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ABSTRACT

Quasi-equilibrium sequences of binary neutron stars are constructed for a variety of equations of state in general
relativity. Einstein’s constraint equations in the Isenberg–Wilson–Mathews approximation are solved together with
the relativistic equations of hydrostationary equilibrium under the assumption of irrotational flow. We focus on
unequal-mass sequences as well as equal-mass sequences, and compare those results. We investigate the behavior
of the binding energy and total angular momentum along a quasi-equilibrium sequence, the endpoint of sequences,
and the orbital angular velocity as a function of time, changing the mass ratio, the total mass of the binary system,
and the equation of state of a neutron star. It is found that the orbital angular velocity at the mass-shedding
limit can be determined by an empirical formula derived from an analytic estimation. We also provide tables for
160 sequences, which will be useful as a guideline of numerical simulations for the inspiral and merger performed
in the near future.
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1. INTRODUCTION

Coalescing binary neutron stars are among the most promis-
ing sources of gravitational waves for ground-based laser-
interferometric gravitational-wave detectors such as LIGO
(Brown et al. 2004), GEO600 (Lück et al. 2006), TAMA300
(Ando et al. 2005), and VIRGO (Acernese et al. 2007). Merger
of binary neutron stars, together with that of black hole–neutron
star binaries, is also considered to be one of the candidates for
the central engines of short-hard gamma-ray bursts (Narayan
et al. 1992). These facts motivate us to study coalescing binary
neutron stars.

Binary neutron stars evolve as a result of gravitational
radiation reaction and eventually merge. This evolutionary
sequence is usually divided into three stages, depending on
the characteristic timescales associated with orbital period and
gravitational radiation reaction, as well as on the tidal effects for
each neutron star. The first stage is the adiabatic, inspiral phase.
In this phase, the timescale of orbital shrink due to the emission
of gravitational waves is much longer than the orbital period,
and thus, the binary system evolves adiabatically. In addition,
each neutron star can be treated as a point mass, because the
orbital separation is much larger than the neutron star radius
and hence the tidal deformation of the neutron star is negligible.
In this phase, a post-Newtonian approximation together with
the point particle approximation is a robust tool for determining
the orbital evolution and for computing gravitational waveforms
(see, e.g., Blanchet 2006 and references therein).

The second stage is called the intermediate phase or the
quasi-equilibrium phase. In this phase, the binary system is
considered to be still in the adiabatic, inspiral phase, but we
need to take into account tidal effects on each neutron star, i.e.,
hydrodynamic effects in neutron stars, as well as full effects of
general relativity, because the orbital separation between two
neutron stars is only a few times of the neutron star radius and
thus they are in a strong two-body gravitational field. One of the
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aims of the present paper is to contribute to the understanding
of this phase. We will explain more details about the purpose of
the present paper later.

The last stage is the merger phase, for which the timescale of
orbital shrink becomes shorter than the orbital period and thus
the evolution of the system proceeds in a dynamical manner.
Furthermore, the system becomes highly general relativistic,
because the compactness of the system, defined by the ratio of
the gravitational radius to the radius of the system, becomes
larger than ∼ 0.2. To clarify the merger phase, numerical
relativity is the unique approach. Since the first fully general
relativistic merger simulation was performed by Shibata (1999),
huge effort has been devoted in this research field (Shibata &
Uryū 2000, 2002; Shibata et al. 2003, 2005; Shibata & Taniguchi
2006; Duez et al. 2003; Miller et al. 2004; Anderson et al. 2008a,
2008b; Yamamoto et al. 2008; Liu et al. 2008; Baiotti et al. 2008;
Giacomazzo et al. 2009; Kiuchi et al. 2009, 2010). (See, e.g.,
Oechslin & Janka 2007 and Oechslin et al. 2007 for works
focusing on the micro-physics in a neutron star but not in fully
general relativistic framework.)

Now we return to the intermediate phase and explain the
purposes for studying the quasi-equilibrium phase of binary
neutron stars in general relativity in detail. There are two roles
for this study. One is to clarify the physical conditions in this
phase, for example, how large the tidal deformation of a neutron
star is, when the mass-shedding from the neutron star occurs,
and what the orbital angular velocity at the mass-shedding limit
is. The other is to provide initial data for studying the merger
phase by numerical relativity simulations. Numerical relativity,
in which Einstein’s evolution equations are solved, requires
initial data that satisfy Einstein’s constraint equations and also
that should be as physical as possible. Obviously, it is important
to derive accurate initial data for a scientific study. Constructing
such initial data is just obtaining relativistic binary neutron stars
in quasi-equilibrium.

The first effort on this issue was devoted to constructing
corotating binary neutron stars in general relativity because
implementing a numerical code for computing such solutions is
relatively easy (Baumgarte et al. 1997, 1998; Marronetti et al.
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1998; Usui et al. 2000; Usui & Eriguchi 2002; Taniguchi &
Gourgoulhon 2002b, 2003; Tichy 2009). Kochanek (1992) and
Bildsten & Cutler (1992), however, found that the timescale
of coalescence driven by the gravitational-radiation reaction is
much shorter than that of synchronization due to the viscosity
in a neutron star. This implies that if the spin angular velocity of
neutron stars is much smaller than the orbital angular velocity
in a late inspiral phase, we can regard the rotation state of a
neutron star to be approximately irrotational for the subsequent
phase until the merger sets in. Additionally, any neutron star
spins down due to electromagnetic radiation during its life from
birth to the coalescence. The spin down timescale of a neutron
star in a known binary is at longest as short as the coalescing
timescale (larger than ∼ 108 yr; Lorimer 2008). Moreover, the
spin period of neutron stars in a known binary is always larger
than 20 ms which is ∼ 10 times larger than the orbital period in
the late inspiral phase just prior to merger, 2–3 ms. Therefore,
we can conclude that the irrotational flow is physically more
realistic.4

Under the assumption of irrotation, formulation for solving
relativistic hydrostatic equations was derived (Bonazzola et al.
1997; Asada 1998; Shibata 1998; Teukolsky 1998). Soon after
the formulation was derived, quasi-equilibrium sequences of
irrotational binary neutron stars were calculated (Bonazzola
et al. 1999; Marronetti et al. 1999; Uryū & Eriguchi 2000;
Uryū et al. 2000; Gourgoulhon et al. 2001; Taniguchi &
Gourgoulhon 2002b, 2003; Bejger et al. 2005), based on the
Isenberg–Wilson–Mathews (IWM) approximation to general
relativity (Isenberg 1978, 2008; Wilson & Mathews 1989). (See
Shibata et al. 2004 for an advanced formulation and Uryū et al.
2006, 2009 for the results.) Even though a lot of sequences
have been, so far, calculated, systematic survey has not yet been
done. In particular, unequal-mass, irrotational binary neutron
stars with an equation of state other than single polytrope has
not been studied in detail. In Taniguchi & Gourgoulhon (2002b,
2003), quasi-equilibrium sequences of unequal-mass binaries
were calculated, but a polytropic equation of state (EOS) was
used. In Bejger et al. (2005) and Uryū et al. (2009), non-
polytropic EOSs were used, but quasi-equilibrium sequences of
non-equal-mass binaries were not computed. Actually, unequal-
mass, irrotational binary neutron stars with realistic EOSs in
quasi-circular orbits were constructed and used as initial data for
merger simulations in Shibata et al. (2005), Shibata & Taniguchi
(2006), and Kiuchi et al. (2009, 2010).5 We, however, have not
constructed sequences, and rather computed only some initial
data sets for each neutron star mass. The purpose of the present
paper is to complete the issue and to provide a database of the
sequences.

To compute unequal-mass binary systems of arbitrary mass
ratio, we develop a new code for the present research, because
the numerical code that we developed for the previous works
(Taniguchi & Gourgoulhon 2002b, 2003) had a problem with
calculating binary systems composed of significantly different-
mass neutron stars in general relativity even though the problem
was not in Newtonian computation (Taniguchi & Gourgoulhon
2002a). As we will explain in Section 2, the method to determine

4 If a first born neutron star in a binary was strongly recycled during the
evolution of the companion, it may result in fast rotation and weak magnetic
field. In such a case, the neutron star may rotate on the order of milliseconds
even just before the merger. Some effort to approximately construct
quasi-equilibrium, non-corotating, and non-irrotational binary systems is
reported in Marronetti & Shapiro (2003) and Baumgarte & Shapiro (2009).
5 We use the term “realistic equations of state” for the EOSs derived from
nuclear physics, although no one really knows a realistic one.

the center of mass of unequal-mass binary systems, i.e., the
position of the rotation axis, caused the problem in the previous
code, but we have overcome it by employing a new method.

In addition, we employ a wide variety of EOSs; piecewise
polytropic EOSs (Read et al. 2009a, 2009b), tabulated realistic
EOSs derived from nuclear physics, and fitted EOSs to the
tabulated realistic EOSs. Some of the first and second EOSs
were, respectively, used in Uryū et al. (2009) and in Bejger
et al. (2005), but we adopt a wider set of EOSs in this
paper. Furthermore, we systematically study the unequal-mass
binaries, whereas Bejger et al. (2005) and Uryū et al. (2009)
focused only on the equal-mass case.

This paper is organized as follows. We briefly review the
basic equations and explain the improvement of the numerical
code in Section 2. In Section 3, the results for the code test
are shown. In Section 4, we show numerical results and discuss
the effects of EOS on each sequence. Section 5 is devoted to
a summary. Throughout this paper we adopt geometrized units
with G = c = 1, where G denotes the gravitational constant
and c the speed of light. Latin and Greek indices denote purely
spatial and spacetime components, respectively.

2. FORMULATION

In this section, we briefly describe the basic equations to
be solved and the method to calculate a quasi-equilibrium
configuration in circular orbits. For more details, we would
like to recommend readers to refer to Cook (2000), Baumgarte
& Shapiro (2003), and Gourgoulhon (2007) for the part of
gravitational field equations, and Gourgoulhon et al. (2001) for
that of hydrostatic equations.

2.1. Gravitational Field Equations

The line element in 3+1 form is written as

ds2 = gμνdxμdxν,

= −α2dt2 + γij (dxi + βidt)(dxj + βjdt), (1)

where gμν is the spacetime metric, α is the lapse function, βi is
the shift vector, and γij is the spatial metric induced on a spatial
hypersurface Σt . Note here that the direction of the shift vector βi

is the normally used one which has a sign opposite to that used
in Gourgoulhon et al. (2001) and Taniguchi & Gourgoulhon
(2002b, 2003). The spatial metric γij is further decomposed
into the conformal factor ψ and a background metric γ̃ij , and is
written as

γij = ψ4γ̃ij . (2)

The extrinsic curvature is defined by

Kij = −1

2
Lnγij , (3)

where Ln is the Lie derivative along the unit normal to the
hypersurface Σt . We split it into the trace K and the traceless
part Aij as

Kij = Aij +
1

3
γijK. (4)

We further rewrite the traceless part as

Aij = ψ−2Ãij , (5a)

Aij = ψ−10Ãij , (5b)
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where Ãij = γ̃ikγ̃j lÃ
kl . The Hamiltonian constraint, then, takes

the form

∇̃2ψ = −2πψ5ρH +
1

8
ψR̃ +

1

12
ψ5K2 − 1

8
ψ−7Ãij Ã

ij , (6)

where ∇̃2 denotes γ̃ ij ∇̃i∇̃j , ∇̃i the covariant derivative with
respect to γ̃ij , and R̃ the scalar curvature with respect to γ̃ij .
The matter term, ρH , in Equation (6) is calculated by taking
a projection of the stress–energy tensor. (See Equation (11)
below.)

Equations (3), (4), and (5b) yield

Ãij = ψ6

2α

(
∂t γ̃

ij + ∇̃ iβj + ∇̃jβi − 2

3
γ̃ ij ∇̃kβ

k
)
. (7)

Using Equation (7) for the traceless part of the extrinsic
curvature, the momentum constraint is written as

γ̃ jk∇̃j ∇̃kβ
i +

1

3
γ̃ ik∇̃k(∇̃jβ

j )

= − α

ψ6
∇̃j

(ψ6

α
∂t γ̃

ij
)

+ 16παψ4j i +
4

3
α∇̃ iK

−
(
∇̃ iβj + ∇̃jβi − 2

3
γ̃ ij ∇̃kβ

k
) α

ψ6
∇̃j

(ψ6

α

)
, (8)

where the matter term, ji, is calculated by taking a projection of
the stress–energy tensor. (See Equation (12) below.) In addition
to the Hamiltonian and momentum constraints, we solve the
trace of the evolution equation of the extrinsic curvature

∂tK − LβK = −ψ−4(∇̃i∇̃ iα + 2∇̃i ln ψ∇̃ iα)

+ α

[
4π (ρH + S) + ψ−12Ãij Ã

ij +
K2

3

]
, (9)

where S is a matter term defined by Equation (14) below.
As mentioned, the matter terms in the above equations are

calculated by taking the projections of the stress–energy tensor
Tμν into the spatial hypersurface Σt . In the present paper, we
assume an ideal fluid and adopt the form of Tμν as

Tμν = (ρ + ρε + P )uμuν + Pgμν, (10)

where uμ is the fluid 4-velocity, ρ is the baryon rest-mass
density, ε is the specific internal energy, and P is the pressure.
Defining the future-directed unit normal to Σt as nμ, the
projections of Tμν can be written as

ρH = nμnνT
μν, (11)

j i = −γ i
μnνT

μν, (12)

Sij = γiμγjνT
μν, (13)

S = γ ijSij . (14)

The set of equations, (6)–(9), has four functions that we can
choose freely; ∂t γ̃

ij , ∂tK , γ̃ij , and K. For simplicity, we chose
a maximal slicing K = 0 and adopt a flat metric γ̃ij = ηij

for the spatial background metric in the present paper. We then
assume the presence of a helical Killing vector, ξμ, and the

absence of gravitational waves in the wave zone. Under these
assumptions, it is natural to choose the time direction so as to
satisfy ξμ = (∂/∂t)μ, and to set ∂t γ̃

ij = 0 and ∂tK = 0. Then,
the basic equations are written as

Δψ = −2πψ5ρH − 1

8
ψ−7Ãij Ã

ij , (15)

Δβi +
1

3
ηik∂k(∂jβ

j ) = 16πΦψ3j i + 2Ãij ∂j (Φψ−7), (16)

ΔΦ = 2πΦψ4(ρH + 2S) +
7

8
Φψ−8Ãij Ã

ij , (17)

Ãij = ψ7

2Φ

(
ηik∂kβ

j + ηjk∂kβ
i − 2

3
ηij ∂kβ

k
)
, (18)

where Δ denotes the flat Laplacian, ∂i the flat partial deriva-
tive, and Φ ≡ αψ . The derived formulation is called the IWM
approximation (Isenberg 1978, 2008; Wilson & Mathews 1989).
Note here that a similar but more general formulation was re-
cently proposed and started to be called the extended conformal
thin-sandwich decomposition (XCTS; Pfeiffer & York 2003),
mainly in the field of vacuum space time, i.e., black hole space-
time. In this new formulation, the conformal flatness is not
assumed. (See Gourgoulhon 2007 for a more detailed explana-
tion.)

It may be worthy to note that there is an effort to construct
quasi-equilibrium binary neutron stars beyond the IWM approx-
imation. Shibata et al. (2004) proposed a formalism in which
all the Einstein equations are solved under the assumption of a
helical Killing vector and artificially imposing asymptotic flat-
ness. This formalism was used to solve quasi-equilibrium binary
neutron stars in Uryū et al. (2006, 2009).

When solving the set of equations, (15)–(18), we need to
impose the outer boundary conditions for ψ , βi , and Φ. Because
our numerical grids include spatial infinity by compactifying
the outermost domain, we can impose the exact outer boundary
conditions as

ψ = 1, (19)

βi = (Ω × R)i , (20)

Φ = 1, (21)

where Ω is the orbital angular velocity and R is the radial
coordinate measured from the center of mass of the binary
system. Although the shift vector seen by a co-orbiting observer,
βi , diverges at infinity, this diverging term,

βi
rot ≡ (Ω × R)i , (22)

does not affect the set of equations we solve. If we define the
shift vector seen by an inertial observer as βi

iner, the shift vector
seen by a co-orbiting observer can be written as

βi = βi
iner + βi

rot. (23)

Because we have the relations,

Δβi
rot = 0, (24)

∂jβ
j
rot = 0, (25)
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and
ηik∂kβ

j
rot + ηjk∂kβ

i
rot = 0, (26)

substituting Equation (23) into Equations (16) and (18) yields

Δβi
iner +

1

3
ηik∂k

(
∂jβ

j
iner

) = 16πΦψ3j i + 2Ãij ∂j (Φψ−7),

(27)

Ãij = ψ7

2Φ

(
ηik∂kβ

j
iner + ηjk∂kβ

i
iner − 2

3
ηij ∂kβ

k
iner

)
. (28)

The outer boundary condition for βi
iner is then βi

iner = 0 at spatial
infinity. We actually solve for βi

iner.

2.2. Hydrostatic Equations

The hydrostatic equations governing the quasi-equilibrium
state are the Euler and continuity equations. For both irrotational
and synchronized motions, the Euler equation can be integrated
once to give

hα
γ

γ0
= constant, (29)

where h = (ρ +ρε +P )/ρ is the fluid specific enthalpy, γ0 is the
Lorentz factor between the co-orbiting and Eulerian observers,
and γ is the Lorentz factor between the fluid and co-orbiting
observers. If we define the 4-velocity of the co-orbiting observer
by vμ, the Lorentz factors are written as

γ0 = −nμvμ = (
1 − γijU

i
0U

j

0

)−1/2
, (30)

γ = − vμuμ

= γ0
(
1 − γijU

iU
j

0

)
(1 − γijU

iUj )−1/2, (31)

where Ui
0 is the orbital 3-velocity with respect to the Eulerian

observer,

Ui
0 = βi

α
, (32)

and Ui denotes the fluid 3-velocity with respect to the Eulerian
observer,

Ui = ψ−4

αuth
∇̃ iΨ, (33)

for irrotational binary systems. Here ut is the time component
of the fluid 4-velocity and Ψ is the velocity potential which is
calculated by solving the equation of continuity written as

ρ

h
∇μ∇μΨ + (∇μΨ)∇μ

(ρ

h

)
= 0, (34)

where ∇μ is the covariant derivative with respect to gμν . Note
that the fluid 3-velocity Ui corresponds to the orbital 3-velocity
Ui

0 for synchronized binary systems.
For the determination of the constant on the right-hand side

of Equation (29), we use the central value of the quantities on
its left-hand side. The center of a neutron star is defined as the
location of the maximum baryon rest-mass density in the present
paper. Equation (29) includes one more constant which should
be determined for each quasi-equilibrium figure; the constant
is the orbital angular velocity as we find from Equations (32),
(23), and (22). The method for calculating it will be explained
in the next section.

2.3. Orbital Angular Velocity and the Center of Mass of a
Binary System

The method for determining the orbital angular velocity is as
follows: we first set the rotation axis of the binary system to be
the Z-axis, and the line connecting the centers of mass of each
neutron star to be the X-axis. Requiring a force balance along
the X-axis, we impose a condition of quasi-circular orbit for the
binary system. The force balance equation is obtained by setting
the central values of the gradient of enthalpy to be zero for each
star,

∂ ln h

∂X

∣∣∣
Oa

= 0, (35)

where Oa (a = 1, 2) denotes the center of each neutron star.
Because Equation (29) includes Ω through Equation (22), the
force balance Equation (35) may be regarded as the equa-
tion for determining the orbital angular velocity. Equation (35)
also depends on the location of the center of mass, because
Equation (22) includes R which is the radial coordinate mea-
sured from the center of mass of the binary system. For equal-
mass binaries, the force balance equations for each star degen-
erate and the location of the center of mass becomes trivial,
i.e., we can set it to the middle between two stars. For unequal-
mass binaries, on the other hand, we have a couple of equations,
Equation (35) for a = 1 and 2, for two parameters of the orbital
angular velocity and the location of the center of mass. In the
previous papers (Taniguchi & Gourgoulhon 2002b, 2003), those
parameters were determined by solving the couple of equations
as stated in Section II B of Taniguchi & Gourgoulhon (2002a).
This method works for Newtonian binary systems (Taniguchi &
Gourgoulhon 2002a) and also in the case that the difference in
mass of the neutron stars is small for general relativistic binary
systems. However, if the difference in mass of the neutron stars
is significantly large, the coupled equations, Equation (35) for
a = 1 and 2, would not be simultaneously satisfied at earlier
steps of computational iteration because the state of the binary
neutron stars is far from equilibrium, and as a result, the com-
putation would fail to achieve the convergence to a solution.

To avoid such crush of computation for small mass ratios,
MNS1

ADM/MNS2
ADM < 0.8 where MNSa

ADM(a = 1, 2) denotes the
Arnowitt–Deser–Misner (ADM) mass for a spherical star a in
isolation, we adopt the same method as used for black hole-
neutron star binaries, described in Taniguchi et al. (2006, 2007,
2008), to determine the location of the center of mass; we require
that the linear momentum of the system vanishes

P i = 1

8π

∮
∞

KijdSj = 0. (36)

Here we have assumed maximal slicing condition, K = 0. Once
the location of the center of mass is determined in an iteration
step, we move the position of each star, keeping the separation,
in order for the center of mass of the binary system to locate on
the Z-axis.

For the computation of the orbital angular velocity, we keep
the method that Equation (35) is satisfied. As the readers
may realize, Equation (35) gives two values of the orbital
angular velocity for the unequal-mass case because there are
two equations in Equation (35). Even though those values of the
orbital angular velocity are very close (the relative difference is
within the convergence level), they are slightly different because
of numerical error. In the present paper, we just take an average
of the two values.



No. 1, 2010 BINARY NEUTRON STARS IN QUASI-EQUILIBRIUM 191

It may be worthy to comment on another method for de-
termining the orbital angular velocity. While our method for
calculating Ω is to require the force balance Equation (35), it
is possible to obtain Ω by requiring the enthalpy at two points
on the neutron star’s surface to be equal, i.e., h = 1 on the sur-
face. We confirm that the results of those two methods coincide
within the convergence level of the enthalpy.

2.4. Global Quantities and a Mass-shedding Indicator

A sequence of binary neutron stars should be constructed for
a fixed baryon rest mass of each star,

M
(a)
B =

∫
star a

ρut
√−gd3x, a = 1, 2, (37)

as the orbital separation decreases. This is because we regard
the baryon rest mass as conserved as the orbital separation
decreases due to the emission of gravitational waves. Along
such a constant-baryon-rest-mass sequence, we then monitor
three global quantities: the ADM mass, the Komar mass, and the
total angular momentum, as well as a sensitive mass-shedding
indicator of a star (see Equation (49)).

The ADM mass in isotropic Cartesian coordinates is written
as

MADM = − 1

2π

∮
∞

∂iψdSi. (38)

If we use Equation (15) and Gauss’ theorem, the ADM mass
can be written in terms of volume integral as

MADM =
∫

V

(
ψ5ρH +

1

16π
ψ−7Ãij Ã

ij
)
dV. (39)

Both of Equations (38) and (39) give the same results relative
to the convergence level of the computation.

The Komar mass is written as

MKomar = 1

4π

∮
∞

∂iαdSi, (40)

where we use the fact that the shift vector falls off rapidly
enough to be neglected from Equation (40). Using the boundary
conditions that Φ = 1 and ψ = 1 at infinity and the definition
Φ ≡ αψ , we can rewrite Equation (40) as

MKomar = 1

4π

∮
∞

(∂iΦ − ∂iψ)dSi. (41)

Using Equations (15) and (17), the Komar mass can be also
written in terms of volume integral as

MKomar = 1

4π

∫
V

[
2πψ4(Φ + ψ)ρH + 4πΦψ4S

+
1

8
ψ−7(7Φψ−1 + 1)Ãij Ã

ij
]
dV. (42)

The total angular momentum of the binary system is calculated
to give

Ji = 1

16π
εijk

∮
∞

(XjKkl − XkKjl)dSl, (43)

where Xi is a spatial Cartesian coordinate relative to the center
of mass of the binary system. This equation can be also rewritten
in the form of a volume integral as

Ji = εijk

∫
V

ψ10XjjkdV, (44)

where we use the momentum constraint equation. Similarly, the
linear momentum (36) is written as

P i =
∫

V

ψ10j idV . (45)

As we mentioned, both of the global quantities calculated by
surface integral at infinity and by volume integral give the same
results within the convergence level of the computation. In the
present paper, we show the results by the volume integral.

The binding energy of the binary system is defined as

Eb = MADM − M0, (46)

where M0 is the ADM mass of the binary system at infinite
orbital separation, as defined by the sum of the ADM mass of
two isolated neutron stars with the same baryon rest mass,

M0 ≡ MNS1
ADM + MNS2

ADM. (47)

To measure a global error in the numerical results, we define
the error in the virial theorem as the fractional difference
between the ADM and Komar masses,

δM ≡
∣∣∣MADM − MKomar

MADM

∣∣∣. (48)

We refer to δM as the virial error, and use it to measure the
magnitude of numerical error in the ADM mass.

Finally, a sensitive mass-shedding indicator is defined as

χ ≡ (∂(ln h)/∂r)eq

(∂(ln h)/∂r)pole
. (49)

Here, the numerator of Equation (49), (∂(ln h)/∂r)eq, is the
radial derivative of the enthalpy in equatorial plane at the
surface along the direction toward the companion star, and
the denominator, (∂(ln h)/∂r)pole, is that at the surface of the
pole. The radial coordinate r is measured from the center of
the corresponding neutron star. For spherical stars at infinite
separation, the indicator takes χ = 1, while χ = 0 indicates
the formation of a cusp, and hence the onset of mass shedding.
Note here that because our numerical code is based on a spectral
method, it is impossible to construct cusp-like configurations,
because it is accompanied by the Gibbs phenomena. This is also
the case for the configuration with smaller values of χ � 0.5.
Thus, we stop constructing a sequence when χ reaches ∼ 0.6.

2.5. Equations of State

In this section, we summarize four types of EOSs employed
in this paper.

2.5.1. Polytropic EOSs

The first EOS is a polytrope

P = κρΓ, (50)

where κ is a polytropic constant and Γ is the adiabatic index.
This EOS has been often used in simply modeling binary neutron
stars in quasi-equilibrium. We use this EOS only in testing
our new code. The specific internal energy for the polytrope is
written as

ε = κρΓ−1

Γ − 1
. (51)
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Figure 1. Mass–radius relation for spherical stars with piecewise polytropic
EOSs. The vertical axis is the gravitational mass (which is the same as the
ADM mass) in solar mass units and the horizontal axis is the circumferential
radius in km units. The thick (black) solid, thick (red) dotted, thick (green) short-
dashed, thick (blue) long-dashed, and thick (violet) dot-dashed curves denote
the case of Γ1 = 3.0 but log10 P1 = 13.95 (PwPoly30-1395), 13.55 (PwPoly30-
1355), 13.45 (PwPoly30-1345), 13.35 (PwPoly30-1335), and 13.15 (PwPoly30-
1315), respectively. The thin (magenta) solid and thin (orange) dotted curves
are the case of Γ1 = 2.7 but log10 P1 = 13.45 (PwPoly27-1345) and 13.35
(PwPoly27-1335), respectively. The thin (dark green) short-dashed and thin
(cyan) long-dashed curves denote the case of Γ1 = 2.4 but log10 P1 = 13.45
(PwPoly24-1345) and 13.35 (PwPoly24-1335), respectively.

(A color version of this figure is available in the online journal.)

For the polytropic EOS, we have the following natural units,
i.e., polytropic units, to normalize the length, mass, and time
scales:

Rpoly = κ1/(2Γ−2). (52)

Because geometrized units with G = c = 1 are adopted, the
polytropic units Rpoly normalize all of the length, mass, and time
scales.

2.5.2. Piecewise Polytropic EOSs

The second EOS is a piecewise polytrope introduced by Read
et al. (2009a, 2009b). In the present paper, we set the number of
polytrope segments to two. Then, the EOS is written as

P = κ0ρ
Γ0 , (0 � ρ < ρ0) (53)

P = κ1ρ
Γ1 , (ρ0 � ρ), (54)

where the dividing density ρ0 is close to the nuclear density
of order ∼1014 g cm−3 (see below). The adiabatic index of the
crust is set to a fixed value as Γ0 = 1.35692895, whereas we
choose three values for the adiabatic index of the core, Γ1 = 2.4,
2.7, and 3.0. The polytropic constant of the crust, κ0, is set to
κ0/c

2 = 3.99873692 × 10−8((g cm−3)1−Γ0 ) in cgs units. The
polytropic constant of the core, κ1, is calculated by requiring
the continuity of the pressure at the dividing density ρ0 as

κ1 = κ0ρ
Γ0−Γ1
0 . (55)

The dividing density ρ0 is calculated by setting the fiducial
density, ρ1, and the pressure at the fiducial density, P1. We take
the fiducial density as log10 ρ1 = 14.7 where ρ1 is in cgs units.
Because ρ1 is larger than the dividing density ρ0, the EOS has the
form of P1 = κ1ρ

Γ1
1 at the fiducial density. Using this equation

Table 1
Parameters for the Piecewise Polytropic EOSs

Name Γ1 log10 P1 ρ0 (g cm−3) a1

PwPoly30-1395 3.0 13.95 7.03317468 × 1013 8.06036645 × 10−3

PwPoly30-1355 3.0 13.55 1.23196176 × 1014 9.84569621 × 10−3

PwPoly30-1345 3.0 13.45 1.41728987 × 1014 1.03506910 × 10−2

PwPoly30-1335 3.0 13.35 1.63049750 × 1014 1.08815874 × 10−2

PwPoly30-1315 3.0 13.15 2.15795830 × 1014 1.20264673 × 10−2

PwPoly27-1345 2.7 13.45 1.06888797 × 1014 9.00037733 × 10−3

PwPoly27-1335 2.7 13.35 1.26878530 × 1014 9.56832301 × 10−3

PwPoly24-1345 2.4 13.45 6.85371121 × 1013 7.24283128 × 10−3

PwPoly24-1335 2.4 13.35 8.54665331 × 1013 7.83658359 × 10−3

and Equation (55), the dividing density is obtained as

log10 ρ0 = log10 P1 − 14.7 × Γ1 − log10 κ0

Γ0 − Γ1
. (56)

The specific internal energy in the crust and that in the core
are, respectively, written as

ε0 = κ0ρ
Γ0−1

Γ0 − 1
(57)

ε1 = a1 +
κ1ρ

Γ1−1

Γ1 − 1
, (58)

where a1 is a constant which is calculated by requiring the
continuity of the enthalpy at the dividing density ρ0.

We summarize the adiabatic index of the core Γ1, the
logarithm of the pressure at the fiducial density log10 P1, the
dividing density ρ0, and the constant a1 in Table 1; we employ
nine parameter sets in the present work. Figure 1 plots the
mass–radius relation of spherical stars for the chosen EOSs
and indicates that a wide variety of EOSs are modeled.

2.5.3. Tabulated Realistic EOSs

We use tabulated EOSs for zero-temperature nuclear matter
which are derived by using various theories of dense nuclear
matter and different solution methods of the many-body problem
in nuclear physics. As described in Bejger et al. (2005), the
EOS of Baym et al. (1971) is used for ρ < 108 g cm−3,
that of Haensel & Pichon (1994) for 108 g cm−3 < ρ <
1011 g cm−3, and that obtained by Douchin & Haensel (2001)
for 1011 g cm−3 < ρ < ρcc in the neutron star crust, where
ρcc = (0.6–1.4) × 1014 g cm−3 is the density at the crust–core
interface. (See Chamel & Haensel 2008 for a review of the EOS
in the neutron star crust.)

For the EOS of the neutron star core, we select six EOSs: APR
(Akmal et al. 1998), BBB2 (Baldo et al. 1997), BPAL12 (Zuo
et al. 1999), FPS (Friedman & Pandharipande 1981), GNH3
(Glendenning 1985), and SLy4 (Douchin & Haensel 2001).
Those tabulated EOSs are interpolated by using the Hermite
interpolation which is basically the same method as in Swesty
(1996). Figure 2 shows the mass–radius relation for spherical
stars in these EOSs.

2.5.4. Fitted EOSs to the Tabulated Realistic EOSs

The method of an interpolation for the tabulated realistic
EOSs is not unique. Haensel & Potekhin (2005) introduced a
fitting formula using an analytic function. We modified their
method (Shibata et al. 2005) and derived a new fitting formula
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Figure 2. Same as Figure 1 but for tabulated realistic EOSs. The thick
(black) solid, thick (red) dotted, thick (green) short-dashed, thick (blue) long-
dashed, thick (violet) dot-dashed, and thick (magenta) dot-dot-dashed curves,
respectively, denote the case of APR, BBB2, BPAL12, FPS, GNH3, and SLy4.
The thin (orange) solid and thin (dark green) dotted curves are the case of
piecewise polytropic EOSs with Γ1 = 3.0 and log10 P1 = 13.45 (PwPoly30-
1345) and Γ1 = 2.7 and log10 P1 = 13.35 (PwPoly27-1335). Those curves are
shown for comparison.

(A color version of this figure is available in the online journal.)

for FPS and SLy4 to satisfy the first law of thermodynamics. In
Shibata & Taniguchi (2006), we also derived a fitting formula
for APR. In the present paper, we construct quasi-equilibrium
sequences for those EOSs, fitAPR, fitFPS, and fitSLy4, and
compare the results with those by the tabulated EOSs.

Figure 3 compares the mass–radius relation for spherical stars
with those by the tabulated EOSs, APR, FPS, and SLy4. A good
agreement is found between two corresponding results for each
EOS.

3. CODE TESTS

We implemented a new numerical code based on
the spectral method library, LORENE, developed by the
Meudon relativity group. (See the LORENE Web site,
http://www.lorene.obspm.fr/, for more detailed explanations of
this code library.) Our new numerical code was tested to check
its ability for accurately computing unequal-mass binary sys-
tems composed of significantly different-mass neutron stars as
well as equal-mass ones with similar accuracy to those obtained
by the old code used in Gourgoulhon et al. (2001), Taniguchi &
Gourgoulhon (2002b, 2003), and Bejger et al. (2005).

3.1. Convergence Tests

The first test is to check if the convergence of the ADM mass
of an equal-mass binary neutron star is achieved with increasing
the resolution. We choose the Γ = 2 polytrope and set the baryon
rest mass of each star to M̄B = 0.15 in polytropic units. Two
different orbital separations, d̄ = 7.308 and 3.045 in polytropic
units, are chosen. Those coordinate separations are, respectively,
about 8.965 and 3.736 times larger than the coordinate radius
of an isolated, spherical neutron star with the same baryon rest
mass. We choose these separations because the former one,
d/aNS = 8.965, is larger than the farthest separation in the
equal-mass sequences we show in the present paper (d/aNS ∼
8.6) and the latter one, d/aNS = 3.736, is an intermediate
separation between the farthest and the closest ones.
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Figure 3. Same as Figure 1 but for EOSs written by a fitting formula. The thick
(black) solid, thick (red) dotted, and thick (blue) short-dashed curves denote the
case of fitAPR, fitFPS, and fitSLy4, respectively. The thin (green) long-dashed,
thin (violet) dot-dashed, and thin (magenta) dot-dot-dashed curves are the case
of tabulated EOSs, APR, FPS, and SLy4, respectively.

(A color version of this figure is available in the online journal.)

Figures 4 and 5 compare the ADM mass at d̄ = 7.308
and 3.045, respectively, for different resolutions (for different
number of collocation points in the terminology of the spectral
method). We choose five resolutions, Nr ×Nθ ×Nφ = 49×37×
36, 41×33×32, 33×25×24, 25×17×16, and 21×13×12,
where Nr, Nθ , and Nφ denote the number of collocation points
for the radial, polar, and azimuthal directions, respectively. The
horizontal axis of these figures denotes the cube root of the total
number of collocation points, 3

√
Nr × Nθ × Nφ . The error bar is

drawn for an estimated error size derived from the virial error.
It is found from Figure 4 that the ADM mass for 41×33×32

( 3
√

Nr × Nθ × Nφ � 35.11) is in approximately convergent
level because its value is approximately identical to that for
49 × 37 × 36 ( 3

√
Nr × Nθ × Nφ � 40.26). The central value of

the ADM mass for 33×25×24 ( 3
√

Nr × Nθ × Nφ � 27.05) is in
the error bar of that for 49×37×36. This implies that the number
of collocation points, 33 × 25 × 24, is sufficiently large when
computing the binary with smaller separations than d/aNS ∼ 9.0
within the fractional error of 10−5 for the ADM mass, which
satisfies the required accuracy in our present computation.

Figure 5 shows that the ADM mass for 33 × 25 × 24 is
in approximately convergent level because its value is ap-
proximately identical to that for 49 × 37 × 36 at the separa-
tion of d̄ = 3.045 (d/aNS = 3.736). The central value for
25 × 17 × 16 ( 3

√
Nr × Nθ × Nφ � 18.95) is in the error bar

of that for 49 × 37 × 36. This implies that it is safe to de-
crease the number of collocation points for smaller separations
than d/aNS ∼ 3.7 within the accuracy required in the present
computation.

From these convergence tests, we decide to use the number
of collocation points of Nr × Nθ × Nφ = 33 × 25 × 24 for
larger separations and 33 × 17 × 16 for closer ones, keeping the
number of collocation points for the radial direction.

3.2. An Unequal-mass Binary System Composed of
Significantly Different-mass Stars

To illustrate that our new code can compute a binary system
composed of significantly different-mass stars, we show in
Figure 6 a quasi-equilibrium configuration of binary neutron

http://www.lorene.obspm.fr/
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Figure 4. Convergence test of the ADM mass of a binary neutron star with the
Γ = 2 polytropic EOS. The baryon rest mass of each star is M̄B = 0.15 and
the coordinate orbital separation is set to d̄ = 7.308 (d/aNS = 8.965). The
horizontal axis denotes the cube root of the total number of collocation points.
The filled circles are the central value of each computation, and the error bars
are drawn for an estimated error size derived from the virial error.
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Figure 5. Same as Figure 4 but for the coordinate, orbital separation of
d̄ = 3.045 (d/aNS = 3.736).

stars with the Γ = 2 polytrope whose baryon rest masses
are M̄B = 0.05 and 0.15, respectively. The compactness of
those stars when they have a spherical shape is, respectively,
C ≡ MNS

ADM/RNS = 0.04155 and 0.1452, where RNS is the
circumferential radius. Because the maximum baryon rest mass
of the Γ = 2 polytrope is M̄B ≈ 0.18, the model of M̄B = 0.05
is an extremely light neutron star. We compute this model just
to demonstrate the ability of our code. In the figure, the star on
the left-hand side has M̄B = 0.05 and that on the right-hand side
does 0.15. The thick solid circles are the location of the neutron
star’s surface. The orbital angular velocity, the binding energy,
the total angular momentum, the virial error, and the linear
momentum of this figure are M0Ω = 5.218 × 10−3, Eb/M0 =
−2.816 × 10−3, J/M2

0 = 1.1626, δM = 2.027 × 10−6, and
P Y /(M0c) = 3.930×10−7, respectively. The relative difference
of the binding energy from that obtained by the third post-
Newtonian (3PN) approximation at the same orbital angular

Figure 6. Contours of baryon rest-mass density for demonstrating the ability
of constructing a quasi-equilibrium figure composed of significantly different-
mass stars. The EOS we employ is the Γ = 2 polytrope. The star on the left-hand
side has the baryon rest mass of M̄B = 0.05, while that on the right-hand side
has M̄B = 0.15. The thick solid circles are the location of stellar surface.

velocity is about δEb = −6.479 × 10−4. Here we define

δEb ≡ (Eb)num

(Eb)3PN
− 1, (59)

where (Eb)num and (Eb)3PN denote the binding energy obtained
by the numerical computation and that by the 3PN approxima-
tion, respectively. The relative difference of the total angular
momentum from that obtained by the 3PN approximation at the
same orbital angular velocity is δJ = −1.693 × 10−4, defining
δJ similar to Equation (59). The relative error in baryon rest
mass of the less massive star is δM̄B = 6.738 × 10−7 and that
of the more massive star is 2.082 × 10−6. We do not find any
problem to accurately construct a binary system composed of
two significantly different-mass neutron stars.

3.3. Comparison with the Results Obtained by the Old Code

We compare the linear momentum of an unequal-mass
binary neutron star along a quasi-equilibrium sequence for a
model of piecewise polytrope (PwPoly30-1345) with masses
of MNS1

ADM = 1.25 M
 and MNS2
ADM = 1.45 M
 in Figure 7.

This figure compares the linear momentum of the Y-component,
where we assume that the centers of mass of the neutron stars
are located on the X-axis (see Figure 6 about the location of
each star). This shows that the present results give by more
than two orders smaller values than those calculated by the old
code through the sequence. This improvement results from the
change in the solution method of the center of mass for achieving
a convergence. Note that the linear momentum of the X- and
Z-directions is zero within the machine precision because of the
imposed symmetries.

We also compare the relative difference of the binding energy
from that obtained by the 3PN approximation in Figure 8. The
definition of the relative difference is shown in Equation (59).
The (black) solid curve with the filled circles denotes the results
calculated by the new code, and the (red) dashed curve with
the open squares is those computed by the old code. The error
bar is drawn for an estimated error size derived from the virial
error. It is found from Figure 8 that the results by the new code
have a factor of 2–5 smaller error bar than those by the old code
except for very close separations (M0Ω > 0.037). Additionally,
when we used the old code, we could not compute sufficiently
converged figures for larger separations (M0Ω < 0.017),
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Figure 7. Comparison of the linear momentum along a quasi-equilibrium
sequence of an unequal-mass binary composed of MNS1

ADM = 1.25 M
 and
MNS2

ADM = 1.45 M
 stars. The EOS we select is the piecewise polytrope with
Γ1 = 3.0 and log10 P1 = 13.45 (PwPoly30-1345). The thick (black) solid curve
denotes the results calculated by our new code while the thick (red) dashed one
is those calculated by the old code.

(A color version of this figure is available in the online journal.)

because the code fails to correctly determine the center of mass
during the computational iterations. For smaller mass ratio than
the model shown in Figure 8, MNS1

ADM/MNS2
ADM � 0.862, the old

code also fails to achieve the convergence, because the code
crushes at earlier steps of computational iteration.

We conclude that our new code gives results as accurate as
those obtained by the old code. In addition, it can compute
models with smaller mass ratios that the old code cannot.

4. NUMERICAL RESULTS

Quasi-equilibrium sequences for 18 EOSs are computed,
choosing three total masses, M0 = 2.4 M
, 2.7 M
, and
3.0 M
, and three mass ratios for each total mass. The computa-
tion is performed with the collocation points of Nr ×Nθ ×Nφ =
33 × 25 × 24 for larger separations and 33 × 17 × 16 for closer
ones. The number of domains which cover the computational
region around each star is six for larger separations and five for
closer ones. The results are summarized in Appendix B.

4.1. Contours of Baryon Rest-mass Density

Figures 9–12 show contours of baryon rest-mass density for 4
EOSs in the equatorial plane. Masses of the stars on the left- and
right-hand sides are MNS1

ADM = 1.15 M
 and MNS2
ADM = 1.55 M
,

respectively. All the figures are drawn for the closest separation
that we can choose. The X- and Y-axes are measured by the co-
ordinate length in km units. Figure 9 is for the tabulated EOS of
APR and Figure 10 is for that of GNH3. The former EOS gives
relatively compact stars, while the latter one produces rather
less compact stars. Figures 11 and 12 are selected among the
EOSs of piecewise polytrope, PwPoly30-1345 and PwPoly24-
1345. Both of the piecewise polytropes produce stars of a similar
size for a given mass, MNS

ADM � 1.3 M
, but the former model,
PwPoly30-1345, has a stiff EOS for the core (Γ1 = 3.0) while
the latter one, PwPoly24-1345, has a soft EOS (Γ1 = 2.4). This
difference in Γ1 is reflected strongly in the structure of more
massive star for which the central density is high and the effect
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Figure 8. Comparison of the relative difference of the numerically obtained
binding energy from that by the 3PN approximation along the same quasi-
equilibrium sequence in Figure 7. The (black) solid curve with filled circles
denotes the relative difference of the binding energy calculated by our new
code, and the (red) dashed curve with open squares is that computed by the old
code. The error bar is drawn for an estimated error size derived from the virial
error.

(A color version of this figure is available in the online journal.)

Figure 9. Contours of baryon rest-mass density for the EOS of APR. The star
on the left-hand side has MNS1

ADM = 1.15 M
 while that on the right-hand side
does MNS2

ADM = 1.55 M
. The thick solid circles denote the location of stellar
surface. The axes are the coordinate length in km units.

of Γ1 is appreciated. By contrast, a striking difference is not
seen for the less massive star.

4.2. Binding Energy and Total Angular Momentum

Figure 13 shows the binding energy of quasi-equilibrium se-
quences for five piecewise polytropic EOSs. Those sequences
are calculated for binary neutron stars composed of equal-
mass stars of MNS1

ADM = MNS2
ADM = 1.35 M
. All of the piece-

wise polytropes we select here have Γ1 = 3.0, but the
value of log10 P1 varies from 13.95 to 13.15. The thick (red)
short-dashed, thick (green) long-dashed, thick (blue) dot-
dashed, thick (violet) dot-dot-dashed, and thick (magenta)
dot-dash-dashed curves denote, respectively, the results for
log10 P1 = 13.95 (PwPoly30-1395), 13.55 (PwPoly30-1355),
13.45 (PwPoly30-1345), 13.35 (PwPoly30-1335), and 13.15
(PwPoly30-1315). The thin (black) solid curve denotes the



196 TANIGUCHI & SHIBATA Vol. 188

Figure 10. Same as Figure 9 but for the EOS of GNH3.

Figure 11. Same as Figure 9 but for the EOS of PwPoly30-1345.

Figure 12. Same as Figure 9 but for the EOS of PwPoly24-1345.

results in the 3PN approximation. The total angular momentum
for the same EOSs is also plotted in Figure 14. The sequences
are terminated just before the stars reach the mass-shedding
limit, because the spectral method we use has a problem in han-
dling a cusp-like figure. We will discuss the endpoint in detail
in Section 4.3.

Figure 13 shows that the orbital angular velocity at the closest
separation increases from M0Ω � 0.029 to � 0.056 as the value
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Figure 13. Binding energy along a quasi-equilibrium sequence of an equal-
mass binary neutron star as a function of the orbital angular velocity. Each
ADM mass of the neutron stars is set to 1.35 M
 at infinite separation. The
EOSs are the piecewise polytrope with Γ1 = 3.0. The thick (red) short-
dashed, thick (green) long-dashed, thick (blue) dot-dashed, thick (violet) dot-
dot-dashed, and thick (magenta) dot-dash-dashed curves are, respectively, the
cases of log10 P1 = 13.95 (PwPoly30-1395), 13.55 (PwPoly30-1355), 13.45
(PwPoly30-1345), 13.35 (PwPoly30-1335), and 13.15 (PwPoly30-1315). The
thin (black) solid curve denotes the results of the 3PN approximation.

(A color version of this figure is available in the online journal.)

of log10 P1 decreases from 13.95 to 13.15. Because the model
with log10 P1 = 13.95 (PwPoly30-1395) has the largest radius
for a spherical neutron star among the models in Figure 13,
the effect of tidal deformation is the largest. We understand
this behavior with the help of a Newtonian analytic estimation
as follows: by equating the gravity of a neutron star (NS1)
attracting on a test mass on the neutron star’s surface with the
tidal force of the companion neutron star (NS2) attracting on the
test mass, we obtain the separation at which the mass-shedding
will occur for NS1. The separation is written in the form

dms

rNS1
= A

(MNS2

MNS1

)1/3
, (60)

where A, rNS1, MNS1, and MNS2 denote a constant of order
unity, the NS1’s radius, the NS1’s mass, and the NS2’s mass,
respectively. Eliminating the separation at the mass-shedding
from the Keplerian angular velocity Ω = √

(MNS1 + MNS2)/d3
ms,

we have

MtotΩ =
( Mtot

ArNS1

)3/2(MNS1

MNS2

)1/2
, (61)

where Mtot ≡ MNS1 +MNS2 is the total mass. Taking the ratio of
the orbital angular velocity at the mass-shedding for PwPoly30-
1395 to that for PwPoly30-1315, we obtain

(MtotΩ)1395

(MtotΩ)1315
=

( r1315
NS1

r1395
NS1

)3/2
. (62)

Noting that the masses are MNS1 = MNS2 = 1.35 M
 and
rNS1 is the circumferential radius, we have the ratio as 0.51 from
Table 2. This value agrees approximately with the obtained ratio
of the orbital angular velocity at the closest separation,

(M0Ω)1395

(M0Ω)1315
� 0.029

0.056
� 0.52. (63)
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Figure 14. Same as Figure 13 but for the total angular momentum.

(A color version of this figure is available in the online journal.)
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Figure 15. Same as Figure 13 but for the piecewise polytrope with log10 P1 =
13.45. The thick (red) short-dashed, thick (green) long-dashed, and thick (blue)
dot-dashed curves denote the cases with the adiabatic index of Γ1 = 3.0
(PwPoly30-1345), 2.7 (PwPoly27-1345), and 2.4 (PwPoly24-1345), respec-
tively. The thin (black) solid curve denotes the results of the 3PN approximation.

(A color version of this figure is available in the online journal.)

As a result of the smaller orbital angular velocity at the
closest separation, the model with log10 P1 = 13.95 (PwPoly30-
1395) has the nondimensional angular momentum as large
as J/M2

0 ∼ 0.96, as shown in Figure 14. By contrast, the
most compact model with log10 P1 = 13.15 (PwPoly30-1315)
has J/M2

0 ∼ 0.84, much smaller than 0.96, because the
binary system can come closer than that composed of less
compact stars. These differences suggest that the merger process
will depend strongly on the EOS: for the stiffer EOS, the
nondimensional angular momentum at the onset of merger may
be too large to form a black hole soon, whereas for the softer
EOS, it may be small enough that the merged object collapses
to a black hole in a dynamical timescale ∼ 1 ms.

Figure 15 is drawn for the binding energy of equal-mass
binary neutron stars with MNS1

ADM = MNS2
ADM = 1.35 M
. The

chosen EOSs are the piecewise polytrope with a fixed value of
log10 P1 = 13.45, but the value of Γ1 is varied from 3.0 to 2.4.
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binary neutron stars with those of unequal-mass ones. The EOS is the piecewise
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stars. The thin (black) solid and thin (green) dotted curves are the results of the
3PN approximation for equal-mass and unequal-mass binaries, respectively.

(A color version of this figure is available in the online journal.)

The thick (red) short-dashed, thick (green) long-dashed, and
thick (blue) dot-dashed curves denote the results for Γ1 = 3.0
(PwPoly30-1345), 2.7 (PwPoly27-1345), and 2.4 (PwPoly24-
1345), respectively. For these three models, the radius of a
spherical star for MNS

ADM = 1.35 M
 has almost the same value
but very slightly more compact for Γ1 = 2.4 than for Γ1 = 3.0
(see Figure 1 and Table 2). It is found that the orbital angular
velocity at the closest separation increases from M0Ω � 0.044
to 0.046 as the adiabatic index of the neutron star core is
decreased from Γ1 = 3.0 to 2.4. This variation of the orbital
angular velocity is smaller than that by the change of log10 P1
as seen in Figure 13. This implies that for neutron stars of
mass 1.35M
, the variation in log10 P1, which affects the stellar
radius, results in a larger effect on the determination of the
orbital angular velocity at the closest separation than the effect
of Γ1. The reason for this is that the maximum density for the
neutron star mass of 1.35M
 is not so large that their structure
depends weakly on Γ1, which determines the stiffness of the
core EOS.

Figure 16 compares the binding energy of an equal-mass
binary neutron star with that of an unequal-mass one. The
EOS we choose here is the piecewise polytrope with Γ1 =
3.0 and log10 P1 = 13.45 (PwPoly30-1345). The thick (red)
dashed curve denotes the result for an equal-mass binary
with MNS1

ADM = MNS2
ADM = 1.35 M
, while the thick (blue)

dot-dashed one is for an unequal-mass binary composed of
MNS1

ADM = 1.15M
 and MNS2
ADM = 1.55 M
 stars. The thin

(black) solid and thin (green) dotted curves are the results of
the 3PN approximation for the equal-mass and unequal-mass
binaries, respectively. When the mass ratio decreases to the
value as small as 1.15 M
/1.55 M
 � 0.74, the fractional
binding energy Eb/M0 and orbital angular velocity M0Ω at
the closest separation decrease by about 10%. The reason why
the orbital angular velocity at the closest separation decreases
for the unequal-mass case is that the less massive star is
tidally deformed by the more massive companion star and
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Table 2
Selected Data of Spherical Stars with Piecewise Polytropic EOSs, Tabulated Realistic EOSs, and Fitted EOSs

EOS Name MNS
ADM (M
) MB (M
) RNS (km) aNS (km) C ρc (g cm−3) εc

PwPoly30-1395 1.150 1.225 15.08 13.33 0.1126 3.378(+14) 1.048
1.250 1.339 15.16 13.25 0.1218 3.560(+14) 1.053
1.350 1.455 15.23 13.16 0.1309 3.743(+14) 1.058
1.450 1.572 15.28 13.05 0.1401 3.930(+14) 1.063
1.550 1.691 15.32 12.93 0.1494 4.124(+14) 1.068
2.835 3.409 13.37 8.677 0.3131 1.085(+15) 1.425

PwPoly30-1355 1.150 1.245 12.23 10.47 0.1388 6.234(+14) 1.065
1.250 1.363 12.26 10.33 0.1505 6.623(+14) 1.072
1.350 1.484 12.28 10.18 0.1624 7.027(+14) 1.079
1.450 1.607 12.27 10.02 0.1744 7.461(+14) 1.088
1.550 1.732 12.26 9.835 0.1867 7.925(+14) 1.098
2.249 2.700 10.62 6.903 0.3126 1.724(+15) 1.429

PwPoly30-1345 1.150 1.250 11.59 9.821 0.1465 7.294(+14) 1.070
1.250 1.370 11.61 9.674 0.1590 7.770(+14) 1.078
1.350 1.493 11.61 9.509 0.1718 8.274(+14) 1.087
1.450 1.617 11.59 9.326 0.1847 8.821(+14) 1.097
1.550 1.745 11.55 9.120 0.1981 9.418(+14) 1.110
2.122 2.547 10.03 6.523 0.3123 1.934(+15) 1.429

PwPoly30-1335 1.150 1.257 10.98 9.200 0.1547 8.550(+14) 1.076
1.250 1.378 10.98 9.038 0.1681 9.140(+14) 1.085
1.350 1.502 10.96 8.856 0.1819 9.775(+14) 1.096
1.450 1.629 10.93 8.652 0.1960 1.048(+15) 1.108
1.550 1.759 10.87 8.421 0.2106 1.126(+15) 1.124
2.003 2.402 9.475 6.163 0.3121 2.169(+15) 1.429

PwPoly30-1315 1.150 1.271 9.814 8.026 0.1730 1.184(+15) 1.091
1.250 1.397 9.783 7.828 0.1887 1.277(+15) 1.104
1.350 1.525 9.728 7.604 0.2049 1.383(+15) 1.119
1.450 1.657 9.643 7.346 0.2220 1.507(+15) 1.139
1.550 1.794 9.515 7.040 0.2406 1.659(+15) 1.166
1.783 2.136 8.449 5.501 0.3117 2.732(+15) 1.431

PwPoly27-1345 1.150 1.247 11.69 9.919 0.1453 7.782(+14) 1.079
1.250 1.367 11.64 9.706 0.1586 8.439(+14) 1.089
1.350 1.489 11.57 9.471 0.1723 9.168(+14) 1.101
1.450 1.614 11.47 9.208 0.1866 9.984(+14) 1.116
1.550 1.742 11.35 8.911 0.2017 1.093(+15) 1.134
1.926 2.261 9.709 6.557 0.2929 2.175(+15) 1.410

PwPoly27-1335 1.150 1.255 10.91 9.133 0.1557 9.521(+14) 1.088
1.250 1.377 10.84 8.898 0.1703 1.040(+15) 1.100
1.350 1.501 10.74 8.634 0.1856 1.139(+15) 1.116
1.450 1.629 10.61 8.335 0.2017 1.255(+15) 1.135
1.550 1.761 10.44 7.985 0.2193 1.398(+15) 1.160
1.799 2.111 9.078 6.134 0.2926 2.489(+15) 1.410

PwPoly24-1345 1.150 1.242 11.83 10.06 0.1436 8.567(+14) 1.092
1.250 1.362 11.66 9.722 0.1584 9.609(+14) 1.107
1.350 1.485 11.45 9.349 0.1741 1.084(+15) 1.126
1.450 1.610 11.19 8.919 0.1914 1.238(+15) 1.150
1.550 1.739 10.84 8.396 0.2111 1.448(+15) 1.185
1.701 1.946 9.427 6.679 0.2665 2.477(+15) 1.383

PwPoly24-1335 1.150 1.252 10.76 8.980 0.1578 1.132(+15) 1.108
1.250 1.375 10.55 8.601 0.1750 1.291(+15) 1.128
1.350 1.501 10.27 8.158 0.1940 1.495(+15) 1.155
1.450 1.631 9.894 7.602 0.2164 1.788(+15) 1.197
1.566 1.790 8.690 6.160 0.2661 2.918(+15) 1.384

APR 1.150 1.248 11.37 9.601 0.1493 8.091(+14) 1.079
1.250 1.368 11.36 9.429 0.1624 8.519(+14) 1.086
1.350 1.491 11.35 9.249 0.1756 8.962(+14) 1.094
1.450 1.616 11.33 9.059 0.1890 9.433(+14) 1.103
1.550 1.745 11.29 8.856 0.2027 9.937(+14) 1.114
2.189 2.658 9.932 6.285 0.3254 1.908(+15) 1.454

BBB2 1.150 1.248 11.31 9.538 0.1501 8.685(+14) 1.086
1.250 1.369 11.25 9.317 0.1640 9.389(+14) 1.097
1.350 1.492 11.18 9.075 0.1783 1.016(+15) 1.109
1.450 1.618 11.08 8.807 0.1933 1.101(+15) 1.124
1.550 1.748 10.95 8.507 0.2090 1.198(+15) 1.142
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Table 2
(Continued)

EOS Name MNS
ADM (M
) MB (M
) RNS (km) aNS (km) C ρc (g cm−3) εc

1.920 2.267 9.506 6.355 0.2983 2.242(+15) 1.419

BPAL12 1.350 1.485 10.45 8.334 0.1908 1.698(+15) 1.191
1.455 1.622 9.021 6.700 0.2381 2.928(+15) 1.357

FPS 1.150 1.250 11.06 9.287 0.1535 9.338(+14) 1.090
1.250 1.372 10.99 9.054 0.1679 1.013(+15) 1.102
1.350 1.496 10.90 8.797 0.1828 1.102(+15) 1.116
1.450 1.623 10.78 8.507 0.1986 1.210(+15) 1.134
1.550 1.754 10.62 8.168 0.2156 1.345(+15) 1.158
1.800 2.103 9.279 6.343 0.2865 2.419(+15) 1.400

GNH3 1.150 1.221 14.47 12.72 0.1173 4.838(+14) 1.072
1.250 1.336 14.37 12.46 0.1284 5.227(+14) 1.079
1.350 1.453 14.26 12.19 0.1398 5.749(+14) 1.090
1.450 1.572 14.12 11.88 0.1517 6.409(+14) 1.103
1.550 1.693 13.92 11.52 0.1644 7.193(+14) 1.119
1.964 2.228 11.38 8.223 0.2549 1.749(+15) 1.366

SLy4 1.150 1.243 11.83 10.07 0.1435 7.582(+14) 1.080
1.250 1.363 11.80 9.864 0.1565 8.089(+14) 1.088
1.350 1.484 11.75 9.652 0.1697 8.631(+14) 1.098
1.450 1.609 11.69 9.423 0.1832 9.255(+14) 1.110
1.550 1.736 11.60 9.171 0.1973 9.928(+14) 1.123
2.049 2.429 9.986 6.614 0.3030 2.008(+15) 1.427

fitAPR 1.150 1.248 11.42 9.649 0.1487 7.980(+14) 1.078
1.250 1.368 11.41 9.477 0.1617 8.418(+14) 1.085
1.350 1.491 11.40 9.298 0.1749 8.877(+14) 1.094
1.450 1.616 11.37 9.106 0.1883 9.362(+14) 1.103
1.550 1.744 11.34 8.901 0.2019 9.884(+14) 1.114
2.184 2.649 9.923 6.285 0.3250 1.915(+15) 1.456

fitFPS 1.150 1.251 10.98 9.205 0.1546 9.571(+14) 1.091
1.250 1.373 10.91 8.966 0.1692 1.037(+15) 1.103
1.350 1.497 10.81 8.705 0.1844 1.129(+15) 1.118
1.450 1.625 10.69 8.413 0.2003 1.236(+15) 1.136
1.550 1.756 10.53 8.074 0.2175 1.369(+15) 1.160
1.799 2.105 9.233 6.295 0.2878 2.435(+15) 1.401

fitSLy4 1.150 1.243 11.76 9.994 0.1443 7.792(+14) 1.082
1.250 1.363 11.72 9.785 0.1575 8.316(+14) 1.090
1.350 1.485 11.66 9.565 0.1709 8.881(+14) 1.100
1.450 1.609 11.59 9.330 0.1847 9.495(+14) 1.112
1.550 1.737 11.51 9.074 0.1989 1.018(+15) 1.126
2.042 2.423 9.915 6.552 0.3042 2.029(+15) 1.429

starts shedding mass at a larger separation than that for the
equal-mass case. The binding energy decreases for the unequal-
mass case because it is proportional to the reduced mass
μ ≡ MNS1

ADMMNS2
ADM/M0 according to the results of the 3PN

approximation (the ratio of the unequal-mass case to the equal-
mass one is μuneq/μeq � 0.978) and the orbital angular velocity
at the termination point of the sequence should be smaller.

In Figure 17, the total angular momentum for the same models
as in Figure 16 is shown along both equal-mass and unequal-
mass sequences. The sequence of the total angular momentum
for the unequal-mass case is located below that of the equal-mass
case at the same orbital angular velocity. This is also because the
total angular momentum is proportional to the reduced mass,
according to the results of the 3PN approximation. However,
because the orbital angular velocity at the termination point
of the sequence is smaller for the unequal-mass case, its total
angular momentum is approximately the same value as that for
the equal-mass case coincidentally.

Finally, we show the effect of the total mass of binary neutron
stars on the binding energy in Figure 18. The EOS we choose
for this figure is one of the tabulated realistic EOSs, the APR
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Figure 17. Same as Figure 16 but for the total angular momentum.

(A color version of this figure is available in the online journal.)
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(A color version of this figure is available in the online journal.)

EOS. Figure 18 shows the results for three total masses, 2.4 M
,
2.7 M
, and 3.0 M
. As the neutron star mass increases, the star
becomes more compact and less subject to tidal disruption. For
a binary system composed of more massive neutron stars, it
is necessary that the two stars come closer to each other to
reach their mass-shedding limit. This makes the orbital angular
velocity at the mass-shedding limit increase for binary systems
with massive neutron stars. Because of this effect, the orbital
angular velocity at the closest separation is about 0.038 for
M0 = 2.4 M
 whereas it is about 0.054 for M0 = 3.0 M
.
We can understand this behavior by using Equation (61). By
substituting each total mass and circumferential radius, we
obtain the ratio of the orbital angular velocity as

(MtotΩ)2.4 M


(MtotΩ)3.0 M

�

(2.4 M
/11.37 km

3.0 M
/11.31 km

)3/2
� 0.71. (64)

The actual ratio of the orbital angular velocity at the closest
separation we obtained is

(M0Ω)2.4 M


(M0Ω)3.0 M

� 0.038

0.054
� 0.70. (65)

This value agrees again with the estimated ratio given in
Equation (64).

4.3. Endpoint of Sequences

We construct quasi-equilibrium sequences for three cases of
total mass, three mass ratios for each total mass, and 18 EOSs.
For all the sequences, we do not find the turning point of the
binding energy and total angular momentum, which represents
the innermost stable circular orbit of the binary system. Instead,
the sequences terminate at the mass-shedding limit of a less
massive star. (For equal-mass binaries, two neutron stars reach
the mass-shedding limit at the same time.) As explained before,
we stop constructing the sequences at χ ∼ 0.6 because our
spectral method code cannot handle a cusp-like figure which
appears at the mass-shedding limit. This implies that the closest
separation with the largest value of M0Ω we can calculate is not
the actual endpoint of the sequence.
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Figure 19. Mass-shedding indicator χ as a function of the orbital angular
velocity. The EOS we select is the piecewise polytrope with Γ1 = 3.0 and
log10 P1 = 13.45 (PwPoly30-1345), and sequences of the equal-mass case are
shown. The thick (black) solid, thick (red) dashed, and thick (blue) dot-dashed
curves denote the computed sequences for equal-mass binary neutron stars with
masses of MNS1

ADM = MNS2
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, 1.35 M
, and 1.50 M
, respectively.

The thin (black) dotted, thin (red) dashed, and thin (blue) dot-dashed curves
denote the extrapolated curves.

(A color version of this figure is available in the online journal.)

To determine the orbital angular velocity at the mass-shedding
limit, we extrapolate a curve of the mass-shedding indicator
χ as a function of M0Ω. The procedure is as follows: we
first make a fitting polynomial equation of χ as a function of
M0Ω for sequences. Then, we extrapolate the fitting polynomial
equation to χ = 0 and determine the value of M0Ω at
χ = 0. The extrapolated value of M0Ω at χ = 0 is defined
as M0Ωms. Figure 19 shows such extrapolated curves for the
piecewise polytropic EOS with Γ1 = 3.0 and log10 P1 =
13.45 (PwPoly30-1345). The thick (black) solid, thick (red)
dashed, and thick (blue) dot-dashed curves denote the computed
sequences for equal-mass binary neutron stars with masses
of MNS1

ADM = MNS2
ADM = 1.20 M
, 1.35M
, and 1.50 M
,

respectively. The thin (black) dotted, thin (red) dashed, and thin
(blue) dot-dashed curves denote the extrapolated curves.

For unequal-mass binaries, we apply the same method of
extrapolation to less massive stars which will be tidally disrupted
by their companion more massive stars. Figure 20 shows the
sequences and extrapolated curves for unequal-mass binary
neutron stars for the piecewise polytropic EOS with Γ1 = 3.0
and log10 P1 = 13.45 (PwPoly30-1345). The (black) solid,
(red) dashed, and (blue) dot-dashed curves denote the computed
sequences with masses of MNS1

ADM versus MNS2
ADM= 1.00 M


versus 1.40 M
, 1.15 M
 versus 1.55 M
, and 1.30 M
 versus
1.70 M
, respectively. For each curve, the thick and thin ones
denote the sequences for less massive stars and those for more
massive ones, respectively. The thin (black) dotted, thin (red)
dot-dash-dashed, and thin (blue) dot-dot-dashed curves are the
extrapolated ones.

The estimated orbital angular velocity at the mass-shedding
limit is by about 20% larger than that at the closest separation
we can calculate for each sequence where the less massive
star has χ ∼ 0.6. The orbital angular velocity at the mass-
shedding limit computed by the extrapolation is summarized in
Appendix C.
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 vs. 1.40 M
, 1.15 M
 vs. 1.55 M
,

and 1.30 M
 vs. 1.70 M
, respectively. For each curve above, the thick and thin
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(A color version of this figure is available in the online journal.)

Let us continue investigating the orbital angular velocity at
the mass-shedding limit, M0Ωms. By regarding the Newtonian
quantities, Mtot, MNS1, MNS2, and rNS1, in Equation (61) as the
relativistic ones, M0, MNS1

ADM, MNS2
ADM, and RNS1, where RNS1 is

the circumferential radius of the less massive star, we can write
M0Ωms by an empirical formula as

M0Ωms = BC3/2
NS1

(
1 +

1

q

)3/2
q1/2, (66)

where q ≡ MNS1
ADM/MNS2

ADM � 1 is the mass ratio, CNS1 ≡
MNS1

ADM/RNS1 is the compactness of the less massive neutron
star, and B ≡ (1/A)3/2 is a constant. Figure 21 plots all equal-
mass data as a function of the compactness of a neutron star,
and we perform the fitting procedure by assuming the form of
Equation (66). By this fitting, we determine the value of constant
as B � 0.260. Note here that we do not find any evidence that
the value of B depends on the EOS. In other words, the value of
M0Ωms depends only on the compactness of a neutron star, and
only weakly on the EOSs.

Figure 22 shows the results of fitting of M0Ωms for unequal-
mass binaries as a function of the compactness of a less massive
neutron star. For the fitting, we use the form of Equation (66)
and determine the constant B for each mass ratio. The obtained
values are B � 0.268 for the case of 1.10M
 versus 1.30 M

(q � 0.846), B � 0.275 for 1.00 M
 versus 1.40 M
 (q �
0.714), B � 0.270 for 1.25 M
 versus 1.45 M
 (q � 0.862),
B � 0.273 for 1.15 M
 versus 1.55 M
 (q � 0.742), B �
0.268 for 1.40 M
 versus 1.60 M
 (q = 0.875), and B � 0.279
for 1.30 M
 versus 1.70M
 (q � 0.765). Even though the value
B depends weakly on the mass ratio, i.e., the case of smaller q
tends to have a larger B, we suppose that the dependence comes
from the error of extrapolation because the deviation of B from
its averaged value, 0.270, is about 3%. We would like to remind
that the estimated orbital angular velocity at the mass-shedding
limit is about 20% larger than that at the closest separation we
can calculate: the error of 3% could be produced by a slight
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Figure 21. Fitting curve for the equal-mass models. The filled (red) circles
denote the orbital angular velocity at the mass-shedding limit obtained by our
extrapolation method as a function of the compactness of a neutron star. The
(black) dashed curve is the fitting curve for the data.

(A color version of this figure is available in the online journal.)
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1.40 M
 vs. 1.60 M
, and 1.30 M
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(green) short-dashed, (blue) long-dashed, (violet) dot-dashed, and (magenta)
dot-dot-dashed curves are the fitting curves for the data.

(A color version of this figure is available in the online journal.)

change in the extrapolation curve. From the results for the mass
ratio 0.71 < q � 1, we conclude that the constant B which
appears in Equation (66) can be set to B = 0.270.

The value of B = 0.270 is slightly larger than that derived
for Newtonian close binaries (Paczyński 1971). If we translate
the constant in Paczyński (1971) for an equal-mass binary, it
becomes B = 0.383/2 � 0.23; our result is about 17% larger.
On the other hand, the value of B = 0.270 we obtained is
the same as that found for quasi-equilibrium sequences of black
hole-neutron star binaries in general relativity in Taniguchi et al.
(2008). In addition, Shibata & Uryū (2006, 2007) give the same
value for a black hole-neutron star binary in general relativity
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(A color version of this figure is available in the online journal.)

where the neutron star is corotating. The value of B = 0.270
with Equation (66) could be widely used as an estimation of the
orbital angular velocity at the mass-shedding limit for neutron
stars in a relativistic binary system.

4.4. Quasi-stationary Evolution of the Orbital Angular Velocity

As we stated in Section 1, one of the primary purposes for
constructing quasi-equilibrium states is to provide initial data
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Figure 25. Same as Figure 24 but for Γ1 = 3.0 and log10 P1 = 13.45
(PwPoly30-1345).

(A color version of this figure is available in the online journal.)
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for inspiral and merger simulations in numerical relativity. It
will be quite useful for numerical relativity community, if we
provide quantities with which they can compare the results of
simulations in the inspiral phase. One of the quantities derived
from quasi-equilibrium results is the time evolution of the orbital
angular velocity. To obtain the orbital angular velocity as a
function of time, we adopt a similar method introduced by Boyle
et al. (2007). Assuming the quasi-stationary adiabatic evolution
of the inspiral orbit, we may write the time derivative of the
orbital angular velocity as

dΩ
dt

= dE/dt

dE/dΩ
≡ F (Ω)−1. (67)

This equation is the same as Equation (55) in Uryū et al. (2009).
For the temporal change in the binding energy of the binary
neutron stars, dE/dt , we use the 3.5PN equation shown in
Blanchet (2006). On the other hand, we estimate the change in
the binding energy, dE/dΩ, as follows: we write the binding
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Table 3
Quasi-equilibrium Sequence Data for the Polytropic EOS with Γ = 2

d̄ d/M0 M0Ω Eb/M0 J/M2
0 χ1 δχ or χ2 δM

M̄B = 0.15 vs. 0.15

4.872 17.46 1.270(−2) −6.481(−3) 1.1675 0.9755 8.375(−10) 1.285(−5)
4.263 15.28 1.535(−2) −7.294(−3) 1.1094 0.9612 1.812(−9) 1.403(−5)
3.959 14.19 1.705(−2) −7.779(−3) 1.0795 0.9499 3.374(−9) 1.463(−5)
3.654 13.10 1.909(−2) −8.331(−3) 1.0490 0.9336 7.775(−9) 1.572(−5)
3.350 12.01 2.156(−2) −8.964(−3) 1.0179 0.9093 2.219(−8) 1.894(−5)
3.045 10.91 2.463(−2) −9.692(−3) 0.9865 0.8705 1.182(−8) 2.438(−5)
2.862 10.26 2.684(−2) −1.018(−2) 0.9676 0.8347 4.197(−8) 3.673(−5)
2.680 9.605 2.939(−2) −1.073(−2) 0.9487 0.7816 5.520(−9) 8.642(−5)
2.497 8.950 3.239(−2) −1.132(−2) 0.9306 0.6902 1.243(−8) 1.433(−4)
2.375 8.513 3.473(−2) −1.171(−2) 0.9186 0.5562 4.544(−9) 1.348(−4)

M̄B = 0.14 vs. 0.16

4.872 17.47 1.269(−2) −6.454(−3) 1.1635 0.9668 0.9826 1.438(−5)
4.263 15.29 1.534(−2) −7.264(−3) 1.1056 0.9476 0.9724 1.618(−5)
3.959 14.20 1.704(−2) −7.747(−3) 1.0758 0.9322 0.9643 1.729(−5)
3.654 13.11 1.907(−2) −8.297(−3) 1.0454 0.9100 0.9527 1.911(−5)
3.350 12.01 2.154(−2) −8.927(−3) 1.0144 0.8762 0.9356 2.397(−5)
3.045 10.92 2.461(−2) −9.653(−3) 0.9832 0.8210 0.9087 3.211(−5)
2.862 10.27 2.681(−2) −1.014(−2) 0.9644 0.7668 0.8846 4.867(−5)
2.741 9.829 2.847(−2) −1.050(−2) 0.9518 0.7154 0.8634 8.845(−5)
2.619 9.392 3.031(−2) −1.087(−2) 0.9397 0.6349 0.8353 1.165(−4)
2.558 9.174 3.132(−2) −1.107(−2) 0.9336 0.5703 0.8175 1.291(−4)

M̄B = 0.13 vs. 0.17

4.872 17.51 1.265(−2) −6.371(−3) 1.1516 0.9562 0.9886 1.451(−5)
4.263 15.32 1.530(−2) −7.169(−3) 1.0943 0.9307 0.9817 1.675(−5)
3.959 14.22 1.699(−2) −7.646(−3) 1.0648 0.9101 0.9763 1.829(−5)
3.654 13.13 1.902(−2) −8.190(−3) 1.0348 0.8801 0.9687 2.149(−5)
3.350 12.04 2.149(−2) −8.810(−3) 1.0043 0.8337 0.9573 2.955(−5)
3.167 11.38 2.324(−2) −9.223(−3) 0.9858 0.7918 0.9478 3.376(−5)
3.045 10.94 2.455(−2) −9.521(−3) 0.9736 0.7534 0.9398 4.321(−5)
2.923 10.50 2.597(−2) −9.846(−3) 0.9611 0.7026 0.9303 7.790(−5)
2.832 10.18 2.714(−2) −1.009(−2) 0.9521 0.6491 0.9215 9.314(−5)
2.741 9.847 2.841(−2) −1.035(−2) 0.9430 0.5696 0.9109 1.086(−4)

Table 4
Quasi-equilibrium Sequence Data for the Piecewise Polytropic EOSs, the Tabulated Realistic EOSs, and the EOSs with a Fitting Formula

EOS Name M0 MNS1
ADM vs. MNS2

ADM d/M0 M0Ω Eb/M0 J/M2
0 χ1 δχ or χ2 δM

Piecewise polytropic EOSs

PwPoly30-1395 2.4 M
 1.20 M
 vs. 1.20 M
 22.57 8.788(−3) −5.137(−3) 1.2952 0.9763 7.598(−11) 1.528(−6)
19.75 1.065(−2) −5.801(−3) 1.2267 0.9626 6.139(−11) 3.168(−6)
18.34 1.185(−2) −6.200(−3) 1.1912 0.9517 1.166(−10) 4.497(−6)
16.93 1.328(−2) −6.657(−3) 1.1549 0.9359 5.224(−11) 6.882(−6)
15.52 1.504(−2) −7.183(−3) 1.1178 0.9122 1.532(−10) 1.252(−5)
14.11 1.722(−2) −7.792(−3) 1.0801 0.8738 1.578(−10) 2.245(−5)
13.26 1.880(−2) −8.208(−3) 1.0574 0.8376 1.038(−10) 4.047(−5)
12.70 1.999(−2) −8.508(−3) 1.0423 0.8039 1.902(−12) 6.155(−5)
11.85 2.205(−2) −8.985(−3) 1.0203 0.7269 8.396(−11) 1.025(−4)
11.15 2.411(−2) −9.369(−3) 1.0031 0.6040 1.677(−10) 7.167(−5)

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)

energy as

Eb = (E)3.5PN + ax5 + bx6 + cx7, (68)

where x ≡ (M0Ω)2/3, and (E)3.5PN denotes the binding energy
through 3.5PN order. The constants, a, b, and c, are determined
by numerically fitting the obtained sequences. Then we calculate
the change in the binding energy by taking the derivative with

respect to the orbital angular velocity as

dE

dΩ
= d

dΩ
Eb. (69)

By numerically integrating Equation (67), we obtain the
orbital angular velocity as a function of time,

t =
∫ Ωfin

Ωini

F (Ω)dΩ. (70)
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Table 5
Quasi-equilibrium Sequence Data for the Piecewise Polytropic EOSs Calculated by the Old Code

EOS Name d/M0 M0Ω Eb/M0 J/M2
0 χ1 δχ δM

M0 = 2.7 M
 (1.35 M
 vs. 1.35 M
)

PwPoly30-1395 20.06 1.042(−2) −5.716(−3) 1.2349 0.9777 7.312(−11) 2.312(−5)
17.56 1.261(−2) −6.445(−3) 1.1712 0.9647 6.789(−13) 2.364(−5)
16.30 1.402(−2) −6.883(−3) 1.1382 0.9543 4.033(−11) 2.397(−5)
15.05 1.571(−2) −7.382(−3) 1.1046 0.9393 1.640(−12) 2.436(−5)
13.79 1.777(−2) −7.954(−3) 1.0703 0.9168 7.662(−12) 2.480(−5)
12.54 2.032(−2) −8.615(−3) 1.0355 0.8807 2.144(−12) 2.527(−5)
11.79 2.218(−2) −9.057(−3) 1.0146 0.8471 2.353(−11) 2.553(−5)
11.29 2.358(−2) −9.372(−3) 1.0008 0.8161 2.248(−10) 2.565(−5)
10.53 2.600(−2) −9.860(−3) 0.9808 0.7461 7.776(−11) 2.815(−5)
9.782 2.891(−2) −1.036(−2) 0.9625 0.6083 8.829(−13) 1.793(−5)

PwPoly30-1355 17.56 1.261(−2) −6.345(−3) 1.1713 0.9862 2.181(−11) 7.871(−5)
15.05 1.570(−2) −7.286(−3) 1.1040 0.9764 8.569(−12) 7.501(−5)
13.79 1.776(−2) −7.866(−3) 1.0692 0.9680 1.342(−11) 7.214(−5)
12.54 2.030(−2) −8.540(−3) 1.0337 0.9552 3.733(−11) 6.837(−5)
11.29 2.352(−2) −9.331(−3) 0.9974 0.9346 5.479(−12) 6.322(−5)
10.03 2.769(−2) −1.027(−2) 0.9607 0.8986 1.116(−10) 5.505(−5)
9.280 3.084(−2) −1.091(−2) 0.9388 0.8623 5.875(−11) 4.818(−5)
8.778 3.329(−2) −1.136(−2) 0.9244 0.8266 2.272(−10) 4.204(−5)
8.026 3.768(−2) −1.207(−2) 0.9041 0.7351 6.037(−11) 2.576(−5)
7.524 4.122(−2) −1.254(−2) 0.8923 0.6058 2.536(−10) 2.027(−5)

PwPoly30-1345 17.56 1.261(−2) −6.376(−3) 1.1709 0.9894 4.763(−11) 4.829(−5)
15.05 1.570(−2) −7.320(−3) 1.1037 0.9818 2.422(−11) 5.201(−5)
13.79 1.775(−2) −7.901(−3) 1.0689 0.9753 3.826(−11) 5.480(−5)
12.54 2.029(−2) −8.577(−3) 1.0332 0.9654 3.836(−11) 5.855(−5)
11.29 2.351(−2) −9.372(−3) 0.9968 0.9496 6.109(−11) 6.303(−5)
10.03 2.767(−2) −1.031(−2) 0.9599 0.9225 3.944(−11) 6.359(−5)
8.778 3.325(−2) −1.143(−2) 0.9229 0.8705 2.735(−11) 5.800(−5)
8.026 3.758(−2) −1.219(−2) 0.9015 0.8107 4.171(−9) 4.860(−5)
7.524 4.107(−2) −1.270(−2) 0.8881 0.7439 8.933(−12) 3.411(−5)
7.023 4.517(−2) −1.320(−2) 0.8764 0.6095 1.665(−10) 4.469(−5)

PwPoly30-1335 17.56 1.262(−2) −6.407(−3) 1.1711 0.9920 1.568(−11) 6.942(−6)
15.05 1.571(−2) −7.351(−3) 1.1039 0.9862 3.187(−11) 1.039(−5)
13.79 1.776(−2) −7.932(−3) 1.0690 0.9811 2.014(−11) 1.309(−5)
12.54 2.030(−2) −8.609(−3) 1.0332 0.9735 1.099(−11) 1.671(−5)
11.29 2.351(−2) −9.406(−3) 0.9967 0.9615 6.710(−11) 2.172(−5)
10.03 2.767(−2) −1.035(−2) 0.9595 0.9411 2.062(−12) 2.915(−5)
8.778 3.323(−2) −1.149(−2) 0.9220 0.9033 4.444(−11) 4.207(−5)
8.026 3.754(−2) −1.227(−2) 0.8999 0.8624 2.899(−12) 4.902(−5)
7.023 4.500(−2) −1.338(−2) 0.8724 0.7497 7.165(−11) 3.747(−5)
6.521 4.979(−2) −1.393(−2) 0.8609 0.5995 1.616(−9) 4.463(−5)

PwPoly30-1315 12.54 2.031(−2) −8.663(−3) 1.0335 0.9854 7.983(−12) 7.350(−5)
11.29 2.352(−2) −9.461(−3) 0.9968 0.9786 4.702(−11) 6.898(−5)
10.03 2.767(−2) −1.041(−2) 0.9593 0.9673 1.884(−11) 6.251(−5)
8.778 3.322(−2) −1.156(−2) 0.9214 0.9468 1.995(−11) 5.273(−5)
7.524 4.091(−2) −1.295(−2) 0.8836 0.9051 9.948(−12) 3.645(−5)
6.772 4.710(−2) −1.390(−2) 0.8619 0.8556 1.887(−7) 2.042(−5)
6.521 4.955(−2) −1.421(−2) 0.8551 0.8303 2.438(−11) 1.992(−5)
6.270 5.220(−2) −1.455(−2) 0.8484 0.7979 5.634(−12) 9.248(−6)
6.019 5.510(−2) −1.488(−2) 0.8421 0.7535 2.232(−11) 2.958(−6)
5.769 5.830(−2) −1.519(−2) 0.8365 0.6822 1.244(−9) 2.976(−5)

PwPoly27-1345 17.56 1.262(−2) −6.465(−3) 1.1711 0.9894 1.135(−12) 5.300(−5)
15.05 1.571(−2) −7.408(−3) 1.1039 0.9818 1.030(−10) 5.051(−5)
13.79 1.776(−2) −7.988(−3) 1.0690 0.9753 5.215(−11) 4.861(−5)
12.54 2.030(−2) −8.664(−3) 1.0333 0.9654 4.492(−13) 4.610(−5)
11.29 2.351(−2) −9.459(−3) 0.9968 0.9497 6.381(−12) 4.256(−5)
10.03 2.767(−2) −1.040(−2) 0.9598 0.9229 1.780(−11) 3.729(−5)
8.778 3.325(−2) −1.153(−2) 0.9227 0.8718 3.761(−11) 2.875(−5)
8.026 3.757(−2) −1.229(−2) 0.9010 0.8139 3.856(−8) 2.055(−5)
7.524 4.104(−2) −1.282(−2) 0.8872 0.7488 3.069(−11) 1.487(−5)
7.023 4.510(−2) −1.334(−2) 0.8748 0.6220 6.351(−10) 1.348(−5)

PwPoly27-1335 17.56 1.262(−2) −6.462(−3) 1.1714 0.9927 1.984(−11) 6.815(−5)
15.05 1.571(−2) −7.406(−3) 1.1041 0.9873 2.861(−11) 6.626(−5)
12.54 2.030(−2) −8.663(−3) 1.0334 0.9756 3.534(−11) 6.243(−5)
11.29 2.351(−2) −9.460(−3) 0.9968 0.9646 3.260(−11) 5.937(−5)
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Table 5
(Continued)

EOS Name d/M0 M0Ω Eb/M0 J/M2
0 χ1 δχ δM

10.03 2.767(−2) −1.041(−2) 0.9595 0.9459 1.010(−11) 5.483(−5)
8.778 3.323(−2) −1.155(−2) 0.9219 0.9116 2.458(−11) 4.788(−5)
8.026 3.753(−2) −1.233(−2) 0.8995 0.8751 1.174(−11) 4.147(−5)
7.274 4.289(−2) −1.318(−2) 0.8780 0.8117 4.060(−12) 3.737(−5)
6.772 4.722(−2) −1.377(−2) 0.8646 0.7356 9.635(−12) 3.163(−5)
6.396 5.101(−2) −1.422(−2) 0.8556 0.6171 4.778(−10) 5.789(−6)

PwPoly24-1345 17.56 1.262(−2) −6.400(−3) 1.1712 0.9897 2.027(−11) 4.727(−6)
15.05 1.571(−2) −7.344(−3) 1.1039 0.9823 2.414(−11) 7.000(−6)
13.79 1.776(−2) −7.925(−3) 1.0690 0.9760 1.211(−11) 8.746(−6)
12.54 2.030(−2) −8.601(−3) 1.0333 0.9665 1.529(−11) 1.017(−5)
11.29 2.351(−2) −9.397(−3) 0.9968 0.9514 5.580(−12) 1.116(−5)
10.03 2.767(−2) −1.034(−2) 0.9596 0.9256 2.222(−12) 1.185(−5)
8.778 3.324(−2) −1.147(−2) 0.9223 0.8771 2.218(−11) 1.162(−5)
8.026 3.755(−2) −1.225(−2) 0.9003 0.8232 1.652(−9) 1.071(−5)
7.274 4.293(−2) −1.307(−2) 0.8794 0.7206 3.800(−11) 4.368(−6)
6.897 4.615(−2) −1.350(−2) 0.8699 0.6067 1.599(−9) 2.153(−5)

PwPoly24-1335 17.56 1.263(−2) −6.419(−3) 1.1719 0.9941 4.219(−12) 4.160(−5)
15.05 1.572(−2) −7.362(−3) 1.1044 0.9896 1.890(−11) 3.917(−5)
12.54 2.031(−2) −8.621(−3) 1.0335 0.9800 1.687(−11) 3.488(−5)
11.29 2.352(−2) −9.420(−3) 0.9968 0.9709 8.805(−12) 3.134(−5)
10.03 2.767(−2) −1.037(−2) 0.9594 0.9557 3.814(−11) 2.622(−5)
8.778 3.322(−2) −1.152(−2) 0.9215 0.9282 2.864(−11) 1.870(−5)
8.026 3.751(−2) −1.231(−2) 0.8988 0.8997 6.863(−13) 1.218(−5)
7.023 4.490(−2) −1.350(−2) 0.8694 0.8292 1.460(−12) 5.031(−6)
6.521 4.957(−2) −1.413(−2) 0.8555 0.7620 1.019(−11) 4.111(−6)
6.145 5.365(−2) −1.462(−2) 0.8461 0.6651 1.809(−10) 2.280(−5)

Here Ωini is the initial orbital angular velocity at which the time
is defined to be zero, and Ωfin is the final orbital angular velocity.
For Ωfin, we use the orbital angular velocity at the mass-shedding
limit obtained in Section 4.3.

Figure 23 shows the orbital angular velocity as a func-
tion of time for three piecewise polytropes with Γ1 = 3.0.
The thick (red) dashed, thick (blue) dot-dashed, and thick
(green) dot-dot-dashed curves denote the results for log10 P1 =
13.95 (PwPoly30-1395), 13.45 (PwPoly30-1345), and 13.15
(PwPoly30-1315), respectively. All of them are calculated by
using the equal-mass sequences of MNS1

ADM = MNS2
ADM = 1.35 M
.

We also show two reference curves of TaylorT1 and TaylorT4
introduced by Boyle et al. (2007). The initial orbital angular
velocity is set to M0Ωini = 0.03. It is found that the curve
of the most compact neutron stars (the dot-dot-dashed curve,
PwPoly30-1315) is the closest to that of TaylorT4 among all
the models. This is reasonable because the neutron stars in this
EOS are the most compact and tidal effects are the weakest.
On the other hand, the curve of the least compact neutron stars
(the dashed curve, PwPoly30-1395) has already deviated from
the curves of TaylorT1 and TaylorT4 before reaching the initial
orbital angular velocity M0Ωini = 0.03, because of the tidal de-
formation. This shows that if we would like to compare the time
evolution of the orbital angular velocity obtained by simulations,
we need to start the simulations from a much smaller value of
the orbital angular velocity for such less-compact neutron star
models.

Figure 23 also shows that the quasi-equilibrium results are
closer to those of TaylorT4 than those of TaylorT1, even
though our calculation method of the orbital angular velocity
as a function of time is similar to that of TaylorT1 (see
Equation (67)). We, however, believe that at the limit of test
mass, our method gives similar results of TaylorT1.

Figures 24–26 compare the results of unequal-mass binaries
with those of equal-mass ones with the total mass of M0 =
2.7 M
. The equal-mass binary has the mass of MNS1

ADM =
MNS2

ADM = 1.35 M
, and the unequal-mass binary does
MNS1

ADM = 1.15 M
 and MNS2
ADM = 1.55 M
. The EOSs are the

same as those in Figure 23, but the results for log10 P1 =
13.95 (PwPoly30-1395), 13.45 (PwPoly30-1345), and 13.15
(PwPoly30-1315) are shown in Figures 24–26, respectively.
From these figures, we find that the curves for unequal-mass
binaries are located below those for equal-mass binaries for
t > 0 and are closer to the post-Newtonian results, in particular
for a less-compact neutron star model (see Figures 25 and 26). It
is also found that the curves for unequal-mass binaries terminate
before their deviation from the post-Newtonian results becomes
larger. These two findings imply that even though the deforma-
tion of the less massive star is larger in the case of unequal-mass
binaries than that in the equal-mass case when we compare at
the same orbital angular velocity, the more massive star remains
close to a spherical star and dominates the motion of binary sys-
tem in the unequal-mass case. The effect of the deformation of
stars on the orbital angular velocity is larger for the equal-mass
binaries if the total mass is the same.

4.5. Comparison of the Results by Tabulated Realistic EOSs
with Those by a Fitting Formula

Before closing Section 4, we would like to comment on the
results by using the fitted EOSs. As shown in Figure 3, the
mass–radius relation is very close to that for the tabulated
realistic EOSs because we mimic them in constructing the
fitting formula (Shibata et al. 2005; Shibata & Taniguchi 2006).
As expected, the difference between the results for the fitted
EOSs and those for the tabulated realistic EOSs is very small.
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Even for the orbital angular velocity at the mass-shedding
limit which is obtained by the extrapolation of sequences, the
difference between the results of these two EOSs is less than
about 5%.

5. SUMMARY

In the present paper, quasi-equilibrium sequences of binary
neutron stars are constructed for 18 EOSs except for the Γ = 2
polytrope, in the IWM framework in general relativity. The
EOSs we choose are nine piecewise polytropes, six tabulated
realistic EOSs derived by using various theories of dense
nuclear matter and different solution methods of the many-body
problem in nuclear physics, and three EOSs expressed by a
fitting formula. We employ three total masses, M0 = 2.4 M
,
2.7 M
, and 3.0 M
 for each EOS, and compute sequences
of three mass ratios for each total mass: i.e., MNS1

ADM versus
MNS2

ADM= 1.20 M
 versus 1.20 M
, 1.10 M
 versus 1.30 M
,
and 1.00 M
 versus 1.40 M
 for M0 = 2.4 M
; 1.35 M

versus 1.35 M
, 1.25 M
 versus 1.45 M
, and 1.15 M
 versus
1.55 M
 for M0 = 2.7 M
; and 1.50 M
 versus 1.50 M
,
1.40 M
 versus 1.60 M
, and 1.30 M
 versus 1.70 M
 for
M0 = 3.0 M
.

We focus on the unequal-mass sequences and compare their
results with those of the equal-mass case. Changing the mass
ratio, the total mass, and the EOSs, we investigate the behavior
of the binding energy and total angular momentum along a
sequence, the endpoint of sequences, and the orbital angular
velocity as a function of time. For example, it is found for
the piecewise polytropic EOSs that the change in stellar radius
fixing the stiffness of the core EOS makes the orbital angular
velocity at the mass-shedding limit vary widely, while the
change in stiffness of the core EOS fixing the stellar radius does
not change the orbital angular velocity at the mass-shedding
limit significantly.

It is also found that the orbital angular velocity at the
closest separation decreases as we decrease the mass ratio,
MNS1

ADM/MNS2
ADM � 1. The reason is that the less massive star in

an unequal-mass binary is tidally deformed by the companion
more massive star and starts shedding mass at larger separation
than that for the equal-mass case. It is found that the orbital
angular velocity at the mass-shedding limit increases as the
neutron star mass increases. This is because a more massive
star becomes more compact and more difficult to be tidally
disrupted for the same EOS. This implies that the binary neutron
stars with massive stars need to come closer than those with
less massive stars for reaching the mass-shedding limit. The
orbital angular velocity at the mass-shedding limit is analyzed
by using a Newtonian argument, and an empirical formula is
found as

M0Ωms = 0.270C3/2
NS1

(
1 +

1

q

)3/2
q1/2. (71)

We have provided tables for 160 sequences as shown in
Appendix B. Those tables may be useful as one of the database
for future works on binary neutron stars in quasi-equilibrium
and as a guideline of numerical simulations for the inspiral and
merger.

We thank Charalampos Markakis and Koutarou Kyutoku
for providing a list of parameters for the piecewise polytropic
equations of state. We also thank John L. Friedman for useful
comments. This work was supported in part by NSF Grant

Table 6
Orbital Angular Velocity at the Mass-shedding Limit

EOS Name M0(M
) MNS1
ADM(M
) MNS2

ADM(M
) M0Ωms

Piecewise polytropic EOSs

PwPoly30-1395 2.40 1.20 1.20 0.0289
1.10 1.30 0.0276
1.00 1.40 0.0261

2.70 1.35 1.35 0.0343
1.25 1.45 0.0326
1.15 1.55 0.0313

3.00 1.50 1.50 0.0402
1.40 1.60 0.0384
1.30 1.70 0.0367

PwPoly30-1355 2.40 1.20 1.20 0.0404
1.10 1.30 0.0384
1.00 1.40 0.0362

2.70 1.35 1.35 0.0466
1.25 1.45 0.0448
1.15 1.55 0.0438

3.00 1.50 1.50 0.0552
1.40 1.60 0.0526
1.30 1.70 0.0504

PwPoly30-1345 2.40 1.20 1.20 0.0441
1.10 1.30 0.0415
1.00 1.40 0.0396

2.70 1.35 1.35 0.0534
1.25 1.45 0.0508
1.15 1.55 0.0468

3.00 1.50 1.50 0.0610
1.40 1.60 0.0588
1.30 1.70 0.0551

PwPoly30-1335 2.40 1.20 1.20 0.0477
1.10 1.30 0.0459
1.00 1.40 0.0432

2.70 1.35 1.35 0.0565
1.25 1.45 0.0543
1.15 1.55 0.0512

3.00 1.50 1.50 0.0675
1.40 1.60 0.0643
1.30 1.70 0.0616

PwPoly30-1315 2.40 1.20 1.20 0.0545
1.10 1.30 0.0518
1.00 1.40 0.0501

2.70 1.35 1.35 0.0692
1.25 1.45 0.0627
1.15 1.55 0.0590

PwPoly27-1345 2.40 1.20 1.20 0.0434
1.10 1.30 0.0412
1.00 1.40 0.0385

2.70 1.35 1.35 0.0516
1.25 1.45 0.0500
1.15 1.55 0.0466

3.00 1.50 1.50 0.0630
1.40 1.60 0.0588
1.30 1.70 0.0557

PwPoly27-1335 2.40 1.20 1.20 0.0491
1.10 1.30 0.0460
1.00 1.40 0.0428

2.70 1.35 1.35 0.0588
1.25 1.45 0.0555
1.15 1.55 0.0520

3.00 1.50 1.50 –
1.40 1.60 0.0657
1.30 1.70 0.0625

PwPoly24-1345 2.40 1.20 1.20 0.0429
1.10 1.30 0.0396
1.00 1.40 0.0364
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Table 6
(Continued)

EOS Name M0(M
) MNS1
ADM(M
) MNS2

ADM(M
) M0Ωms

2.70 1.35 1.35 0.0520
1.25 1.45 0.0488
1.15 1.55 0.0451

3.00 1.50 1.50 0.0666
1.40 1.60 0.0605

PwPoly24-1335 2.40 1.20 1.20 0.0503
1.10 1.30 0.0457
1.00 1.40 0.0419

2.70 1.35 1.35 0.0632
1.25 1.45 0.0579

Tabulated realistic EOSs

APR 2.40 1.20 1.20 0.0453
1.10 1.30 0.0423
1.00 1.40 0.0400

2.70 1.35 1.35 0.0549
1.25 1.45 0.0531
1.15 1.55 0.0498

3.00 1.50 1.50 0.0638
1.40 1.60 0.0627
1.30 1.70 0.0607

BBB2 2.40 1.20 1.20 0.0456
1.10 1.30 0.0426
1.00 1.40 0.0405

2.70 1.35 1.35 0.0554
1.25 1.45 0.0528
1.15 1.55 0.0493

3.00 1.50 1.50 0.0657
1.40 1.60 0.0636
1.30 1.70 0.0617

BPAL12 2.40 1.20 1.20 0.0470
1.10 1.30 0.0428

2.70 1.35 1.35 0.0603

FPS 2.40 1.20 1.20 0.0480
1.10 1.30 0.0449
1.00 1.40 0.0420

2.70 1.35 1.35 0.0584
1.25 1.45 0.0566
1.15 1.55 0.0519

3.00 1.50 1.50 –
1.40 1.60 0.0652
1.30 1.70 0.0632

GNH3 2.40 1.20 1.20 0.0315
1.10 1.30 0.0294
1.00 1.40 0.0283

2.70 1.35 1.35 0.0390
1.25 1.45 0.0365
1.15 1.55 0.0339

3.00 1.50 1.50 0.0462
1.40 1.60 0.0446
1.30 1.70 0.0413

SLy4 2.40 1.20 1.20 0.0437
1.10 1.30 0.0406
1.00 1.40 0.0375

2.70 1.35 1.35 0.0510
1.25 1.45 0.0497
1.15 1.55 0.0466

3.00 1.50 1.50 0.0612
1.40 1.60 0.0588
1.30 1.70 0.0565

EOSs with a fitting formula

fitAPR 2.40 1.20 1.20 0.0468
1.10 1.30 0.0430
1.00 1.40 0.0404

Table 6
(Continued)

EOS Name M0(M
) MNS1
ADM(M
) MNS2

ADM(M
) M0Ωms

2.70 1.35 1.35 0.0552
1.25 1.45 0.0516
1.15 1.55 0.0494

3.00 1.50 1.50 0.0635
1.40 1.60 0.0624
1.30 1.70 0.0611

fitFPS 2.40 1.20 1.20 0.0488
1.10 1.30 0.0460
1.00 1.40 0.0430

2.70 1.35 1.35 0.0581
1.25 1.45 0.0574
1.15 1.55 0.0525

3.00 1.50 1.50 –
1.40 1.60 0.0663
1.30 1.70 0.0655

fitSLy4 2.40 1.20 1.20 0.0446
1.10 1.30 0.0413
1.00 1.40 0.0379

2.70 1.35 1.35 0.0525
1.25 1.45 0.0516
1.15 1.55 0.0461

3.00 1.50 1.50 0.0615
1.40 1.60 0.0601
1.30 1.70 0.0593

PHY-0503366, and by Grant-in-Aid for Scientific Research
(21340051) and for Scientific Research on Innovative Area
(20105004) of the Japanese MEXT.

APPENDIX A

DATA OF SPHERICAL STARS

In Table 2, some selected data of spherical neutron stars is
listed. In each table, the ADM mass MNS

ADM, the baryon rest
mass MB, the circumferential radius RNS, the coordinate radius
aNS, the compactness C ≡ MNS

ADM/RNS, the central baryon rest-
mass density ρc in cgs units, and the central specific internal
energy εc are shown. The number in parentheses for ρc means
the exponent of 10. For each EOS, we show the data at the
maximum mass in the last line.

APPENDIX B

SEQUENCE DATA

The sequence data for the polytropic EOS with Γ = 2 is
summarized in Table 3, that for the piecewise polytropic EOSs,
the tabulated realistic EOSs, and the EOSs with a fitting formula
in Table 4, and that for the piecewise polytropic EOSs calculated
by the old code in Table 5. The coordinate separation d/M0, the
orbital angular velocity M0Ω, the binding energy Eb/M0, the
total angular momentum J/M2

0 , the mass-shedding indicator
for the less massive star χ1, that for the more massive star
χ2, and the virial error δM are shown. For the sequences for
the Γ = 2 polytrope, we additionally show the coordinate
separation in polytropic units d̄. For the sequences of equal-
mass binaries, we only show the mass-shedding indicator for
one neutron star χ1 because the two stars are identical. However,
because of numerical error there is a slight difference between
the values of χ for two stars. Such a difference is described by
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δχ ≡ |(χ1 − χ2)/χ1| in the tables for equal-mass binaries. The
number in parentheses means the exponent of 10.

APPENDIX C

ORBITAL ANGULAR VELOCITY AT THE
MASS-SHEDDING LIMIT

In Table 6, we summarize the orbital angular velocity at the
mass-shedding limit which is estimated by using the extrapo-
lation method described in Section 4.3. The orbital angular ve-
locity is listed for each EOS and for each mass ratio. There are
three cases for which we do not show the estimated value, i.e.,
for the cases of PwPoly27-1335, FPS, and fitFPS with masses
of 1.50 M
 versus 1.50 M
. For those cases, we cannot calcu-
late configurations for close separations, because both stars are
compact and it is difficult to converge the computation. Since
the mass-shedding indicator χ is still larger than 0.8 for those
sequences at the closest separation we can calculate, the extrap-
olation method does not work well for estimating the orbital
angular velocity at the mass-shedding limit.
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J. L. 2009, Phys. Rev. D, 79, 124033
Shibata, M. 1998, Phys. Rev. D, 58, 024012
Shibata, M. 1999, Phys. Rev. D, 60, 104052
Shibata, M., & Taniguchi, K. 2006, Phys. Rev. D, 73, 064027
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Shibata, M., Taniguchi, K., & Uryū, K. 2005, Phys. Rev. D, 71, 084021
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