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Effects of tidal resonances to the evolution of compact star binaries, such as binary neutron stars 
or neutron star-black hole binaries, are studied. We apply the Press-Teukolsky algorithm to a 
simple neutron star model whose companion moves with a circular orbit. To see effects of the tidal 
resonances, we compare the deposited energy in the star with the dissipated energy of a circular 
motion due to the emission of gravitational waves. It is found that under realistic situations, the 
g-mode resonance oscillations do not affect the evolution of binary systems so much, while the /-mode 
may induce a transition from a steady inspiral to an unstable plunge of compact star binaries. 

§ 1. Introduction 

Laser interferometric gravitational wave detectors, such as LIGO,ll will be in 
operation in this decade. These detectors have the ability to detect the signal of 
gravitational waves from a coalescing compact star binaries, whose frequency is 
10-1000 Hz, using a matched filter technique.2l Here to use the matched filter tech­
nique, we need an accurate theoretical template.3l In particular, if we try to know the 
various parameters of binaries, such as masses,4l spins,5l'6l orbital inclinations to the 
spin axis/l cosmological parameters,8l and so on, from a signal of gravitational waves, 
we must prepare the theoretical template whose accuracy is less than 0.01%.3

> 

Hence, we need to investigate the various effects in coalescing compact binaries to 
prepare an accurate theoretical template. In this paper, we pay attention to effects 
of tidal resonances of neutron stars. 

Tidal effects in coalescing binary neutron stars have been studied by several 
authors in detaii.9l In particular, to investigate the phase errors (Llcp) due to the 
tidally deposited energy, Kochanek performed the numerical calculation of evolution 
of binary neutron stars taking into account the effects of viscosity. He found that for 
the realistic values of viscosity, the tidal effects are small (Llcp::S27r) for PSR1913-1610l 
type binaries. However, because his neutron star models were very simple, they did 
not consider the effects of the tidal resonances of the g-modes. As for researches for 
the tidal resonances of the g-modes, recently, Kokkotas and Schafer11l calculated the 
evolutions of the coalescing binary neutron stars including the tidal resonance effects 
in the post-Newtonian equations of motion. They analyzed the phase errors due to 
the g-mode resonances at the final stage of coalescing binary neutron stars (;::;::100Hz). 
However their treatments are not appropriate because models of neutron stars they 
adopted were too crude; they assumed an adiabatic index of the neutron stars as 5/3, 
while polytropic indices(n) as 1 and 2. As discussed in § 3, in realistic neutron stars 
in coalescing compact binaries the adiabatic index does not have such a value, and 
difference between the adiabatic index and the polytropic constant (1 + 1/n) seems to 
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872 M. Shibata 

be very small. 
A star has three oscillation modes,/-, P- and g-modes/2

> but in two body encoun­
ters, it has been pointed out that the f- and P-modes are important only for the close 
encounter, and the g-modes become more important than the /-and P-modes for the 
wider encounter.13

> This means that the g-modes may affect the evolution of binary 
systems orbiting with the frequency ;;:;:; 10 Hz, which is a potentially important fre­
quency band for the gravitational wave detectors. The properties of the g-modes, 
such as the frequency and the oscillating energy, are considerably affected by the 
polytropic and adiabatic indices, so that crude treatments of these indices lead to an 
invalid estimate of the physical properties of the g-modes. Thus, we here consider 
effects of the tidal resonances, in particular, the g-mode oscillations under simple, but 
physically reasonable assumptions. We will clarify the conditions in which the 
g-mode resonances become important from an observational point of view. 

In § 2, we show the basic equations, which we use in the analysis, and consider 
physical and chemical states of neutron stars in coalescing binary systems. In § 3, 
using a simple neutron star model, we analyze the resonance modes and show the 
numerical results. In § 4, we discuss the implication of the numerical results to the 
evolution of compact star binaries. 

Throughout this paper, G and c denote the gravitational constant and the light 
velocity, respectively. 

§ 2. Formulation 

The basic equations to calculate the energy deposited in the oscillation of 
non-spinning Newtonian stars due to the two body encounter are described by Press 
and Teukolsky.14

> In their formalism, the parabolic encounter between two stars is 
considered. Now, we consider the final evolution of coalescing compact binaries 
whose orbital separation is less than ~ 1000 km. In such a binary, an orbit becomes 
circular because of the emission of gravitational waves. Therefore we conider the 
tidal effects of the star 1 of mass M1 and radius R1 by the companion star 2 of mass 
M2, which move around each other with a circular orbit. 

The tidal potential by the companion star 2 at a point (r, 8, q;) inside the star 1 
is written as follows: 

"" 
1 GM2r 1 * imSJt = ~2 m~t Wtm Rt+l Ytm(e, q;)e , (2 ·1) 

where 

4Jr ( Jr ) Wtm= 21 +1 Ytm 2' 0 , (2·2) 

and R, Ytm and Q are an orbital radius, the spherical harmonics and an angular 
velocity. 
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Effects of Tidal Resonances in Coalescing Compact Binary Systems 873 

The rate at which the energy is deposited in the star 1 is 

(2·3) 

where p is a density of the non-perturbed star and ~; is a Lagrangian displacement 
vector. Defining the Fourier transforms of U and ~; as 

(2·4) 

then the total energy deposited becomes 

(2·5) 

Here, l; can be expanded by the normal mode ~;n, and each normal mode can also be 
expanded by the spherical harmonics as 

(2·6) 

The Fourier transform of U is written as 

where we make use of the relation, 

_l_loo dtei(m.Q-w)t=lim 1 sin{(mQ-w)T/2}. 
2Jr -oo r-oo7r(mQ-cv) (2·8) 

If we use the above formula in calculating LJE, it diverges at cv=mQ, because Eq. (2·8) 
becomes o(cv-mQ) for T-HxJ. Since an orbital radius of binary becomes small 
radiating gravitational waves in reality, Tis finite. Defining LJT as a finite duration 
time in which a binary keeps an orbital radius (later we re-define it), {) becomes 

- _ oo 
1 GM2 r 1 * 1 · 

U-~2 m~z Wzm Rt+I Yzm(8, cp) 7r(mQ-cv) sm{(mQ-cv)LlT/2}. (2·9) 

Inserting {)into Eq. (2·5) and using the method of Press and Teukolsky (see Eqs. (9) 
~(18) of their paper)/4

> LJE becomes 

1 G2M2 ·2 
LJE~-~ 1 W: 12 2 Q2 Slll Xntm LJT2 

2 nlm lm R 2l+2 nl X~tm ' (2·10) 

where 

(2·11) 

and 
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Xnlm 
(mQ- Wnlm)LlT 

2 

M. Shibata 

We define the non-dimensional variables, 

- I -- /R (en en)- !12R 312(t::n t::n) p=p,po, r-r 1, c;;ll, c;;u -Po 1 c;;ll, c;;21 , 

(2·12) 

(2·13) 

where Po is a density at the center of the star 1. €;n is normalized for each mode as 

Using them, LJE is rewritten as 

LlE= Gpo GMJ
2 

( M2 )
2

( Rl )6 ~ I Wlm12( R! )
2
(l-

2
) Q;il sin

2
2Xnlm LJT2' 

2 R1 M1 R nlm R Xnlm (2·15) 

where 

(2 ·16) 

The above expression of LJE means that the oscillation energy is deposited only for 
lxnlmi:Sl. Since LJT')>Q-1 except for R~5M, where M=M1+M2, lxnlmi:S1 rrieans that 
Wnlm~mQ. Hence the oscillation energy is deposited only in the vicinity of a reso­
nant angular frequency, Wnlm ~ mQ. Taking into account this property, we define L1 T 
as the duration time in which the resonance occurs. LJT is determined by the time 
scale of the gravitational radiation reaction. Since we here pay attention to the low 
frequency modes, we use the quadrupole formula to estimate it. According to the 
quadrupole formula, the energy flux is written by21

> 

dE 
dt 

(2·17) 

where f.1. is the reduced mass, M1Mz/M. We should note that in this formula, the 
higher order terms of GM/Rc2 are neglected. Although this formula is not rigid, the 
perturbation studies16

> show that the relative errors of values by the quadrupole 
formula to the exact one are at most ~10% for R<10 GM/c2

• This means that the 
errors of estimations for the dissipated energy by gravitational radiation and LJT are 
at most ~ 10%. 

Since the total energy of the binary system is · 

E=- GMJ.i. 
2R ' 

the time in which the orbital radius evolves from R; to Rf is 

LJT 5c
5 

(R 4 R 4) 
256G3M 2 f.l. i - f 

5c
5 

(Q -8/3 Q -813) 

256 cs'3M2'3f.l. ; - f . 

If we write Q;,f=SJo±LlQ, where SJo=wnlm/m and LlQ<{:.SJo, then 

(2·18) 

(2·19) 
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Effects of Tidal Resonances in Coalescing Compact Binary Systems 875 

AT~ 5c5 n-st3LI.Q (2·20) 
.<:..! - 48 G5/3 M213 ,u .>«() SJo . 

Assuming that the resonance occurs for lxnzml:::;;xo, where Xo is defined by 

-100 

sin
2
x _ 7r Xo= dx--2---

2
, 

o X 

then the condition for LIT becomes 

I I LIT 1r 
m LI.Q-2-=2. 

Since the dominant modes of the oscillation are 1=2, m=±2 modes, 

7r 
LIT= 2LIQ. 

From Eqs. (2·20) and (2·23), 

= (k)1'2(J1£)3'4( Rc2 )112 _1 
LIT 96 GM G,u SJo · 

(2· 21) 

(2·22) 

(2·23) 

(2·24) 

In this case, the total energy dissipated by gravitational radiation and the total 
deposited energy by the tidal oscillation, respectively, become 

=( 327r )1'2(...!:!:_)1'2( GM )5'4 GM,u 
LIEGw 15 M Rc2 R (2·25) 

and 

_ 57ra ( M2 )(..Ji.)1'2( R1c2 )5'2 
GM,u (.&)2U-2l 2 -2 

LIEos- 192 ,U R
1 

GM R ~ R I Wzml Qnz, (2·26) 

where a=-poR13 /M1. Hereafter, we only consider the l=2 mode because higher 
multipole modes, whose contributions are proportional to higher powers of (RdR?, do 
not contribute for the low frequency modes which we mainly consider in this paper. 
Then LIEos becomes 

LIEos= 
5~a ( ~2 )(: t 2

( lf;J: r2 c;.u ~I Wz2I2 Q~2. (2·27) 

Here we use the relation, I Wz2l=l Wz-2l and I Wz1l=l Wz-1I=O. We can see the impor­
tance of the tidal resonant effects by comparing LIEos and LIEGw. LIEGw depends only 
on their masses and orbital separation, while LIEos strongly depends on the structure 
of neutron stars because it depends on Wnzm and Qnz, which depend on the oscillation 
modes of the neutron stars. To obtain the oscillation modes, several numerical 
calculations have been performed for both the simple polytropic star and the realistic 
star, and numerical results of Wnzm and Qnz have been published by several 
authors.14

l'
12

l'
13

l The general features of their results are as follows: 1) As for the 
frequency, the /-mode has the angular frequency comparable to the Kepler angular 
velocity at the stellar surface ~ J GM1/R1

3
, while the P-modes have the higher fre­

quency than that of the /-mode, and the g-modes have the lower frequency than that 
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876 M. Shibata 

of the /-mode. 2) As for the overlap integral IQnzl, the /-mode has the maximum 
value ~0.1-1, and those of the P-modes and the g-modes are less than that of the 
/-mode and getting smaller as the number of nodes increases. Nevertheless, the PI­
and g1-modes have the amplitude IQnd ~0.1. 

From these properties, it is expected that 1) the P-modes do not contribute to the 
resonant oscillation so much, 2) the /-mode may induce the resonance at contact of a 
binary and affect the motion at the moment of the plunging and/ or merging of 
binaries, and 3) the g-modes may contribute to the orbital evolution of binaries, with 
the orbital frequency <:10Hz. 

In particular, the g-modes may become important from an observational point of 
view because a signal of gravitational waves from an inspiral of a binary is ac­
cumulated in the low frequency band, 10-100 Hz. If, in realistic neutron stars, the 
g-modes have the frequency <:10Hz and the overlap integral <:0.1, a serious problem 
occurs because the energy deposited into the oscillation affects the dissipation of the 
orbital rotation energy. This means that we are not allowed to treat the binary stars 
as point particles as usually done, 15>'16>.6>·7> and must take into account the structure of 
neutron stars to prepare the theoretical template of gravitational waves. Thus in the 
next section, we estimate Wnzm and I Qnzl of the g-modes. 

§ 3. Numerical calculations of the f- and g-modes 

3.1. Basic equation of stellar pulsation 

We consider the adiabatic stellar pulsation of a spherical symmetric neutron star. 
This treatment is consistent because the time scale of dissipation by the viscosity is 
much longer than the orbital period in the case of the compact binary.9

> The basic 
equations are the perturbed Euler equation, 

~t~i =-vi( 
8
: +a¢ )+Ao;r n: '!Jrke, (3·1) 

and the perturbed Poisson equation, 

(3·2) 

where oQ denotes the Eulerian perturbation of a quantity Q. The symbol o;r denotes 
Kronecker's delta, ¢ is the gravitational potential and 

A=i7rP _ i7rP 
P nP · (3·3) 

where n is an adiabatic index. A is usually related to the g-modes and in the case 
A< 0, the stable g-modes exist.12

> 

Performing the Fourier transform with respect to t and the spherical harmonics 
expansion, Eqs. (3·1) and (3·2) form fourth order ordinary differential equations. 
These equations are solved under two boundary conditions at the origin and other two 
boundary conditions at the stellar surface.12l Detailed equations and boundary 
conditions are written in section 17 of Ref. 12), so we do not describe them here, but 
simply describe the numerical strategy. We use equations of the first form in Ref. 12), 
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Effects of Tidal Resonances in Coalescing Compact Binary Systems 877 

and the variables are u=~1r2, y=!JP/p and 8¢. Equations for these variables form 
an eigenvalue equation for wand four boundary conditions are satisfied only when w 
is an eigen angular frequency of the star. Thus we adopt the shooting method as 
follows: 1) We expect an eigen angular frequency, for the /-mode, 

and for the g1-mode, 

w~J-AGMdR/·. 

(3·4) 

(3·5) 

2) Solve the equations outward from the center and match the solutions at the outer 
boundary. This procedure is continued until the outer boundary conditions are 
satisfied with sufficient accuracy. 

3.2. Star models and numerical results 

We consider the/- and g-mode oscillations in a neutron star model. For every 
star, the /-mode always exists, but the g-modes do not always exist: If the star is zero 
temperature and chemically homogeneous, the frequencies of the g-modes become 
zero because A=O in Eq. (3·3).12> However a real neutron star has a finite tempera­
ture and chemical inhomogeneities. Such a situation may induce the g-mode oscilla­
tions. Thus let us consider physical and chemical states of neutron stars in coa­
lescing compact binary systems. 

We know three coalescing binary neutron star systems, PSR1913 + 16/0> PSR2127 
+ 11C17> and PSR1534 + 12/8> which will merge within the Hubble time. The total 
lifetimes from their birth to merging are 3 X 108

, 3 X 109 and 2 x 108 yr, respectively.19> 
According to the cooling property of such old neutron stars,20>'21> the temperature is 
less than 104K. 

Frequencies of neutron stars with a finite temperature are investigated by 
McDermott et al.22> According to their studies of the pulsation of relativistic neutron 
stars, the frequencies of the g-mode oscillations are ::S20Hz for the temperature r~ 108 

K, ::S3 Hz for r~ 107 K, and the frequencies become small as the temperature 
decreases. This suggests that the g-mode frequencies of the neutron stars of tempera­
ture r< 104 K is much less than 10Hz. In fact, the thermal pressure of r~ 104 K is 
only 

(3·6) 

Where Cs is a SOUnd velocity, r:xp<Ft-1), and Jl ~ 1.5-2.5, while the degenerate preSSUre 
isz1> 

Po~ 1035( 1015 :em 3 r·dynes cm-2
• (3·7) 

Since Po is much larger than Pr even for p~ 1010 g cm-3, A(~ Pr/Poll) is very small. 
The frequencies of the g-modes are proportional to the square root of A(Eq. (3·5)), so 
that in old neutron stars, the frequencies of this type of the g-modes are much smaller 
than 10 Hz, and we do not have to take into account non-zero temperature as an origin 
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878 M. Shibata 

of any g-modes with the frequency 210Hz. 
The second possibility is the chemical inhomogeneity. In real neutron stars, the 

chemical composition is expected to vary significantly in the surface region where the 
density is below the nuclear density =::: 2.8 X 1014 g cm-3

•
2

1) In particular, below the 
neutron drip density =:::4.3 X 1011 g cm-3

,
23>'21> there are various layers at which phase 

transitions take place. At these layers, the density discontinuity as well as the 
chemical one exists. If such a discontinuity exists, another type of the g-modes due 
to the density discontinuity appears.24>'25> According to the previous authors,25> such 
modes have the frequency, 10-100 Hz. In fact, a frequency of the discontinuity 
mode25

> is approximately written as 

I ~-1- { l (l + 1) Llp R1- ro Gil11 }1'2 ~ 10-100 Hz , 
27r Pd R1 R1 

(3·8) 

where ro and Pd are the radius at the discontinuity and the density at the outer side 
of the discontinuity, respectively. This means that this type of the g-modes may 
affect the evolution of coalescing compact binaries. Thus let us analyze the disconti­
nuity mode. 

As a non-perturbed neutron star model, we adopt a simple polytropic star whose 
equation of state is 

(3·9) 

To include the chemical inhomogeneity phenomenologically, we regard K as the 
function of the radius, such as 

LJK [ ( r- ro )] K=Ko+-2- 1+tanh --;zry , 

where we put K = 1012 G in cgs units, and we regard LJK, ro and Llr as free parameters. 
In the case Llr~O, the density becomes discontinuous at r=ro, and our treatment 
agrees with that of Finn.25

> Because the pressure at ro must be continuous, the 
density discontinuity, Llp, becomes 

(3·10) 

From this relation, we choose L1K/Ko=0.01, 0.1 and 0.4 for examples. These values 
correspond to about 0.5, 5 and 20% of the density discontinuities. We should note 
that a typical value of the density discontinuity is 2~6%.23> 

In the case LJK =0, the density profile and the mass, respectively, become 

_ sin(JZ'r/Rp) 
p-po JZ'r/Rp ' 

(3·11) 

where Rp=j 7Z'Ko/2G =12.5 km. Hereafter, we use Mp and Rp as units of mass and 
radius. a in Eq. (2·26) is IZ'/4 and the frequency in these units becomes 
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Effects of Tidal Resonances in Coalescing Compact Binary Systems 879 

Table I. Models of neutron stars considered in this paper are shown. Ko= 
1012 G, Rp=12.5 km, and Mp=l.26 M0 (po/1015 g cm-3

), respectively. 

Model ro/Rp Llr/Rp LlK/Ko MJ/Mp R1/RP 

I 0.9 0.01 0.01 1.0000 1.0006 

II 0.9 0.001 0.01 1.0000 1.0006 

III 0.9 0.01 0.1 1.0004 1.0055 

IV 0.9 0.001 0.1 1.0004 1.0055 

v 0.9 0.001 0.4 1.0013 1.0208 

VI 0.99 0.001 0.01 1.0000 1.0001 

VII 0.99 0.001 0.1 1.0000 1.0005 

VIII 0.99 0.001 0.4 1.0000 1.0019 

- w - 1 ~ GMP - ( Po )ltz 
fp= 27r- 27r Rp3 -1.47 101sgcm 3 kHz. (3·12) 

From these relations, we choose Llr/Rp=0.01, 0.001 and ro/Rp=0.9, 0.99 as examples. 
We summarize the models in Table I. 

Density configuration for each 
model is solved by numerical integra· 
tion. In Fig. 1, we show a numerical 
result of the density configuration for 
model V as an example. We can see the 
density gap at r=ro, which is the origin 
of the g-modes. 

In Table II, we show the numerical 
results of Wnzz and Qnz for each model. 
It is found that both Wn22 and Qnz of the 
/-mode are almost the same for all 
models. This is consistent with the 
property of the /-mode, which is deter-

_-' 

0 .2 .4 .6 

R/Rp 
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.8 

' ' ' ' 

0 

-3 L.L_.J.....L....J.._L...J.....L...L....J.._'-L..L...I.-'-Jl....L..L...I.-'-J.LL.J 

0 .2 .4 .6 .8 

R/Rp 

Fig. 1. The density profile for model V. 

.2 

,, ,, 
'' I' 

'' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' / ~ 
' ' ' ' 

/ ' ---

.4 .6 .8 

R/Rp 

(b) 

Fig. 2. The profiles of the perturbation variables, y=lJP/p and u=~1r2 for model IV are shown by the 
solid and dashed lines, respectively. The scale of the two variables is the same. The !-mode is 
shown in (a) and the Y1·mode is shown in (b). 
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880 M. Shibata 

mined by the global properties of star, such as the mass and radius which are almost 
independent of the density discontinuity. In Fig. 2, we showy= 8P/p for the solid line 
and u=6r2 for the dashed line for both the /-mode and g1-mode for model IV. It is 
found that those of the /-mode are not affected by the discontinuity at r=ro, while 
those of the g1-mode are considerably affected. This also indicates the property of 
the/- and g-modes; the /-mode is not affected by the local property of the star, but the 
g-modes are affected. 

If we consider binary neutron stars with the same masses and radii, Wn22 of the 
/-mode is about 20% larger than 2Q, so the /-mode does not seem to contribute to the 
resonance. However in the present calculations, we use the Newtonian gravity, 
whereas the general relativity plays an important role in the real neutron stars. For 
example, if the general relativistic effects are taken into account, the radius may 
become small for about a few ten percent because of the strong gravity. In this case, 
the /-mode resonance may occur near r~5M and induce a transition from a steady 

Table II. The resonant frequencies and the overlap integrals for every 
model are shown. Here, the angular frequencies are written in units 
of (GM,fR,3)"2 ~(GMpjRp3)112• In the units, 1, 0.1 and 0.01 represent 
1.47 kHz, 147Hz and 14.7(po/1015 gcm-3

)"
2Hz of the frequency I, 

respectively. 

Model mode Wn22(R,
3 /GM,)"2 Qn2 

I I 1.226 0.6296 
g, 4.208X 10-2 8.8X 10-4 

g2 9.605 X 10-3 2.8X 10-4 

II I 1.226 0.6296 
g, 4.404 X 10-2 8.6 x 10-4 

g2 <6.x10-3 -

III I 1.219 0.6300 
g, .1299 8.99x1o-3 

g2 3~168 X 10-2 2.81 X 10-3 

g3 1.791 X 10-2 2.10X 10-3 

IV I 1.219 0.6300 
g, .1355 8.80X 10-3 

g2 1.019X 10-2 9.7 x 10-4 

v I 1.200 0.6311 
g, .2499 3.65x10-2 

g2 1.960 X 10-2 3.7 X 10-3 

g3 1.135 X 10-2 2.8x10-3 

VI I 1.227 0.6296 
g, 1.185 X 10-2 9X10-5 

VII I 1.225 0.6296 
g, 3.640X 10-2 9.0 X 10-4 

g2 8.007X 10-3 3.0X 10-4 

VIII I 1.224 0.6296 
g, 6.659 X 10-2 3.49 X 10-3 

g2 1.510 X 10-2 1.13 X 10-3 

g3 8.999 X 10-3 8.5x10-4 
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Effects of Tidal Resonances in Coalescing Compact Binary Systems 881 

inspiral to an unstable plunge because LlEGw::::::.LJEos. 
From Table II, we also find the following features of the g-modes. 

1) The value of Wn22 and Qn2 of the g1-mode are almost independent of Llr, but for the 
higher g-modes, the angular frequency becomes small as Llr becomes small. (Com­
pare models I and II, and III and IV.) 
2) The larger ro corresponds to the smaller Wn22 and Qn2. 

3) The larger LJK corresponds to the larger Wn22 and Qn2. 

Property 1) is consistent with the theorem that there is only one g-mode with 
non-zero frequency for each point r; where A is infinite and negative.26

> This means 
that if the thickness of the boundary layer, between which the phase transition occurs, 
is very thin, the g-modes for >10Hz do not seem to exist for real neutron stars except 
for the g1-mode. 

The dependences of Wn22 on ro and LJK are consisent with Eq. (3.8). Properties 2) 
and 3) state that there is a correlation between Wn22 and Qn2; large (small) Wn22 

corresponds to large (small) Qn2, and the ratio Qn2/Wn22 does not change so much for 
each model. 

From these properties in mind, let us discuss the effects of the g-modes to the 
evolutions of binary systems. We consider the two typical binaries, one is the binary 
neutron star with the same masses, 1.4 M.,, the other is the neutron star-black hole 
binary, with the masses, 1.4 M., and 10M.,, respectively. In our models, 1.4 M., means 
po::::::.l.l1Xl015 gcm-3. In the former case, /210Hz corresponds to R:o;;:174 GM/c2 

=Rm and in the latter case R:o;;:68 GM/c2=Rm. Defining the accumulated cycles3
> 

for each radius as N(R)=LJT!2o/7r, for both cases, N(R)=164(R/Rm)514 and N(R) 
=77(R/Rm)514

, respectively. If N is affected by the g-mode resonances even for several 
cycles, it is a problem because we must take into account the structure of neutron 
stars to make a theoretical template even in the low frequency band.3> 

Defining rJ=fJLlEos/LlEGw, where /3=2 for the binary neutron star and /3=1 for the 
neutron star-black hole binary, the contribution of the resonance oscillations to the 
accumulated cycles is estimated by LiN= TJN(R). For the binary neutron star model, 

( 
Rc2 )7'4 _ 

TJ = 13.5 GM Q~2 , (3 ·13) 

and for the neutron star-black hole model, 

TJ = 2.5( ~~ r4 

Q~2 . (3·14) 

Hence N(R) for the binary neutron star model and neutron star-black hole binary 
model, respectively, become 

_ ( R )
3

( Qn2 )
2 

_ ( f )-
2

( Qn2 )
2 

LiN -18.5 Rm 10-3 -18.5 10 Hz 10-3 ' (3·15) 

_ ( R )
3

( Qn2 )
2 

_ ( f )-
2

( Qn2 )
2 

LiN -0.31 Rm lo-3 -0.31 10Hz lo-3 . (3·16) 

It is found that for neutron star-black hole binaries, LiN is smaller than unity for every 
g-mode of eight models. These results do not change if the mass of the black hole is 
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larger than ~ 6 M0. In the case of the binary neutron star of masses 1.4 M0, for 
models I, II, VI and VII, LJN < 1, but for models III, IV and VIII, LJN becomes ~5-10, 
and especially for model V, LJN becomes ~20-40 for all of the g-modes. These 
results mean that 1) if the considerably large discontinuities (Llp/p~20%) exist or 2) 
if the large discontinuities (Llp/p~5%) exist in the inner crust (ro~0.9 R1) of neutron 
stars, the orbital evolution of the binary is affected by the g-mode resonances from an 
observational point of view. However, as long as the physically reasonable density 
discontinuities are concerned, the orbital evolution does not seem to be affected by the 
g-mode resonances. This is because 1) Llpfp is at most 6% in realistic neutron stars,2~J 

and 2) the density discontinuities exist only in the outer crust in which the density is 
below the neutron drip density ( ~4.3 X 1011 g cm-3

).
21J Therefore we do not have to 

take into account the effects of the g-modes to the orbital evolution of the binary 
under a physically reasonable situation. 

§ 4. Summary 

In this paper, we considered the effects of the tidal resonances of neutron stars on 
the evolution of compact star binaries. In realistic neutron stars, not the thermal 
pressure, but the density discontinuity generates the g-mode oscillations with /210 
Hz, so that we adopted the neutron stars with density discontinuities as the model 
stars. Using the Press-Teukolsky formalism, we numerically calculate the tidally 
deposited energy. of the/- and g-modes, and comparing the deposited energy with the 
energy flux of gravitational waves, we consider the effects of the tidal resonances to 
the orbital evolution of binaries. It is found that if the companion of a neutron star 
is a black hole of mass ;(:6 M0 , the g-mode resonance is unimportant. As for binary 
neutron stars, we obtain the following results: 1) The /-mode resonance may affect 
the orbital evolution just before the merging. 2) Unless a considerably large density 
discontinuity (Llp/p~20%) exists or a large discontinuity (Llp/p~5%) exists in the 
inner crust (ro~0.9 R1), the g-mode resonances do not affect the orbital evolution of 
the binary because the deposited energy by the resonances are very small compared 
with the dissipated energy by gravitational radiation. 3) In the case that a consider­
ably large density discontinuity exists or a large discontinuity exists in the inner crust, 
the g-mode resonances affect the orbital evolution of the binary. · However such a 
situation does not seem to realize in the neutron stars, so that the g-modes do not affect 
the orbital evolution so much, in reality. This means that if we try to prepare a 
theoretical template of gravitational waves from a coalescing compact binary, we can 
regard binary stars as the point masses for low frequency region, 10 ~ a few 100 Hz. 

As for the high frequency region, 300-1000 Hz, the /-mode may become impor­
tant. However in this region, not only such a fluid effect, but also the general 
relativistic effects are important; 1) the higher order post-Newtonian gravitational 
potentials must be taken into account to calculate the orbital motion,I5

l and 2) the 
radiation reaction of gravitational waves for higher multi pole modes (!2 3) is 
needed.16J This means that in such a region, we must treat the problem including the 
effects of both the fluid and the general relativity. Therefore the fully general 
relativistic 3-dimensional simulations27

J are urgent. 
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We only consider effects of the resonances in the tidal oscillations in this paper. 
When we treat this problem in a general relativistic manner, not only resonant 
oscillations but also resonant gravitational waves28

l must be taken into account. As 
shown in this paper, the oscillating energy of the g-modes is small in the realistic 
neutron star, so that the emission rate of gravitational waves by the g-mode reso­

nances will not be also so large even in a general relativistic case. On the other hand, 
the emission rate of gravitational waves by the /-mode resonance will be large.28

l 

Hence it is necessary to investigate the emission rate of gravitational waves by the 
effect of the /-mode resonance at the final phase of the coalescing compact binaries. 
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