ft,o [ zD~1] = .o;jj · (D·76) 

D.4. The asymptotic behavior 

Using the results of the preceding subsection, we obtain the analytic expression 

for d3
). The real part of it is given in Eq. (4·14) for f = 2 and in Eq. (4·15) for 

f = 3, while the imaginary part is determined by Eq. (D·9). To obtain A~nc to O(t:3), 

we then see that all what we need to evaluate are the asymptotic behaviors of .v;j, 

D;nj, .v;nnj and Ft,o[z(ln z)jo]. Although the last of these can be expressed in terms 
of Df as given by Eq. (D·61), we find it is easier to evaluate the integral directly as 
it is. 

Here in order to evaluate the asymptotic behavior of these functions, we first 
give necessary basic formulas. Then we evaluate the asymptotic behavior of all the 
necessary BJ and Ft,o[z(lnz)jo]. In this subsection x = 2z. 

D.4.1. Basic asymptotic formulas 

First, we give the most basic formulas: 

S -lox d sin y 7r - y-- -7-, 
0 y 2 

lo
x cosy- 1 

C = dy -+ - ln x - 'Y, 
0 y 

lo
x siny 7r 
dy--lny-+ --"(, 

0 y 2 

lo
x COS y - 1 1 2 1r

2 1 2 

dy lny --t --(lnx) -- + -, 
0 y 2 24 2 

lo
x sin y 2 7r 2 7r3 
dy-(lny) -+ -"( + -, 

0 y 2 24 
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Chapter 1 Black Hole Perturbation 95 

rx cos y - 1 2 1 3 13 171"2 2 
lo dy y (lny) -+ - 3(1nx) - 3 + 12 - 3((3), (D·77) 

where ((z) is the Riemann zeta function and ((3) = 1.202 · · ·. 
There appear several expressions to be estimated that diverge if we evaluate 

them term by term. But they give finite results when combined together. They are 

lo
x dy 71"2 
-- {ln(y + 1) -lny}-+ --, 

0 y + 1 6 

rx __!!I!_ {(ln(y + 1))2
- (lny) 2}-+ 0, 

lo y + 1 

lo
x dy 71"2 
-- {ln(y + 2) -ln(y + 1)}-+ -, 

0 y + 1 12 

lox dy { } 1r
2 

1 -- (ln(y + 2) )2 
- (ln(y + 1) )2 -+ 2¢(3, 1/2) + -ln 2- - (ln 2) 3

, 
0 y+1 6 3 

lo
x dy 
--ln(y + 1) {ln(y + 2) -ln(y + 1)} 

0 y+ 2 
71" 2 1 3 

-+ -¢(3, 1/2)-
12

ln2 + 6(1n2)3 + 2((3), (D·78) 

where ¢(a, b) represents the modified zeta function. We mention that the ¢(3, 1/2) 
terms are found to cancel out in the final expression for Ate. 

There are several formulas which require multiple integrations. They are evalu­
ated as 

lox dy [1oo du ] 71"2 - -(cos(u- y)- cosu) -+ -, 
0 y y u 6 

(D·79) 

lox dy [100 
du ] 71"21 -lny -(cos(u- y)- cosu) -+ --, 

0 y y u 6 
(D·80) 

rx dy [100 

du ] lo y lny Y -;-(cos(u + y)- cosu) 

71"2 1 71"21 
-+ ¢(3, 1/2) + 

12
ln2- 6(1n2) 3 + 12, (D·81) 

rx dy [100 du ] 71"3 Jo --ylny Y -;-(sin(u-y)-sinu)-+ 12 , (D·82) 

rx dy [100 
du . ] 71"3 lo y ln y Y -;-(sin(u + y)- sin u) -+- 24 , (D·83) 

rx dy [100 du ] Jo y Y -;-(sin(u- y)- sinu) -+ 0. (D·84) 

These are obtained by changing the variable from u to u' = (ujy)- 1, performing 
the dy-integration first and using the formulas (D·78). 
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96 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

Next we give several formulas that containS and C. Let us recall the definition 
of Sand C: 

lo
x dy . 1oo dy . 7r S = -smy =- -smy+ -, 

0 Y X Y 2 
(D·85) 

lo
x dy 1oo dy 

C = - (cosy - 1) = - - cosy - ln x - 1. 
0 Y X Y 

(D·86) 

By using the integration by part, we have 

fox dy lny ( si~ y S + cos: - 1 C) 
= ~ rx dy sin y ln y - r dy cosy - 1 (1 ln y + (ln y )2) 

2 lo y lo y 

rx lny [ {'XJ du ] - Jo dyy }y ~(cos(u- y)- cosu) , (D·87) 

whose asymptotic behavior is determined by Eqs. (D·77) and {D·80). Similarly we 
have 

fox dy lny ci~ y s - cos:- 1 c) 
7r lox sin y lox cos y - 1 ( 2) =- dy-lny + dy llny + (lny) 
2 0 y 0 y 

rx ln y [ {'XJ du ] 
+ Jo dyy }y ~(cos(u + y)- cos u) , (D·88) 

and 

fox dy lny ( si~ y C ± cos : - 1 S) 

lo
x sin y 7r lox cos y - 1 

=- dy-lny(lny + 1) ±- dy lny 
0 y 2 0 y 

rx ln y [ roo du ] 
=f Jo dyy }y ~(sin(u±y)-sinu) , {D·89) 

whose asymptotic behaviors are determined by Eqs. (D·77), (D·81), {D·82) 
(D·83). Then we obtain 

and 

rx d 7r2 1 4 
Jo : ( 8 2 

+ C
2

) -+4(lnx + 1) + 3(lnx + 1)3
- 3((3), (D·90) 

lo
x dy ( ) 7r2 1 7r21 4 

- S 2
- C 2 -+-lnx- -{lnx + 1)3 +- + -({3) 

0 y 4 3 4 3 

( 

7r2 1 ) -2 ¢(3, 1/2) + 
12 

ln 2 - 6 (In 2)3 (D·91) 

These two formulas are obtained by reducing them to the forms to which Eqs. {D·87) 
and (D·88) can be applied, respectively. 
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Chapter 1 Black Hole Perturbation 97 

Finally, we present two complicated formulas. The first is 

h :=fox; (-2sinySC+(cosy-1)(S2 -C2
)) 

--+2 (¢(3,1/2) + i~ln2- ~(ln2) 3) 
7 1 1 

-3((3)- 41r2(lnx + 1) + 
3

(lnx + 1)3
, (D·92) 

where we have used the equalities, 

roo sin(t + 2)x 7r 7r 
SC = lo t + 

2 
ln(t + 1)dt + 2c- (lnx + 1)S + 2(lnx + 1), (D·93) 

2 2 roo cos(t + 2)x 71"2 
S -C =-2}

0 
t+

2 
ln(t+1)dt+7rS- 4 +2(lnx+I)C+(lnx+l)2

, 

(D·94) 
and applied the formulas (D·77), (D·87) and the last one of Eqs. (D·78). The second 
is 

(D·95) 

which is obtained in the same way by applying the formulas (D·77), (D·84) and 
(D·89). 

D.4.2. The asymptotic behavior of B1 

As we have mentioned, what we have to evaluate are the asymptotic behaviors 
of D~j' D~nj, D~nnj and Ft',o[z(lnz)jo]. Hence, recalling the definition of Df, we 
need to evaluate Bnj, Bjj, Bnnj, Bjnj, Bnnnj and Bjnnj in addition to Ft',o[z(lnz)jo]. 

The formulas for BJ with two indices are given by the first two equations of 
(D·77): 

1 7r 1 1 
Bnj = -2S--+ -4, Bjj = -2C--+ 2(lnx + 1). (D·96) 

As for F£,o[z(lnz)jo], its asymptotic behavior is directly evaluated as 

Fe,o[z(lnz)jo] = ne foz dzz(lnz)jJ- it foz dzz(lnz)jono 

1 ( 2 71"2 2) 7r . --+ 4 (lnz) + 
12 

-(I+ ln2) ne- 4(1 + ln2)J£. 

(D·97) 

The formulas for BJ with three indices are given by 

B· . _ ~ rx dy (-si_n_y C __ co_s_.:::y_-_1 s) 
JnJ - 4 Jo y Y 

7r 
--+ S (ln x + 1), (D·98) 
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98 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

where we have used Eqs. (0·77) and (0·84), and 

Bnnj = - ~ fx dy (cos y + 1 C + sin y s) 
4 lo y y 

--t -t (1527r2- (lnx+r)2)' 

where we have used Eqs. (0·77). 
For BJ with four indices, we have 

1 rx sin y 1 rx cos y - 1 
Bjnnj = -2 Jo dy-Y-Bjnj + 2 Jo dy Y Bnnj 

(0·99) 

= -~ [SBini- CBnni] + t fox dy ei:y C- cos~- 1 
S) S 

+ ~ r dy (sin y s + cosy + 1 c) c 
8}o y y 

1 1 1loX C 2 
= -- [SB· ·- CB ·]- -/1 +- dy-

2 JnJ nnJ 8 4 0 Y 

1 [5 1 ] --t 
24 

3n2(lnx + 1)-
2

(lnx + 1)3
- ((3) , (0·100) 

where we have used Eqs. (0·90), (0·91) and (0·92), and 

1 rx sin y 1 rx cos y + 1 
Bnnnj = 2 Jo dy-Y-Bnnj + 2 Jo dy Y Bjnj 

= fox dyBjnj + 1 [CBjnj + SBnnj] 

- ~ rx dy (sin y c - cosy - 1 s) c 
8 lo y y 

+ ~ rx dy (sin y s + cos y + 1 c) s 
8k y y 

= lnxBn·-~ rx dylny(sinyC- cosy- 1s) 
1 1 4 lo y y 

1 1 1 rx sc 
+2 [CBjnj + SBnnj] + 3h + 4 Jo dyy 

--t ~ [ -1n2 
+ (lnx + 1)2

] , (0·101) 

where we have used Eqs. (0·89) and (0·95). We should note that Eq. (0·89) has 
been also used in evaluating the term (1/4) fcf dy(SC/y). 

With these results, the asymptotic incoming amplitudes Ate to the required 
order are obtained, which are given in Eqs. ( 4·17) in the text. 

Appendix E 
-- 5.5PN Formulas for R~n and (dE/dt)Rm in the Schwarzschild Case--

In this appendix, we show the post-Newtonian expansion of Rin which are 
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Chapter 1 Black Hole Perturbation 99 

necessary to evaluate the 5.5PN gravitational wave luminosity in the case of a 
Schwarzschild black hole. Then we show each (£, m)-mode contribution to the total 
luminosity from a particle in circular orbit. 

For convenience, we give the formulas for cowR~n, where we recover the index .e 
on Rin and co=(£- 1)£(£ + 1)(£ + 2) -- 6it: 

. (4z4 8i 22z6 2i 23z8 2i 13z10 

cowR2n = 5 + 15 z
5

- 105 - 35 z
7 

+ 1890 + 945 zg- 41580 

z 11 z z 13 z z 15 . 59 12 . 83 14 . ) 

-24948 z + 12972960 + 2162160 z - 1945944000 - 277992000 z 

(
-8z3 3i 4 8z5 13i 6 109z7 341i 8 

+ -5- - 5 z - 63 - 90 z + 1890 + 22680 z 

9403 z 9 293 i 10 38963 z11 75529 i 12) 

-3118500- 594000 z + 567567000 + 9081072000 z E 

(
4 z2 123317 z4 231479 i 5 889954 z6 454499 i 7 

+ 5 + 36750 + 110250 z - 1157625 - 2315250 z 

215321483 z8 35106811 i 9 214 z4 ln z 428 i 5 1 + 5501034000 + 5501034000 z - 525 - 1575 z n z 

1177 z6 1nz ..L 107 i z7 1n z _ 2461 z
8 

lnz _ 107 i zg 1n z) E2 

+ 11025 I 3675 396900 99225 

( 
-66823 z3 99851 i 4 504569 z5 2488639 i 6 428 z3 ln z 

+ 12250 - 55125 z - 694575 - 3969000 z + 525 

107 i 4 1 
428 z5 ln z 1391 i 6 1 

) 3 
+ 350 z n z + 6615 + 18900 z n z E 

(
471487 z2 

_ 263i z3 _ 214z2 1nz) E4 

+ 220500 1260 525 ' 
(E·1) 

in (4z5 2i 6 2z7 i 8 29z9 i 10 47z11 

cowR3 = 21 + 21 z - 63 - 135 z + 20790 + 4620 z - 1621620 

i 12 23 z
13 

i 14) 

- 294840 z + 64864800 + 29937600 z 

(
-10z4 53i 5 z6 i 7 751z8 1483i 9 

+ 21 - 315 z + 210 -- 90 z + 155925 + 1247400 z 
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100 Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi and T. Tanaka 

23z10 367i ) 11 E 
-102960 - 10810800 z 

(
8z3 i 4 40337z5 79099i 6 12562147z7 4840537i 8 

+ 21 + 14 z + 46305 + 185220 z - 91683900 - 157172400 z 

26z5 lnz 13i 6 1 
13z7 lnz 13i 8 1 

) 2 
- 441 - 441 z n z + 1323 + 5670 z n z E 

( 
-2 z2 182981 z4 3753697 i 5 

+ ~- 92610 - 5556600 z 

+ + --z nz E 
65 z4 ln z 689 i 5 1 

) 3 

441 13230 ' 
(E·2) 

in (2z
6 

4i 7 13z
8 

8i 9 
cowR4 = 63 + 315 z - 3465 - 10395 z 

zu z13 71 z 10 i 37 z12 
i ) 

+ 540540 + 54054 -- 16216200 - 4054050 

(
-2z5 4i 6 142z7 31i 8 929z9 8i 10) 

+ ~ - 135 z + 51975 - 51975 z + 2702700 + 96525 z E 

( 
5 z4 97 i 5 958223891 z6 239560304 i 7 

+ 49 + 4410 z + 6051137400 + 3781960875 z 

1571 z6 In z 3142 i 7 1 ) 2 - - z nz E 
218295 1091475 

(
-20z

3 
i 4) 3 

+ 441 - 196 z E ' 
(E-3) 

in Z ~ 8 Z ~ 10 Z ~ 12 
(2 

7 2. 7 9 . 17 11 . ) 

cowR5 = 495 + 1485 z - 19305 - 15015 z + 1621620 + 737100 z 

(
-7 z6 67i 7 1831 z8 43i 9) 

+ 495 - 17325 z + 4054050 - 4054050 z E 

( 
28 z5 59 i 6) 2 

+ 1485 + 14850 z E ' 
(E·4) 

in ( 8z
8 

16i 9 4z
10 

2i u) 
cowR6 = 19305 + 135135 z - L'35135 - 405405 z 
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Chapter 1 Black Hole Perturbation 101 

(
-32z7 163i 8) 

+ 19305 - 405405 z f, 
(E·5) 

Rin 8z9 2i 10 

cow 7 = 225225 + 225225 z . (E·6) 

Next we show the contribution of each (£, m)-mode to the gravitational wave 
luminosity to 0( v11 ) in the case of a circular orbit around a Schwarzschild black 
hole. We set 

jdE) 1 (dE) \ dt = 2 dt L::>u,m ' 
N e,m 

(E·7) 

where (dEjdt)N is the Newtonian quadrupole luminosity, Eq. (4·19). In the present 
case we have Tfe,m = Tf£,-m· Hence we show only the modes m > 0. 

107 v2 
3 4 784 v4 428 1r v5 

"'2 '2 = 1 - 21 + 4 1rv + 1323 21 

6 (99210071 1712"( 167r2 3424ln2 1712lnv) 
+v 1091475 -~ + -3-- 105 - 105 

191367rv7 

+ 1323 

8 ( 27956920577 183184 'Y 1712 1r
2 366368 ln 2 183184 ln v) 

+v - 81265275 + 2205 - 63 + 2205 + 2205 

v9 ( 396840284 1r _ 6848 'Y 1r _ 13696 1r ln 2 _ 6848 1r ln v) 
+ 1091475 105 105 105 

10 ( 187037845924 8190208 'Y 76544 7r2 

+v 6257426175 - 138915 + 3969 

_ 16380416 ln 2 _ 8190208 ln v) 
138915 138915 

11 ( -111827682308 7r 732736 'Y 7r 
+v 81265275 + 2205 

14654 72 1r ln 2 732736 1r ln v) 
+ 2205 + 2205 ' 

(E·8) 

v2 17v4 1rv5 2215v6 177rv7 

"'2' 1 = 36 - 504 + 18 - 254016 - 252 

8 (15707221_107"( 1r
2 _107ln2 _107lnv) 

+v 26195400 945 + 27 945 945 

2215 1r v9 

127008 

10 ( 6435768121 1819"( _ 177r2 1819 ln2 1819lnv) 
+v -57210753600 + 13230 378 + 13230 + 13230 

11 ( 157072217r 214 "( 1r 214 1r ln 2 214 1r ln v) 
+v 13097700 - 945 - 945 - 945 ' 

(E·9) 
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1215 v2 1215 v4 3645 1r v 5 243729 v6 3645 1r v 7 

'T]3•3 = 896 - 112 . + 448 + 9856 56 

8 (25037019729 473851 3645 1r2 47385 ln 2 
+v 125565440 - 1568- + 224 - 1568 

_ 4 7385 ln 3 _ 4 7385 ln v) 
1568 1568 

731187 1r v9 

+ 4928 

10 ( 207 4855555161 4 7385 1 3645 1r2 4 7385 ln 2 
+v - 1381219840 + . 196 - 28 + 196 

4 7385 ln 3 4 7385 ln v) 
+ 196 + 196 

11 ( 75111059187 1r 142155/11" 142155 1r ln 2 
+v 62782720 - 784 - 784 

_14215511" ln3 _ 14215511" lnv) 
784 784 ' 

(E·lO) 

5v4 193v6 201rv7 86111v8 7727rv9 

'T]3•2 = 63 - 567 + 63 + 280665 - 567 

10 (960188809 10401 801r2 2080 ln2 1040 lnv) 
+v 178783605 - 1323 + 189 - 1323 - 1323 

344444 7r v 11 

+ 280665 (E·11) 

v2 v4 1r v 5 437 v6 1r v7 

'T]3 '1 = 8064 - 1512 + 4032 + 266112 - 756 

8 ( 1137077 13~t 1r2 13ln2 13lnv) 
+v - 50854003200 - 42336 + 6048 - 42336 - 42336 

437 1rV9 

+ 133056 

10 ( 38943317051 131 1r2 13ln2 13 lnv) 
+v -5034546316800 + 7938 - 1134 + 7938 + 7938 

11 ( -1137077 1r 13!11" 13 1r ln 2 13 1r ln v) 
+v 25427001600- 21168 - 21168 - 21168 ' (E·12) 

1280v4 151808v6 10240rrv7 560069632v8 12144647rv9 

'T]
4

'
4 = 567 - 6237 + 567 + 6243237 6237 

10 (36825600631808 257392641 8192011"2 25739264ln2 
+v 88497884475 - 392931 + 1701 - 130977 

25 739264 ln v) 448055 7056 1r v 11 

- 392931 + 6243237 ' 
(E-13) 
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Chapter 1 Black Hole Perturbation 103 

729 v6 28431 vB 2187 1r v9 620077923 v 10 85293 1r v11 

"74
'3 = 4480 - 24640 + 2240 + 246646400 - 12320 (E·14) 

5v4 437v6 201rv7 7199152vB 17487rv9 

"74
'
2 = 3969 - 43659 + 3969 + 218513295 - 43659 

10 ( 9729776708 25136 'Y 80 1r2 50272 ln 2 25136 ln v) 
+v 619485191325- 2750517 + 11907- 2750517 - 2750517 

28796608 1r v 11 

+ 218513295 ' (E-15) 

v 6 101vB 1rv9 7478267v10 1011rv11 

"74 '1 = 282240 - 4656960 + 141120 + 139848508800- 2328480' (E· 16) 

9765625 v6 2568359375 vB 48828125 1r v9 

"75'
5 = 2433024 - 47443968 + 1216512 

7060478515625 v 10 12841796875 1r v 11 

+ 25904406528 23721984 (E·17
) 

4096 vB 18231296 v 10 32768 1r v 11 

"75 '4 = 13365 - 6081075 + 13365 (E·18) 

2187 v6 150903 vB 65617r v9 600654447 v 10 452709 1r v 11 

"75'3 = 450560 - 2928640 + 225280 + 2665062400 - 1464320 ' (E·19
) 

4 vB 15644 v 10 16 1r v 11 

"75 '2 = 40095 - 18243225 + 40095 ' (E·20) 

v6 179 vB 1r v9 

"75
•
1 = 127733760 - 2490808320 + 63866880 

290803 v 10 179 1r v11 

+ 971415244800 - 1245404160' (E-
21

) 

26244 vB 2965572 v 10 314928 1r v11 

"76 '6 = 3575 - 25025 + 3575 (E-22) 

244140625 v 10 

"76'5 = 435891456 ' (E·23) 

131072 vB 4063232 v 10 1048576 1r v 11 

"76'4 = 9555975 - 22297275 + 9555975 (E·24) 

59049v10 

"76 '3 = 98658560' (E-25) 

4vB 4v10 161rv11 

"76 '2 = 5733585 - 495495 + 5733585' {E-
26

) 

"76'1 = 7192209024' 
96889010407 v 10 

"7?~= 7116595200 ' 
6103515625 v 10 

"77,5 = 181330845696 ' 
1594323 v10 

"77,3 = 205209804800' 

(E·27) 

(E·28) 

(E·29) 

(E·30) 
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177'1 = 5983917907968. (E·31) 

Appendix F 
-- 4PN Luminosity in Terms of the Orbital Frequency--

Here we present the(£, m)-mode contributions to the gravitational wave luminos­
ity for a circular orbit on the equatorial plane around a Kerr black hole. In stead of 
v = (M/ro) 112 , the formulas are expressed in terms of the parameter x = (MS?"') 113 , 

where !?"' is the orbital angular frequency, which is more relevant in the actual analy­
sis of observed gravitational wave signals. We express the partial mode contributions 
as 

jdE) _ 16 ( f-l )
2 

10 '"" \ dt = 5 M x L..1J£,m· 
e,m 

(F·1) 

Since 1J£,m = 1]£,-m, we show only the modes m > 0 below. 

107x
2 ( 8q) 3 (4784 2) 4 

1]2,2 = 1- 21 + 47T- J X + 1323 + 2q X 

(
-42811" 52q) 5 

+ 21 + 27 X 

( 
99210071 17121 16 7T2 32 7T q 1817 q2 

+ 1091475 - 105 + -3-- -3-- 567 

3424ln2 1712lnx) 6 (191367T 364856q 2 8q3
) 7 

- 105 - 105 X + 1323 + 11907 + 8 1rq - J X 

( 
27956920577 1831841 17127T2 2087Tq 

+ - 81265275 + 2205 - 63 + 27 

105022q2 
4 366368ln2 183184lnx) 8 

+ 9261 + q + 2205 + 2205 X ' 
(F·2) 

x2 q x3 ( 17 q2 ) 4 
172•1 = 36 - 12 + -504 + 16 X 

(
7T 215q) 5 

+ 18 + 9072 X 

( 
2215 7Tq 313q2

) 6 

+ - 254016 - 6 + 1512 X 

(
-177T 18127q 7Tq2 7q3

) 7 

+ ~ - 190512 + -8- - 24 X 

( 
15707221 1071 7T2 215 7T q 

+ 26195400 - 945 + 27 + 4536 

44299 q2 q4 107 ln 2 107 ln x) x8 
+ 95256 + 16 - 945 - 945 ' 

(F·3) 
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_ 1215 x 2 
_ 1215 x 4 (36457r _ 1215 q) 5 

T/3'3 - 896 112 + 448 224 X 

(
243729 3645q2

) 6 (-36457T 41229q) 7 
+ 9856 + 896 X + 56 + 1792 X 

( 
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Appendix G 
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where (dE/dt)N is the Newtonian quadrupole luminosity, Eq. (4·19), and Tf£,-m,-n 
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In this appendix, we show the asymptotic amplitudes Binc, Btrans and ctrans and 
the post-Newtonian expansion of Rup which are used in §12 to evaluate the black 
hole absorption rate to 0( v13) relative to the quadrupole energy flux at infinity in 
section. 
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+IBOi.p(0)(
3 ~: imq)~- 6Q,P(0l( 3 ~ :imq)mq- 60i) '}• (H·5) 

Btrans = (:) 
4 

eiqlnx ( 1 + ( _ ~~ mq + ~ ir.) €), (H·6) 

ctrans = W32iEe-~i(v-l)eiElnE ( 2 + ( -7r + 3~ mq _ ~ ir.) €), (H·7) 

Rup = -45 i_- 30 z- 1 + 15 
i + ~ iz2 

z2 2 8 

(c) f = 4 

+' ( (~ mq- 45i~+ go;(-~+ H )z-3 

+( 45i7r + 30 + 
1
: r.- 45"(-

1
8
5 

imq)z-2 

+( 30n- 45i + ~! mq + 30h- 5i~)z- 1) 
2 ( 135 75 . 2 +c 8 r. mq - 2 ~K. 

+135ir. (-~ + ~ r.) - 135 (-~ + ~ r.)mq + 15 im2q2 
2 2 4 2 2 8 

-45i( -H + H' +2 ( -l+K)H +H) )z-4 
(H·S) 

Binc= _!._ _1_e~ 1ri (v+3)ei<xe-idn < { 79380 ,.
2 

} 
wr.6E6 (3r.+imq)(4r.+imq) ' 

Appendix I 
--Energy Absorption by a Kerr Black Hole--

(H·9) 

(H·10) 

{H·ll) 

(H·12) 

Here we give the {£, m)-components of the energy absorption rate to O(v8 ) 

beyond the lowest order for the Kerr black hole, that is 0{ v13) relative to the 
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quadrupole luminosity at infinity. 
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1J,f4 = - 22568 vs q ( 9 + 7 q2) ( 3 q2 + 1) ( 15 q2 + 1) ' 

17.f2 = - 63~04 vs q ( 5 q2 - 9) ( 3 q2 - 4) ( 3 q2 + 1) . 

Appendix J 
-- (dE/dt)H in Terms of the Orbital Frequency--

119 

(1·5) 

(1·6) 

(1·7) 

In this appendix, we describe the absorption rate (dE/dt)H by a Kerr black hole 
in terms of x = (Mil'P) 113 . Using the relation, 

(J·1) 

we have 
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