Status of Numerical Relativity: From my personal point of view Masaru Shibata (U. Tokyo)

- 1 Introduction
- 2 General issues in numerical relativity
- 3 Current status of implementation
- 4 Some of our latest numerical results: NS-NS merger & Stellar core collapse
- 5 Summary & perspective

- 1: Introduction: Roles in NR
- A To predict gravitational waveforms:
 Two types of gravitational-wave detectors work now or soon.

Templates (for compact binaries, core collapse, etc) should be prepared B To simulate Astrophysical Phenomena
 e.g. Central engine of GRBs
 = Stellar-mass black hole + disks (Probably)

C To discover new phenomena in GR

- In the past 20 years, community has discovered e.g.,
 - 1: Critical phenomena (Choptuik)
- 2: Toroidal black hole (Shapiro-Teukolsky)
- 3: Naked singularity formation (Nakamura, S-T)

GR phenomena to be simulated ASAP

- NS-NS / BH-NS /BH-BH mergers (Promising GW sources/GRB)
- Stellar collapse of massive star to a NS/BH (Promising GW sources/GRB)
- Nonaxisymmetric dynamical instabilities of rotating NSs

(Promising GW sources)

In general, 3D simulations are necessary

2 Issues: Necessary elements for GR simulations

- Einstein's evolution equations solver
- GR Hydrodynamic equations solver
- Appropriate gauge conditions (coordinate conditions)
- Realistic initial conditions in GR
- Gravitational wave extraction techniques
- Apparent horizon (hopefully Event horizon) finder
- Special techniques for handling BHs/BH excision
- Micro physics (EOS, neutrino processes, B-field ...)
- Powerful supercomputers

RED = Indispensable elements

3: Current Status: Achievements in the past decade

Here, focus on progress in main elements:

- Einstein evolution equation solver in 3D
- GR Hydro equation solver
- Appropriate gauge conditions in 3D

• Supercomputers

Progress I

 Formulations for Einstein's evolution equation Many people 10 yrs ago believed the standard ADM formalism works well.

Due to constraint violation instabilities

 New formulations for Einstein's evolution eqs: (i) BSSN formalism Nakamura (87), Shibata-Nakamura (95),

Baumgarte-Shapiro (99).....

 New formulations for Einstein's evolution eqs.: (ii) Hyperbolic formulations
 Bona-Masso (92) many references

Kidder-Scheel-Teukolsky (KST) (01)

$$\partial_t g^{ij} + \partial_k Q^{kij} = \underline{F^{ij}(g, Q, \dots)}$$

No derivatives

30~40 variables are defined

Advantage for imposing boundary conds. at BH \rightarrow Perhaps, robust for BH spacetimes But, no success in 2BH merger so far. (Something is short of. Need additional ideas.)

Progress II

• GR Hydro scheme

Trend until the middle of 1990

⇒ Add artificial viscosity to capture shocks
(Wilson 1980, Centrella 1983, Hawley et al. 1984,
Stark-Piran 1985, Evans 1986, Nakamura 1993, Shibata 1999)

Schematically,

$$\frac{\partial \rho v_i}{\partial t} + \frac{\partial (\rho v_i v^j + P \gamma_i^j)}{\partial x^j} = \frac{[Viscous \ term]_i +}{Very \ phenomenological;}$$
Not very physical

Drawback : Strong shocks cannot be captured accurately. Concern : We do not know if it always gives the correct answer for any problems ???

- Hydro scheme: Current trend
 High-resolution shock-capturing scheme
 = Solve equations using characteristics
 (+ Piecewise-Parabolic interpolation
 + Approximate Riemann solver) : very physical !
 Developed by Valencia (Ibanez, Marti, Font, ...)
 & Munich (Mueller ...) groups in 1990s.
 Now used by many groups (including myself)
- Strong shocks & oscillations of stars are computed accurately
- Physical Scheme \rightarrow No concern on the outputs
- \Rightarrow This is currently the best choice for simulations of
 - -- Stellar core collapse
 - -- NS-NS merger

Progress III

• Choice of appropriate spatial gauge condition :

Distortion monotonically increases to crash

Previous belief: Minimal distortion gauge (Smarr & York 1978)

Require that an action which denotes the global magnitude of the coordinate distortion is minimized.

MD gauge :
$$\Delta \beta^k + \frac{1}{3} D^k D_j \beta^j = S^k$$

Physically good. But, computationally time-consuming

New Trend: Dynamical gauge (Alcubierre et al 2000, Lindblom & Scheel 2003, Shibata 2003)

Schematic form :
$$\ddot{\beta}^{l} \approx \Delta \beta^{l} + \frac{1}{3} D^{l} D_{j} \beta^{j} - S^{l}$$

Save CPU time significantly !! Recent numerical experiments show it works well !!

Stable evolution for > 30 oscillation (~ rotation) periods.

Progress IV **Computational resources** Minimum required grid number for Total mass M extraction of gravitational waveforms $\lambda_{GW} \leq \lambda_{ISCO} \approx 58 \left(\frac{GM}{c^2}\right) \left(\frac{rc^2}{7GM}\right)^{3/2}$ L >> rRequire $L \ge \lambda_{GW}$ & $\Delta x \le 0.2 \left(\frac{GM}{c^2}\right)$ $\Rightarrow \frac{L}{\Lambda x} \ge 290 \left(\frac{rc^2}{7GM}\right)^{3/2} \& N \ge 580 \left(\frac{rc^2}{7GM}\right)^{3/2}$

Minimum grid number required (in uniform grid): ~ 600 * 600 * 300 (equatorial symmetry is assumed) ⇒ Memory required ~ 200 GBytes (~200 variables)

An example of current supercomputer FUJITSU FACOM VPP5000 at NAOJ

Typical current

- Vector-Parallel Machine (60 vector PEs)
- Maximum memory \rightarrow 0.96TBytes \sim
- Maximum speed $\rightarrow 0.58$ TFlops \leftarrow
- Our typical run with 32PEs 633 * 633 * 317 grid points = 240 Gbytes memory (in my code)

About 20,000 time steps ~ 100 CPU hours /model

Minimum grid number can be taken

But, hopefully, we need hypercomputers for well-resolved simulations. (e.g. Earth simulator ~ 10TBytes, ~ 40TFlops)

Summary of current status

OK

- Einstein evolution equations solver
- Gauge conditions (coordinate conditions) OK
- GR Hydrodynamic equations solver OK
- Powerful supercomputer ~OK
 but hopefully need hypercomputers

Long-term GR simulations are feasible (in the absence of BHs)

In the past 5 yrs, computations have been done for

- NS-NS merger (Shibata-Uryu, Miller, ...)
- Stellar core collapse (Font, Papadopoulas, Mueller, Shibata)
- · Collapse of supermassive star (Shibata-Shapiro)
- · Bar-instabilities of NSs (Shibata-Baumgarte-Shapiro)
- Oscillation of NSs (Shibata, Font-Stergioulas,)

A solution = Excision(Unruh)

What are appropriate formulation, gauge, boundary conditions ?
-- 1BH → OK (Cornell, Potsdam, Illinois...)
-- 2BH → No success for a longterm simulation
(But see gr-qc/0312112, Bruegmann et al. for one orbit)

4. Our latest numerical results:

Current implementation in our group

- GR : BSSN (or Nakamura-Shibata). But modified year by year; e.g., latest version = Shibata et al.
 2003 has improved accuracy significantly
- 2. Gauge : Maximal slicing (K=0) + Dynamical gauge
- 3. Hydro : High-resolution shock-capturing scheme (Roe-type method with 3rd-order PPM interpolation)

Latest results for merger of 2NS EOS: Initial; $P = K \rho^{\Gamma}$, $\Gamma = 2$; K = 1.535e5 cgs

M = 1.40 M_solar → R = 14.8 km 1.60 M_solar → R = 13.3 km (Maximum mass for the spherical case = 1.68 M_solar) During the evolution: $P = (\Gamma - 1)\rho\epsilon$

I here show animations for merger of 2NS (a) 1.40 – 1.40 M_solar, (b) 1.33 – 1.46 M_solar, (c) 1.52 – 1.52 M_solar, (d) 1.40 – 1.60 M_solar (See, Shibata et al. PRD 68, 084020, 2003) Typical grid size : 633 * 633 * 317 (max we have taken, 761 * 761 * 381)

1.40 – 1.40 M_solar case : final snapshot Massive toroidal neutron star is formed (slightly elliptical)

Comparison between equal and unequal mass mergers 1.33—1.46: 1.40—1.40: Massive NS + disk Massive NS

Mass ratio ~ 0.90

Black hole formation case: 1.52-1.52

Equal-mass case

Disk mass for unequal-mass merger

1.45—1.55, Mass ratio 0.925 1.40—1.60, Mass ratio 0.855

Products of mergers for $\Gamma = 2$

Equal – mass cases

Low mass cases

 Hypermassive neutron stars
 of nonaxisymmetric & quasiradial oscillations.

 High mass cases

 Direct formation of Black holes
 with very small disk mass

Unequal - mass cases (mass ratio ~ 0.9) · Likely to form disks of mass

- ~ several percents of total mass
- \rightarrow BH(NS) + Disk (~0.1M_solar)
- \rightarrow Maybe a candidate for short GRB

Gravitational waves for NS formation

Stationary quadrupole

Fourier spectrum in NS formation Non-axisym. → ~2.2kHz (equal mass) oscillation -2.3kHz unequal mass Inspiral wave Mass ratio=0.9) h=2, m=2 $R_{\rm lm} f | r / M_0$ 0.1 Frequency also depends ~0.7kHz on EOS. l=2, m=00.01 Quasi- \sim (dE/df)^{1/2} radial 11 oscillation 2 3 1 4 ()f_{GW} / f_{QE}

Computation of mass and angular momentum -- Check of the conservation --

Radiation reaction : OK within ~ 1%

Solid curves : computed from data sets in finite domain. Dotted curves: computed from fluxes of gravitational waves

5 Summary

- 1 Rapid progress in particular in the past 5 yrs
- 2 Scientific (quantitative) runs are feasible now.
- 3 (Astrophysically) Accurate and longterm simulations are feasible for many phenomena in the absence of BHs : NS-NS merger, Stellar collapse, Bar-instabilities of NSs
- 4 (I think) numerical implementations for fundamental parts have been almost established (for the BH-absent spacetimes)

Issues for the near future

- 1 Several (technical) Issues still remain :
 - · Grid numbers are still not large enough in 3D
 - → We would need hypercomputer (~10TBytes, ~10TFlops)

Probably becomes available in a couple of yrs.

 Computation crashed due to grid stretching around BH horizon

 \rightarrow We need to develop excision techniques.

- How to achieve a very high accuracy for making GW templates ?
- 2 Incorporate more realistic physics in hydro simualtion

More realistic EOS, Neutrino cooling, Magnetic fields

Where are we?

- 1: Make a code which runs anyhow stably (do not care accuracy)
- 2: Improve the code which can provide a qualitatively correct result; care accuracy somewhat (say we admit an error of ~10%)
- 3: Improve the code gradually getting qualitatively new results which can be obtained only by an improved code

★ 4: Goal: Make a code which provides a quantitatively accurate result.

We are here.

Similar to construction of detectors in some sense

Animations

• http://esa.c.u-tokyo.ac.jp/~shibata/anim.html