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Dynamical evolution of gravitational waves in asymptotically de Sitter spacetime
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We perform numerical computations to investigate the dynamical evolution of axisymmetric gravita-
tional waves in asymptotically de Sitter spacetime. The final fates of such spacetimes are classified into
two types: (1) de Sitter spacetime with small perturbations, and (2) Schwarzschild-de Sitter-like space-
time with both black-hole and cosmological apparent horizons. We also Gnd that if the mass of gravita-
tional waves is larger than the critical value, M„;,=—(3&A), then the black hole is not formed even in
the case that there exist highly nonlinear localized gravitational waves. In such a case, the Universe is
initially dominated by gravitational waves rather than a cosmological constant A and eventually ap-
proaches a de Sitter universe. These results are consistent with the previous analysis by use of initial
data.

PACS number(s): 98.80.Hw, 04.20.Jb, 04.30,Db

I. INTRODUCTION

Gravitational collapse is one of the most important is-
sues in general relativity. In asymptotically flat space-
time, it is well known that the concentration of a large
amount of inhomogeneities causes the trapped region and
results in the formation of a black hole if cosmic censor-
ship is true [I]. If the scale of the collapsing objects is
much smaller than the cosmological horizon, asymptotic
flatness is a good approximation. However, if the scale of
the collapsing object is comparable to the cosmological
horizon scale, what happens'?

In the very early stage of the Universe, we have very
little information about the inhomogeneities of matter
and the structure of the Universe. Spacetime might be
very chaotic and highly inhomogeneous. On the other
hand, the present Universe is quite isotropic and homo-
geneous, at least after the recombination era. If the ini-
tial state of the Universe is not so isotropic and homo-
geneous, what makes the present Universe as it is'? The
inflationary scenario seems to be one of the most elegant
and natural solutions for it [2]. If the de Sitter universe
(an inflationary phase) is the attractor of spacetimes with
a cosmological constant A, i.e., if the so-called cosmic
no-hair conjecture [3] (CNC) is trueinfi, ation is a quite
natural and universal phenomenon in the history of the
Universe. The present isotropy and homogeneity of the
Universe is easily understood.

Therefore, in connection with the CNC, as well as
from the point of view of mathematical simplicity, the
behavior of inhomogeneities in asymptotically de Sitter
spacetime [4] is an interesting subject to show the gen-
erality of inflation. From the point of view of dynamics
of general relativity, it is also important to see the
di8'erence between gravitational collapse in asymptotical-
ly flat spacetime and the cosmological one.

There are analytic "black-hole" solutions in asymptoti-

cally de Sitter spacetime (the Kerr —Newman —de Sitter
family [5]), which may give insight into the final state of
the gravitational collapse, although it has not been shown
whether or not the Kerr-Newman-de Sitter family is a
unique stationary black-hole solution of the vacuum Ein-
stein equations with a positive cosmological constant A.
One of the remarkable properties of this family is that
there is a critical value for the "gravitational mass, "
beyond which there is no black-hole event horizon.
Hence it is expected that inhornogeneities with a gravita-
tional mass larger than the critical mass cannot collapse
into a black hole in asymptotically de Sitter spacetime.

Analysis of spherically symmetric dust collapse in a
spacetime with A&0 shows that the dust ball with a
gravitational mass larger than a critical value cannot
form a black hole. The critical value agrees with that of
Schwarzschild —de Sitter spacetime, i.e., M„;,=(3&A)
where Schwarzschild —de Sitter spacetime is a spheri-
cally symmetric and charge-neutral member of the
Kerr —Newman —de Sitter family [6]. This result is not so
surprising since we can show by BirkhoFs theorem that a
spherically symmetric vacuum spacetime with A is al-
ways a Schwarzschild —de Sitter spacetime. However, in
the axially symmetric case, solving initial data, Nakao
et al. have also shown that nonrotating inhomogeneities
(gravitational waves [7] or Einstein-Rosen bridges [8])
with a gravitational mass larger than M„;, do not pro-
duce an apparent horizon enclosing themselves in three-
space with constant-mean-curvature time slicing condi-
tion. Even though their analysis is restricted only to ini-
tial data, the results suggest that inhomogeneities with
the gravitationa1 mass larger than M„;, cannot collapse
into a black hole. Furthermore, because of the coin-
cidence of the critical value M,„„Schwarzschild —de Sit-
ter spacetime seems to be a unique solution with asymp-
totically de Sitter spacetime for the static vacuum Ein-
stein equations with A.
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In this paper, we investigate the dynamical evolution
of the axisymmetric and nonrotating gravitational ~aves
in asymptotically de Sitter spacetime. Our motivation is
to investigate the nonlinear dynamics of the gravitational
waves in the cosmological scale and to confirm the above
conjecture obtained by analysis of the initial data.

This paper is organized as follows. In Sec. II we ex-
press the Einstein equations in an appropriate form for
the numerical simulation of the nonlinear gravitational
waves in asymptotically de Sitter spacetime. In Sec. III
we present the definition of black-hole and cosmological
apparent horizons and the equations for those horizons.
The numerical results are shown in Sec. IV. Finally, in
Sec. V we summarize our results and discuss the implica-
tion to the CNC and the relation between our results and
recent topics about black holes in asymptotically de Sitter
spacetime [4,9,10].

In this paper, we follow Misner, Thorne, and Wheeler
(MTW) [11] for the sign convention of metric and
Riemann tensors, etc. The Latin indices take 1,2,3, while
Greek indices take 0,1,2,3.

AK= —3H with H =
3

(2 8)

Then the Einstein equations (2.2)—(2.5) become

D'Dig PR—+L,'LJP ' =0

D; LJ'=0,

8, in'+ 128, in/ =2(3HN Dk N—"),
a,

(2NLJ p +D;N
y

(2.9)

(2.10)

(2.11)

K'= —'5'K+L'- .1 3 J J

Furthermore, we introduce the conformally weighted
trace-free part of the extrinsic curvature L'=P L' to
simplify the Einstein equations. We do not regard the
trace part of the extrinsic curvature K as a dynamical
variable, but we fix it to some appropriate constant value
to impose the constant-mean-curvature time slicing con-
dition. Here we fix K as

' 1/2

II. BASIC EQUATIONS
+DJN, ', h;JDkN—"—), (2.12)

In 3+ 1 formalism, the line element is written as

ds = Ndt +y—,, (dx' N'dt)(dx—' N'dt), —(2.1)

where N, N', and y;. are the lapse function, shift vector,
and intrinsic metric of the three-space, respectively
[13,14]. N and N' are purely coordinate variables and are
determined by the time slicing and spatial gauge condi-
tions. Then the 3+1 forms of the vacuum Einstein equa-
tions with A are written as

R +K —KJK'J=2A,

D;KJ —DJK =0,
B,y,l

= 2NK;1 D; N—
J DJ N—;, —

B,K'+N'K't=N'kK" N" K/, D'D—N—
+N(R'+KKJ —A5' )

(2.2)

(2.3)

(2.4)

(2.5)

where R, R;, and D; are the Ricci scalar, Ricci tensor,
and covariant derivative within the three-space, respec-
tively. 8, and, i are the ordinary derivatives with respect
to t and x'.

As we discussed in the Introduction, we are interested
in the effect of A on the dynamics of the Universe. We ex-
pect that the behavior of a solution with A is quite
different from that without A. In order to see the role of
A more clearly and further to integrate easily the above
equations numerically, we adopt the appropriate dynami-
cal variables and time slicing condition [12].

First, we adopt the conformally transformed metric y;J.
as a dynamical variable, which is defined by

(2.6)

D'D, N =NL'L'y (2.13)

a,L,'+(N'E,'), + (a,y+N%, , )L,'

/=&a(t)P with a(t)=e (2.15)

so that $~1 for r +00. Further, if we see t—he time evolu-
tion of the right-hand side of Eq. (2.14) in the asymptoti-
cally de Sitter region, we find that it behaves as ~ a. Then
we rewrite LJ as LJ=a A ~. Those equations become

8g D'D g JR+A'A'P ' —a =0 (2.16)

=N' L" NL' $—D'D N—+Nf R', (2.14)

where DJ and R are the covariant derivative and the sca-
lar curvature with respect to y';, respectively, and y is
the determinant of p,". Note that we have used both DI
and D& for brevity in the description of those equations.
Except for Eq. (2.11), the above equations do not contain
A and they are the same equations as in the case of A =0.

Here it should be noted that, in the case of the homo-
geneous and isotropic universe with the conventional
gauge condition (y=N =1 and N"=0), Eq. (2.11) with
the condition (2.8) corresponds to the Freidmann equa-
tion and results in de Sitter spacetime with a scale factor
a ( t) =$2 ~ e '. Hence the asymptotically de Sitter condi-
tion simply reduces to the flatness of three-space in the
spatial asymptotic region (y~ 1, N~1, and N"~0 for
r~ 00). The asymptotic behavior of P is given by
P~e~'~ . Therefore we shall introduce a conformal fac-
tor gas

where P is the conformal factor. It will be fixed later. As
for K', we decompose it into the trace and trace-free
parts as

D;A'=0,

8, lny+ 128, lng=2[3H(N —1)—DkN ],
(2.17)

(2.18)
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B,y,)
— y;, = 2—NA;"yk P a

y
—2yl, (;D -)N +—', y,- DkN

D'D, N=NA, 'A,~y "a-

B, AJ'+2HA '+(N'A '}I+ (B,y+N'y, )A,'
2y

=N'kA" —N" Ak Qa—(D'D N —NR') .

(2.19)

(2.20)

(2.21)

As for the spatial coordinate condition, we adopt the
isothermal gauge [14],in which the line element becomes

to —28, lnB and hence Eq. (2.18) is regarded as the evo-

lution equation for 1( while Eq. (2.19) is that for B. How-
ever, since we will determine Q by solving the Hamiltoni-
an constraint (2.16), we do not need Eq. (2.18).

%e introduce q as 8:—1+g sin 0. For the case
without A, q is regarded as the + mode gravitational
waves in the wave zone. Therefore we solve the evolution
equation for q rather than for 8. Further, to guarantee
regularity on the symmetry axis, we use the variables

rA,'
Ap=-

sin8
' ~ 2sin 8

(2.23)

ds = Ndt—+a P [8 [(dr N"d—t) +r (d8 N—dt) ]
N) =N'/r, 6=N /sin8 .

+8 r sin Hdqrs] . (2.22)

By virtue of the above coordinate choice, 8, lny is equal

Then, choosing the y =r and x=cos8 as the indepen-
dent variables, the basic equations finally become as fol-
lows.

(1) Evolution equation of g:

B,rt+2N&g —6(1—x )g „=—6 „2NA —g a —rt[26x+(6, +2NA g a )(1—x )] .

(2) Evolution equations of the extrinsic curvature:

(2.24)

dAi
dt

= —8~/~ 4yN +2N 1+2 '
y —4 '

y + 1 —x'

g2
NB 16$—(g~~y+f )

—16g~y+16$$ ' y+4g 2 ' y+

+ [gg„„(1—x) 2$$„—x+g—„(1—x )]— [8 „„(1—x ) —28,x]
y

+ A, —3N, +—6 „(1—x ) —3Gx+
&

a A, —2A~(1 —x )(26 y+NA2$ a ), (2.25)

dA N„Bg ' —4N '
y ——4 ' N„

dt 2y ' 8' 1(y

8
' ' y+4 '

y —2
' y(1 —x)+6 ' +——2

' +6 ' (1—x)+ ' —2
p 8' 8' 8' 8' y g f 8 8'

+ A —3N&+ —6 „(1—x )
—5Gx+ a A&

—Az(26 ry+NA, g a ),3 2 3N (2.26}

dA
Bg 2N, +—2N —— ' +2 ' + 4 ' —2

' +-
dt '~ ' 8 8 y

NB g —4 ' —+l2 (f 8„+Q„B ) —2 ' —4 ' ' +2x ' +—

+ A2 —3N&+ —6 „(1—x )—46x+ a [3A &+ A (1—x )] +6 y[3A &+ A (1—x )], (2.27)

where the operator d /dt is defined by

= d,X+HX+2N, X —6 (1—x )X (2.28}
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(3) The equation for g (Hamiltonian constraint):

4g y+61( +4 ' f y+ —P (1—x )—2g„x+ ' g„(1—x }

—A f+2A~(1 —x )+2Ay(1 —x ) — 4B „(By) + ' (B „(1—x )
—2Bx}

8B2 7g 2
(2.29)

(4) The equation for the shift vector (isothermal gauge condition):

2yN, =Gx —G„(1—x )
— [3A, +2A (1—x~)],

N) z=2Gyy+2 6 2 A2
N

ysa 2

(5) The equation for the lapse function (constant mean curvature condition):

By y4Nyyy+6Ny+4 Nyy+8 Nyy+ N» (1 x ) 2N~x+ N~(1 x ) 2 N ( x )

(2.30)

—A +2A (1—x )+2A (1—x ) . (2.31)
B2ysa2 2 & & y

These equations are the same as those of asymptotically
flat spacetime without A in the isothermal gauge and the
maximal time slice conditions [14] except for the viscosi-
ty term proportional to H in the difFerential operator
d/dt and the decaying terms such as A; /a in the evolu-
tion equations. Therefore we can easily generalize a nu-
merical code for the asymptotically flat spacetime to that
for the asymptotically de Sitter spacetime if we adopt the
constant-mean-curvature slice condition (2.8).

Numerical methods to solve the evolution equations
(2.24)-(2.27) are the same as those shown by Stark and
Piran [13]. To solve the shift equation (2.30), we intro-
duce two potential X& and X2, and we define N, and G as

N, =2yX, +X' —(1—x )X2„,
G =2SX2,y+X&,

Then the equations for y& and y2 become

4y (Xl,,y},,+X|,,( 1 -x') —
Xl,.x

—Ai+Ay(1 —x ), (2.33)
g6 2

4y (Xp,yy},y+Xp, „.(1 x)—
3X2,.x —X—2=- 2%

, XX , X

(2.34)

Hence we must solve four elliptical equations [Eqs. (2.16),
(2.21), (2.33), and (2.34)] at each time step. The boundary
conditions for these equations are completely the same as
those for the asymptotically flat spacetime by virtue of
our appropriate choice of variables. In order to solve
these equations, we use the II.UCGS method [15],which
is an improved version of the ICCG method [16] and can
be used in the case of the asymmetric matrix.

To check the numerical accuracy, we use the momen-
tum constraint (MC), which is now written as D,K'=0
rather than D; A'=0 because the accuracy should be
checked in the physical frame. We define the accuracy at
each grid point n in the simulation as

ID;K,'I
Ak=

g~(each term of the MC)1, ~

(2.35)

In the numerical calculations shown below, it is found
that the averaged relative error

Ak, (2.36)

where n is a total grid number, is guaranteed within l%%uo.

III. APPARENT HORIZON

One of the purposes of our numerical computations is
to investigate whether or not the nonlinear gravitational
waves do collapse into a black hole. A black hole is
characterized by the event horizon [17]. However, the
event horizon can be found only when we get all the data
of a spacetime, and hence it is impossible to determine
the event horizon only by the finite numerical data. In-
stead of the event horizon, the apparent horizon is often
used in numerical relativity as an approximate notion of
the event horizon. The apparent horizon coincides with
the outermost spacelike closed two-surface such that the
expansion of the future-directed outgoing null geodesic
congruence orthogonal to the two-surface vanishes. In
the case of asymptotically flat spacetime, assuming cos-
mic censorship [1], the apparent horizon always lies in-
side the event horizon [17]. Shiromizu et al. have shown
that the same is true also for asymptotically de Sitter
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spacetime [4]. Therefore we may conclude that a black
hole exists if we find the apparent horizon.

In contrast with asymptotically flat spacetime, there is
another kind of apparent horizon called the '*cosmologi-
cal apparent horizon" (CAH) [7]. A CAH is defined by
the closed spacelike two-surface such that the expansion
of future-directed ingoing null geodesic congruence or-
thogonal to the two-surface vanishes and further the sur-
face can be deformed slightly outward so that the expan-
sion of the future-directed ingoing null geodesic
congruence orthogonal to this two-surface is everywhere
positive. The area of the CAB is a measure of the
strength of cosmic expansion. We shall call the apparent
horizon defined first in the above a "black-hole apparent
horizon" (BAH} in order to distinguish it from the CAH.

The apparent horizon is found from the equation

(y'i s's')(—K;J D;s, )—=0,

m 0=0 at 0=0, m/2 . (3.5)

IV. NUMERICAL RESULTS

A. Initial condition and measure of inhomogeneity

To set the initial conditions, we need to solve the Ham-
iltonian and momentum constraints. In this paper, we
consider only initial conditions with A~ =0, which corre-
sponds to time-symmetric initial data in the case of A=0
due to the time slicing condition (2.8). Hence the
momentum constraint becomes trivial and we have only
to solve the Hamiltonian constraint [Eq. (2.29)] for g.
We set g as

To solve Eq. (3.3), we adopt the prescription proposed by
Sasaki et al. [18]. The details of how to obtain both the
BAH and CAH in asymptotically de Sitter space are
given in Ref. [8].

D;w,

where s; is a spacelike unit vector orthogonal to the sur-
face of the apparent horizon. When the apparent horizon
is expressed by a curve of r =w (8),

2
' —1/2

a~h2 g
(3.2)8 2

3A ro2—(1—e
r5 r2

0

—r &r() 16r 4r

3PO 3PO

(4.1)

where r=r —w(8). Then the equation of the apparent
horizon becomes

LU g 4, g
w ss+ +LU g 4 +co't8

W

—2m —4wlg) g +4
, 8

'a=+ (w +w ) iF(K ), . .
Bw , 8 IJ (3.3)

F(K;J ) =— 2H —[w A
&

——2ww &A2 sin8

—
—,'w s (A, +2A& sin~8)]

X(w +ms )

In this paper, we assume a symmetry with respect to the
equatorial plane. Then the surface of the apparent hor-
izon must be smooth at the symmetric axis and on the
equatorial plane, so that m must satisfy the boundary
conditions

where —and + signs correspond to those for the BAH
and CAH, respectively. F(K; ) is a function of K;,
which is given as

where A and ro denote the amplitude and width of a
wave packet, respectively. The amplitude A specifies the
nonlinearity of the waves. To see the nonlinear effects of
the waves, we change the value of the dimensionless vari-
able A. In what follows, we set ro=l; i.e., the scale
length in all physical quantities is normalized by ro. This
is the reason why we have used the complicated function
(4.1) as initial data for r), which is the same as that of the
analytic solution of the linearized Einstein equations: As
we present in the Appendix, we can solve the linearized
Einstein equations with the present gauge condition. If
we use the same initial data for our numerical simulation,
it will be easy to compare our numerical results with the
analytic ones and to check the accuracy of our numerical
code.

As a measure of the inhomogeneity of spacetime, we
consider the Abbott-Deser (AD) mass M~D [19],which is
the conserved "energy" associated with the timelike Kil-
ling vector in background de Sitter spacetime and coin-
cides with the Arnowitt-Deser-Misner (ADM) mass in
the limit of A~O. To calculate it easily in our formalism
with the condition (2.8), we rewrite the original expres-
sion of the AD mass presented by Abbott and Deser [19]
as

M~0= lim
0fdS, +y y'JB~ g+ f. dS,L~x'.

= lim fD'D, gdV+ fdS; A'xj

Pf —A f+—322(1 —x )+222(1 —x )
—Rg a

4a 0 0 2 1 r2 2 P lllSX I p =I'~+
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"=—C;„"n =R; —HL,J
—LlLlj,lJ le, (4.3)

kl"n =e;&~i klj plj P l (4.4)
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B. Comparison with the analytic solutions
of linear gravitational waves

If the gravitational waves are approximated as linear
perturbations, i.e., 3 &&1, the analytic solution of the
evolution equation in the isothermal gauge is obtained
(see the Appendix). Hence we can check our code and
further can see the nonlinearity by comparing a numeri-
cal solution with the linear solution. In Fig. 3(a) a solid
line shows our numerical results of q at the numerical
boundary on the equatorial plane with A =10 and
with A=O as a function. On the other hand, in Fig. 3(b),
a solid line shows the same at r =3.5 with H = 1.0 X 10
on the equatorial plane by a solid line. The reason why
the value is estimated at r =3.5 in the case of
H = 1.0 X 10 ' is that the gravitational waves are
dumped by cosmic expansion due to A before those reach
the numerical boundary. The corresponding pictures of
the analytic solutions of the linearized Einstein equations
are shown by a dashed line. These calculations are per-
formed with the number of the numerical grids 100X 16.
These figures show that low amplitude gravitational
waves obtained numerically agree with the analytic linear
waves quite well.

C. Time evolution without a A term

For comparison with the asymptotically de Sitter case,
we first calculated the evolution of the gravitational
waves in asymptotically flat spacetime, i.e., the case of
A=O. In our numerical calculations, we mainly investi-
gated whether or not a black hole is formed. To investi-
gate it, we shall look for the BAH because if it exists, the
event horizon also does. However, even in the case that
the BAH is not formed, the event horizon might be
formed. Hence we also watch the behavior of the lapse
function N at the origin and we regard that the event hor-
izon is not formed if N at the origin bounces at some
minimum value and then approaches unity. In all the
present calculations, if N becomes small at the origin, a
BAH is always formed.

The results obtained are essentially the same as those
calculated by Miyama [21]: For small A S0.7 (case Ia),
all parts of the wave disperse. However, for larger A,
0.7~ 3 51 (case IIa}, although the outer part of the
wave disperses, the inner part of it collapses and a BAH
is formed in the course of time evolution. For larger
A ~1(case IIb), the BAH surrounding the central part of
the waves already exists in initial stage.

D. Time evolution with a A term

We have performed numerical computations for
A =0.01, 0.3, 0.8, 1.0, and 1.3 and various values of A.
Then we look for the formation of the BAH and CAH.
Here it should be noted that the CAH depends on the lo-
cation of an "observer. " However our interest is the
effect of the gravitational waves on cosmic expansion and
hence we focus on the CAH enclosing the center in our
simulation.

In Fig. 4 we show the summary of our results. Accord-
ing to it, the time evolution of gravitational waves is

A(MAo)

Closed Universe (MAo (0)
14(oo)

(IIb)B/ack Hole
1.2(9.6} ExtstsInitially g. ' (ib)Grayttattonal Wages

Doniinate Initially.

'io(e9) o g~ 8 Kdfx~x
(IIa)Gravitational%aves
Collapseintoa Black Hole

0.8(2.7) b

0,7(2.0) &~
MAD%Ment
{H&Hcrit)

0.5(1.0)'~

0.3(0.39)~~ IVIED =Mc t

(H=Hcrit)

)~
O.o 10 ] 0 10

(Ia) Gravitational Waves Merely Disperse
in de Sitter Space-Time.

FIG. 4. Summary of the numerical results for the cases with

A & 0. The circles denote that the BAH always exists from ini-

tial data, while the triangles denote that the BAH appears in the
course of time evolution. The cross corresponds to the case that
a BAH does not appear. We can classify our results into four
cases (Ia), (Ib), (IIa), and (IIb) (see text).

classified into the following four types.
(Ia) The BAH does not appear, but the CAH exists

throughout time evolution and the area of the CAH is al-
most the same as that of de Sitter spacetime. The param-
eters of this case are given by

A =0.01 (M'D=0. 03) for all H,
2=0.3 (MAD=0. 39) for O~HSH„, , =4.9X10

A =0 8 (MAD =2.7}

for 2.0X10 &H &H„;,=7.12X10

A =1.0 (MAD=4. 9)

for 3.0x10 '&H&H, „,=3.93x10-',
where I,„,—:(~27M'D) ' is the critical value of
Schwarzschild-de Sitter spacetime with the same gravi-
tational mass. Note that there is no condition such as
H & H,„,for 3 =0.01. We will discuss this point later.

(Ib) Only the CAH exists throughout time evolution,
but in contrast with case (Ia), the area of the CAH is
rather small compared with that of de Sitter spacetime,
4mH . The parameters for this case are given by

g =0.3 for H~H nt=4. 9X10

A =0.8 for H H„;,=7.1X10

A =1.0 for H~H nt=3. 9X10

3 =1.3 for H -Hcrit =1.3X10
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This region is clearly characterized by H & H,„,. These
gravitational waves have a gravitational mass larger than
the critical value M,„,= (—&27H) . The time variation
of the area of the CAH normalized by the de Sitter value
Sz,s —=4m.H is given in Fig. 5. From this figure we can
see that the area of the CAH increases monotonically in
the course of time evolution. This tendency is clearly
different from de Sitter spacetime in which the area of the
CAH is constant in time. Hence the region within the
CAH can be regarded as the gravitational-wave-
dominant universe. In other words, the cosmic expansion
of this region is caused by the energy of the gravitational
waves themselves rather than A, and hence the gravita-
tional collapse and formation of a black hole are prevent-
ed even if there are highly nonlinear gravitational waves.

The fate of this type of spacetimes is expected to be
again a de Sitter universe. In fact, in the case of A =0.3,
we have confirmed that the area of the CAH approaches
asyrn. ptotically to that of de Sitter spacetime. We expect
the same also in the case of A =0.8, but we could not
confirm it because the CAH shrinks in our coordinates

and necessary grid points to resolve the CAH cannot be
kept until the area reaches the value of de Sitter space.

We can summarize the above numerical results such
that if H+H, „., the energy of gravitational waves con-
tributes to the cosmic expansion [case (Ib)], while the
gravitational waves behave like as the linear perturba-
tions which do not affect the background cosmic expan-
sion, if H «H, „, [case (Ia)]. The reason why it is so is as
follows: H &H,„, means that the gravitational mass of
the waves M„D:(&—27K„;,)

' is larger than M,„,
=(&27H) '. Then the electric part of the Weyl tensor
which comes from the gravitational waves is estimated
roughly as ~E'~ ~M~D~H &K near the CAH, which
is comparable with the strength of a four-dimensional
Ricci tensor ' 'R"„=3H P„'. This means that even if A is
small, the back reaction of the gravitational waves to
background spacetime cannot be negligible near and
within the CAH. This is what happens for A =0.3.

This explanation is, however, valid only for the case of
ra&H '. If the width of wave packet (ro=1) is larger
than the cosmological horizon scale (H '), MzD should
be replaced with M~D=(roH) M~D which naively
denotes the mass of the gravitational waves within the
CAH. Hence the condition for the gravitational-wave-
dominated universe is now MzD & M„;,. This condition
with the formula M~D -5A (for A & 1) is reduced to

.95 H & +5&27A -5A . (4.6)

~9
S/Sa s

.85

.8

~2.

S/Sa. s

.18

.16

0 .5 1 I.5 2 2.5

Since H„;,=1 when A -0.2 (M&D-0. 2), there is a
range of the gravitational-wave-dominated universe if
A & 0.2. The range can be approximated as
H,„,-l/(2 5A)&H&5A for 0.2&A &1. The mass
formula between 1 & A & 1.4 is modified, and
MzD~+ 00 in the limit of A ~1.4. Hence the expan-
sion may be governed by the gravitational wave energy
for wider range of H than the above one. '

On the other hand, for the case of A &0.2, the above
range vanishes. That is, the mass of the gravitational
waves is always so small that the back reaction of the
gravitational waves on background spacetime can be al-
ways negligible for all H. This is what happens for
A =0.01 in case (Ia).

(IIa) The BAH does not exist at first, but later it is
formed. The CAH exists throughout time evolution.
The parameters of this case are given by

.14

5 10 15 20

A =0.8 for O~H &2.0X10

A =1.0 for 3.0X10 -H -3.0X10

A =1.3 for H=1.3X10

FIG. 5. Time variation of the area of the CAH normalized
by the de Sitter value Sq,s —=4mH is depicted. (a) is for the
case of A =0.3 and H=7.0X10 '&H, „.„while (b) corre-
sponds to the case of A =1.0 and H=4.0X10 &H,„, In
both cases, the area of the CAH monotonically increases. This
means that the cosmic expansion within this CAH is caused by
the energy of the gravitational waves rather than A. In case (a),
we can see that it approaches unity around t —1 (-0.7H ').
Hence the fate of universe is de Sitter type.

The areas of both the BAH and CAH almost coincide
with those of Schwarzschild —de Sitter spacetime. In Fig.
6 we depict the time variation of the areas of the BAH

We have to note that we could not confirm those expectations
numerically, because, in the case of H &1, we cannot keep
sufBcient grid points to resolve the CAH due to its smallness
and for gravitational waves due to the rapid cosmic expansion.



716 SHIBATA, NAKAO, NAKAMURA, AND MAEDA 50

1.05

S/Ssch-cks 95

9—

.85
0

I I I I I I I I I I i I I I

10 20 30

FIG. 6. Time variations of the areas of the BAH and CAH
are depicted in the case of A =1.0 and H =2.0X10 '(H„,„
which is normalized by that of Schwarzschild-de Sitter space-
time Ss,z d,s with same gravitational mass. The solid line cor-
responds to the CAH, while the dashed line is for the BAH. As
can be seen from this figure, the BAH is formed at t=9.0
(-0.18a-').

3/Ss h-c.s

Pl
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PIG. 7. Same as Fig. 6, but for A =1.3 and H =1.2X 10 '.
The areas of both the BAH and CAH are almost constant with
respect to time.

and CAH in the case of A =1.0 and H =2.0X10
The areas are normalized by those of Schwarzschild-de
Sitter spacetime, Ss,i,z,s, with same H and same gravita-
tional mass MAD, which was calculated at each time step
by Eq. (4.2). It seems that the areas of both the BAH and
CAH are almost constant.

Here we should comment on the mass conservation.
Although MzD must be constant in the course of time
evolution, M~D in our calculation slightly increases with
time as a result of the truncation error. However, its rel-
ative increment to its initial value is less than a few
presents at the end of our simulations. Hence these cal-
culations have kept sufficient accuracy for our purpose.

(IIb) Both the BAH and CAH always exist from the in-
itial stage. The parameters for this case are given by

A =1.0 for O~H&3. 0X10

A =1.3 for 0+H 1.2X10

The areas of both the BAH and CAH almost coincide
with those of Schwarzschild —de Sitter spacetime (see Fig.
7).

As for the "final" states of spacetime, we can conclude
that there are two types.

(I) [(a) and (b)]: de Sitter —like spacetime with small
perturbations. No BAH appears. The spacetime of case
(Ib) is initially a gravitational-wave-dominant universe.

(II) [(a) and (b)]: Schwarzschild —de Sitter —like space-
time with both the BAH and CAH. The spacetime of
case (IIa) has no BAH initially.

%e cannot make sure that the above final states are
spherically symmetric because of the insufficient numeri-
cal accuracy. However, these results suggest that, in the
case without rotation, the final fate of asymptotically de
Sitter spacetime is some kind of Schwarzschild-de Sitter
spacetime just as in the case of an asymptotically flat
spacetime, in which a final state is always Schwarzschild
spacetime.

V. SUMMARY AND DISCUSSIONS
In this paper, we present the concrete formalism to

perform the fully relativistic numerical simulation for the
gravitational waves in asymptotically de Sitter spacetirne.
The basic equations are the same as those of asymptoti-
cally Hat spacetime with the maximal time slicing condi-
tion, except for "viscosity" and decaying terms in the
dynamical equations by the background expansion.
Hence we can use a numerical code for asymptotically
Aat spacetime to investigate asymptotically de Sitter
spacetime almost as it is. Then we performed a fully rela-
tivistic numerical simulation for axisymmetric and non-
rotating gravitational waves both without A (the asymp-
totically fiat case) and with A &0 (the asymptotic de Sit-
ter case).

The results have confirmed the conjecture obtained by
the analysis of the linearized gravitational waves and the
initial data of nonlinear gravitational waves. %hen the
initial amplitude of the gravitational waves is sufficiently
small, i.e., A &0.7 (M~D 52.0), the gravitational waves
merely disperse whether or not A exists. However, in the
case of A &0, even if the gravitational waves will finally
disperse, there is a qualitative change of the behavior of
the gravitational waves in accordance with the value of A
or of the gravitational mass M . If H ~ H„;,
=(&27M~D ) ', i.e., M~D SM„,, =(27H) ', the grav-
itational waves do not a8ect the background cosmic ex-
pansion due to A and therefore the behavior of' those is
essentially the same as the linear gravitational waves. On
the other hand, when H &H„;„ i.e., MAD &M„;„ the
CAH becomes rather small initially compared with that
of de Sitter spacetime and further the area of the CAH
monotonically increases with time. This behavior of the
area of the CAH reveals that the central region of the
gravitational waves is a gravitational-wave-dominant
universe. In other words, the cosmic expansion law of
this region is governed by the energy of the "nonlinear"
gravitational waves rather than A if M~D&M, „,. This
does never happen if the amplitude of the wave A is
smaller than 0.2. The gravitational waves can always be
regarded as linear perturbations, because the cosmic ex-
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pansion is governed by A.
For the case of A ~0.8, if A=O, there appears the

BAH in the course of time evolution or it has already ex-
isted in the initial data. In the case of A & 0, the BAH can
also be formed if A is sufficiently small. However, it is a
remarkable fact that when H is larger than H,„„the
BAH cannot be formed. In other words, when the gravi-
tational mass M~D was larger than M,„.„the gravitation-
al waves do not collapse into a black hole. This result
confirms the conjecture from the analysis of the initial
data of nonlinear gravitational waves; i.e., the inhomo-
geneities with the gravitational mass larger than M„;, do
not collapse into a black hole.

Recently, Shiromizu et al. [4] and Hayward, Shirom-
izu, and Nakao [9] have shown that there is an upper
bound for the area of the event horizon in asymptotically
flat de Sitter spacetime. This bound coincides with the
maximal value of the black-hole event horizon in
Schwarzschild-de Sitter spacetime, which is given byS,„—= (4m /3 ) H . Since, as in asymptotically flat
spacetime, the area of the event horizon does not de-
crease in time also in the case of asymptotically de Sitter
spacetime, black holes cannot collide each other to be a
single black hole if the total area of those event horizons
is larger than S,„. If those black holes coalesce each
other into one collapsed object, a naked singularity may
appear [10]. This conclusion is consistent with our re-
sults in the sense that there does not occur a large black-
hole formation in asymptotically de Sitter spacetime.
However, as already mentioned in Sec. I, we have not yet
proved the answer to the question of whether or not
Kerr-Newman-de Sitter spacetime is unique. Hence the
relation between the area of the event horizon and the
gravitational mass M~D is a nontrivial problem. Howev-
er, our results obtained by the numerical simulations of
nonrotating and axisymmetric gravitational waves show
that the critical value for the gravitational mass MzD or
for H =&A/3 almost coincides with that of
Schwarzschild-de Sitter spacetime and hence suggests
the uniqueness of Schwarzschild-de Sitter spacetime.

Our results give also insight into the CNC and into an
inflationary universe scenario in inhomogeneous cosmol-
ogy. Black holes larger than the critical mass cannot be
formed in the inflationary stage. Hence, if no naked
singularity is formed, only small black holes [with mass
M~10 g in the grand unified theory (GUT) scale
inflation] are produced through gravitational collapse of
inhomogeneities and those may evaporate away through
Hawking radiation or may be diluted away by exponen-
tial expansion of the Universe. As for the formation of a
naked singularity, we should mention that we have never
found any indication of a naked singularity in the present
simulation, although the distribution of gravitational
waves is fixed. In the plane-symmetric case, we have also
found that no singularity appears even in highly inhomo-
geneous spacetimes [22]. Although the appearance of a
naked singularity in a spacetime with A is discussed in
Ref. [10), we have to study further the possibility of a
naked singularity, including its generality, and to investi-
gate its effects on the inflationary scenario, if naked
singularities are formed.
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APPENDIX: ANALYTIC SOLUTIONS
OF THE LINEARIZED EINSTEIN EQUATIONS

IN THE ISOTHERMAL GAUGE

1. Case for A=O

We present here the Teukolsky waves [23] in the iso-
thermal gauge for A=O. The Teukolsky wave is defined
in the Eulerian gauge (N =1, N'=0), which agrees with
the maximal time slicing condition in this linearized
theory, and the metric of three-space is expressed as

y; =f; +h,", (Al)

where f,j is the metric of flat space. In the nonrotating
and axially symmetric case, h; is written as

0Bi P(h)

K,'h' P, +F,~h~~,h"=
fJ

(K'"'P F'"'W() s—in 8

(A2}

where P) is the Legendre polynomial, W&=P&„„(1—x )

with x =cose, and AI'"', BI'"',KI'"',FI'"' are functions of
(t, r}. Because h; is a transverse-traceless tensor, those
four functions satisfy the relations

A'")+ 2 A(P) l(l+1) ~(g) 2 K(")=0,
I, r I 2, I 3 1r

(A3}

and

~(g)+ 2 ~(g) l (l + 1)—2 F'"'+ K'"'= 0 (A4)l, r I 2 I 2 Ir r

g (h)+ K(h) 0 (A5)

Those three are regarded as the constraint equations be-
cause no time derivative appears. Hence there is only
one degree of dynamical freedom, i.e., Al'"', which
satisfies

and

B(h)— r3g (h)a
6r Br

(A7)

(AS)

+— + A)("' . (A6)
Bt Br r Br r

In the case of I =2, the solutions are written as

K'"' 1 (1 f '"'(t +r) f '"'(t r)——
r2 r 3r r
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2

F =——— +— r r
4 2 6 Br Br

(A9)
Following Ref. [12],we define the variable as

A:;, = —(2Hr) 'BP;, ,

Here we have omitted the subscript I for brevity. Then
we transform the above solution to that for the iso-
thermal gauge. Under the gauge transformation
x',, =x' —g', the Teukolsky wave solution h„ is
transformed to

where ~= —H 'e ' is the conformal time of back-
ground de Sitter spacetime and ki'=0 by imposing the
condition (2.8). Then we can see that A:; satisfies the
transverse condition due to the momentum constraint
(2.3) and the wave equation:

a".=a,'Jw+V, g, +V, g, , (A10) D k~=0, (A19)

r3(g„«) „g = i (I Tw rzg Tw) (A 1 1)

and

where it and TW denote, respectively, the wave for the
isothermal gauge and the Teukolsky wave. Under the
isothermal gauge condition, the components of g, satisfy

B,k; —D Dkk; =0,
where Dk is now the covariant derivative with respect to
the fiat metric f; . Hence we can obtain the solution for
k, by the same prescription as that to obtain h; in the
case of A=0. We write k," as

g(h)=3rx
rc(")--X W(h)-
r 2

r2(r, «'), , +C,,.= I,'w-
The radiation variable g is written as

3F(h)
g=G „—

r

where G =g lsin8, which satisfies

r [G „r]„+[(1—x )G „—Gx] „

(A12)

(A13)

F(h)
3 x

2

~1 ~l, g
(k)

X(")I,+F(")m,

(KI'"'PI Fi"'Wt—) sin 6I

g (k)
A' '= —2

r 2

(A22)

(A21)

Then, in the case of l =2, the solutions are written as (we
omit the subscript / for brevity)

2
1 a y~ "i(r"+r) —J'"'(r"—r)
r Br r

(A14)
2

Hereafter, we fix the function f'"' as f '"'(y) = Aye
where A is an arbitrary constant. In this case the initial
condition (t =0) is written as

(h) 2 (h) 8 A —r'/ro

r2 r5
0

and

g(k) 3g (k)1 B

6r dr

F =———+— r r
1 r 1 8 8 3 (k)
4 2 6 dr Br

(A23)

(A24)

(h) 4A
4
0

(h) 2A
3

rp

ro
L

rp

2

2r 2 —r2/'r2
1 — e

3ro

8r 2r ' /'o2+ 4'
3rp 3rp

(A15)

and then we obtain the solution of Eq. (A14) analytically
as

where ~=~—
vp and ~ is the conformal time which labels

the initial three-space. Then, from Eq. (A18), we obtain
the coefficient for the metric perturbation h;, i.e. ,
g(h) g(h) g(h) F(h)

I qas
2K' ' 1 8 g( +r, r)

—rg(7 —r, r)
r2 r Br r

(A25)

G= x e '+(1—e
5

rp

—r /r rp
0)

r
(A16)

g(h) — r3g (h)1

6r Br
(A26)

2. Case for A&0

In the case with A&0, we can also 6nd the analytic
solution of linearized gravitational waves [12]. First, we
express the metric of three-space as

y;l. =a (t)(f; +it;, ) . (A17)

by which we find g of Eq. (4.1) from Eq. (A13).
In Fig. 3(a) we compare the numerical result and the

analytic solution of q at the outer numerical boundary in
the equatorial plane in the case that A =0.01.

—"g (kj( )d (A28)

2

F =———+— r r A
1a a

4 2 6 Br Br

where

g (r+r, r)—: 28I r'f '"'(r' ro+r)—dr'—
y ~+r (k)

L
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It should be noted that resultant h, becomes a
transverse-traceless tensor.

Here we set the arbitrary function f '"' as

1
g(y, r)=A +—y e

270 70
(A30)

28&0 dy

so that g (y, r) becomes

(A29)

By virtue of the above choice (A29), k;,.=0 and h;~ agrees
with Eq. (A14) at r=ro, and therefore the initial data of
G and g are also given analytically by Eqs. (A16) and
(4.1).

In Fig. 3(b) we compare the numerical result and the
analytic solution of g at r =3.5ro in the equatorial plane
in the case that A =0.01 and H =1.0X10
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