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New criterion for direct black hole formation in rapidly rotating stellar collapse
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We study gravitational collapse of rapidly rotating relativistic polytropes of adiabatic indices � � 1:5
and 2. The nondimensional spin parameter of the system q � J=M2 where J and M are the total angular
momentum and the gravitational mass is set to be larger than unity. First, analyzing initial distributions
of mass and spin parameters inside the stars, we predict the final outcome after the collapse proposing a
new criterion for direct black hole formation as qc < 1 where qc denotes an effective spin parameter of
the stellar central region. To confirm our predictions, we then perform fully general relativistic
simulations assuming axial and equatorial symmetries. It is found that in contrast with previous
conclusions for the criterion of no black hole formation, a black hole is formed even from a star with
q > 1 if the condition qc < 1 is satisfied. For qc < 1, a seed black hole is always formed first, and then,
it grows as the ambient fluid elements accrete onto it. We also find that the time evolution of the relation
between angular momentum and mass enclosed in the seed black hole can be approximately determined
from the initial profiles of the density and the specific angular momentum.
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I. INTRODUCTION

One of fundamental issues in numerical general rela-
tivity is to explore the final fate after gravitational col-
lapse of rotating stellar cores. If their mass is much larger
than the maximum mass of a neutron star �2M�, the
collapse will proceed until a spacetime singularity is
formed. If the cosmic censorship conjecture suggested
by Penrose [1] is correct, any singularity should be sur-
rounded by an event horizon. Then, the black hole unique-
ness theorems of Israel [2], Carter [3], and Robinson [4]
tell that the collapsed star will consequently settle down
to a Kerr black hole.

It is well known that in a Kerr spacetime, the singu-
larity is covered by an event horizon only if the non-
dimensional spin parameter defined as q � cJ=GM2,
where J, M, c, and G are the total angular momentum,
the gravitational mass, the speed of light, and the gravi-
tational constant, does not exceed unity [5,6]. Otherwise
the singularity is naked. This implies that the value of q of
any black hole cannot be larger than unity. For realistic
progenitors of black holes, however, the value of q may be
larger than unity (e.g., [7]). Thus, it is interesting to
explore the final fate after the gravitational collapse of
rotating stars with q > 1. Numerical relativity is the
unique approach to resolve this problem. In this paper,
we explore this subject adopting a toy model from an
gravitational-physical interest. Adopting appropriate toy
models is often robust to extract a physical content
clearly.

There have been several studies for gravitational col-
lapse to a black hole in numerical relativity assuming
axial symmetry [8–14]. A series of simulations for rotat-
ing stellar collapse in full general relativity was first
performed by Nakamura [8] and his collaborators [9]
using the �2� 1� � 1 formalism developed by Maeda
04=70(8)=084005(16)$22.50 70 0840
et al. [15]. They adopted differentially rotating massive
stellar cores that are to collapse to a black hole. An
interesting finding in their simulations is that q is a
critical parameter for determining the prompt black
hole formation. Their results suggest that for q > 1, no
black hole is formed and the stars bounce back due to the
centrifugal force, indicating that the cosmic censorship
conjecture holds. Stark and Piran [10] subsequently
performed simulations for the collapse of polytropes
with the adiabatic index � � 2 and with an artificially
given rigid rotation, using the Bardeen-Piran formalism
[16]. They reconfirmed the conclusion suggested by
Nakamura; for q * 1, black hole is not formed.
Abrahams et al. [11] studied the collapse of axisymmetric
and differentially rotating tori composed of collisionless
matter, and also found that black holes are formed only
from initial configurations with q & 1. Shibata [13]
studied the formation of black holes from marginally
stable supramassive rotating polytropes at the mass-
shedding limit with � � 2:5, 2:25, 5=3, and 1:5, for which
q < 1, and found that the final state of such collapse is a
Kerr black hole with no appreciable disk. Shibata and
Shapiro [14] studied the collapse of a rigidly rotating
polytrope at the mass-shedding limit with � � 4=3. The
value of q for such a configuration is close to unity as
�0:96 [17]. They found that the outcome is a black hole
surrounded by an appreciable disk (Mdisk=M � 0:1).

There have been also preliminary three-dimensional
simulations of the collapse of rotating neutron stars
[18–21]. Shibata, Baumgarte, and Shapiro [18] per-
formed simulations for collapse of marginally stable
supramassive rotating polytropes at the mass-shedding
limit with � � 2 and q < 1, and found that a black hole
with no disk is the outcome. They also found no evidence
for the nonaxisymmetric deformation. In [19–21], three-
dimensional simulations were performed with the so-
05-1  2004 The American Physical Society



YU-ICHIROU SEKIGUCHI AND MASARU SHIBATA PHYSICAL REVIEW D 70 084005
called black hole excision technique [22]. In all the pa-
pers, the neutron stars were modeled by � � 2 relativistic
polytropes and a preliminary black hole excision tech-
nique developed in [23] was adopted. Duez et al. [19]
reconfirmed that for the collapse of the � � 2 polytrope,
a black hole is formed only for the case q < 1. For q > 1,
on the other hand, the collapsing star forms a torus of a
nonaxisymmetric structure, in contrast with the result in
the axisymmetric simulations. Baiotti et al. [20] also
found that the final fate after the collapse of the neutron
star rotating at the mass-shedding limit is a rotating Kerr
black hole.

All these results suggest that the maximum value of q
of a progenitor for the black hole formation is �1, and
that the final state after the gravitational collapse of
rotating stars with q < 1 is a rotating Kerr black hole
with a small disk mass.

However, the rotating stellar collapse in general rela-
tivity has not been studied in detail adopting soft equa-
tions of state which are realized in realistic stellar cores;
e.g., iron stellar cores and pair-unstable oxygen cores for
which the adiabatic indices �< 4=3 at the onset of the
collapse. Recently, Shibata [7] determined marginally
stable and rigidly rotating stars with soft equations of
state (� & 4=3) against gravitational collapse, which are
plausible initial conditions for rotating stellar core col-
lapse. Based on the results of his stability analysis, he
predicts that (i) even for a rigidly rotating star with q >
1, a central region, in which an approximate local value
of q (denoted as qc) is smaller than unity, will first
collapse to form a black hole, if q is not too large (q <
2:5), and that (ii) as a result of the collapse for qc < 1 and
q	 1, a massive disk (Mdisk=M � O�0:1�) will be
formed around the rotating black hole.

The physical basis of the above prediction can be ex-
plained as follows. Consider gravitational collapse of a
rotating star with qc < 1 and q > 1 in Newtonian gravity,
and then focus on a central part of the star of massM0 and
angular momentum J0. In the absence of pressure, the
gravitational attraction at the equatorial surface of the
central part will eventually balance with the centrifugal
force at a certain radius rb in the Newtonian theory.
Assuming that the mass and the angular momentum of
the central part is conserved during the collapse, the
balance radius is written as rb � J20=�GM

3
0�. For q0 �

cJ0=�GM2
0�< 1, the radius satisfies rb < GM0=c2, which

indicates that the rotating fluid body would collapse to a
black hole in general relativity. For q0 > 1, on the other
hand, the fluid body will bounce back due to the suffi-
ciently strong centrifugal force. Therefore, a region of the
rotating star in which a quasilocal value q0 is less than
unity may collapse to form a black hole. On the other
hand, a region with q0 > 1 may bounce back. The above
simple consideration illustrates the importance of a qua-
silocal spin parameter (see Sec. III B).
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In this paper, we try to verify the hypotheses predicted
in [7] by axisymmetric simulations in full general rela-
tivity. The baseline of the hypotheses predicted in [7] is
that the density and angular momentum distribution pro-
files for the equilibrium stars with � & 4=3 is signifi-
cantly different from that for stiff equations of state
(�� 2), only to which the previous works of the collapse
with q > 1 have paid attention [9,10,12,13,18–21]. For
the soft equations of state, the criterion of black hole
formation could be modified. As a first step toward a more
realistic simulation, in this paper, we focus on extracting
the physical essence for the criterion of black hole for-
mation using simple toy models. We perform simulations
for rotating stellar collapse with a moderately soft equa-
tion of state of � � 1:5 and with a stiff equation of state of
� � 2, and compare the results. We illustrate that the
global value of q is a good parameter for predicting the
direct black hole formation only for the stiff equations of
state, not for the soft ones with � & 1:5. It will be shown
that a quasilocal value qc is a more universal parameter
than q for predicting the black hole formation for any
equation of state and any rotation law.

The paper is organized as follows. In Sec. II, we briefly
describe our formulation, gauge conditions, and boundary
conditions. In Sec. III, we describe the initial conditions
adopted in this paper and predict the final outcomes of the
stellar collapse for our initial models following [7].
Sec. IV presents the numerical results, emphasizing
that the predictions made in Sec. III are correct. Sec. V
is devoted to a summary. Hereafter, we adopt the geo-
metrical units G � c � 1, and Cartesian coordinates
xk � �x; y; z� as the spatial coordinates, with

r �
���������������������������
x2 � y2 � z2

p
.

II. SUMMARY OF FORMULATION

Fully general relativistic simulations for rotating stel-
lar collapse in axial symmetry are performed using es-
sentially the same formulation as in [24], to which the
reader may refer for details and basic equations. The
fundamental variables for the hydrodynamics are:

� : rest mass density,

" : specific internal energy,

P : pressure,

u� : four velocity,

vi �
dxi

dt
�
ui

ut
; (1)

where the Latin indices i; j; k; 
 
 
 denote the spatial com-
ponents of x; y, and z, and the Greek indices �; �; 
 
 
 the
spacetime components. As the variables to be evolved in
the numerical simulations, we define a weighted density
�� � ��ute6� and a weighted four-velocity ûi � hui �
�1� "� P=��ui where h denotes the specific enthalpy.
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From these variables, the total baryon rest-mass and
angular momentum of the system, which are conserved
quantities in an axisymmetric spacetime, can be defined
as

M� �
Z
d3x��; (2)

J �
Z
d3x��û’: (3)

The general relativistic hydrodynamic equations are
solved using a so-called high-resolution shock-capturing
scheme [24,25] on the y � 0 plane with the cylindrical
coordinates �x; z� (in Cartesian coordinates with y � 0).

To model initial conditions, we adopt the polytropic
equations of state

P � K�1�1
n; (4)

where n is the polytropic index andK polytropic constant.
Then physical units enter the problem only through the
polytropic constant K, which can be chosen arbitrarily or
else completely scaled out of the problem. Thus, in the
following we present only the dimensionless quantities
which are defined as

�M � � M�K�n=2; �M � MK�n=2; �R � RK�n=2;
�J � JK�n; �� � �Kn; �� � �Kn;

(5)

where M, R, and � denote the gravitational mass, a
radius, and an angular velocity. Hereafter, we adopt the
units of K � 1 so that we omit the bar.

During the time evolutions, we use the so-called �-law
equations of state of the form

P � ��� 1��%; (6)

where the adiabatic index � is set as 1� 1=n. In the
absence of shocks, no heat is generated and the collapse
proceeds in an adiabatic manner, preserving the poly-
tropic form of the equations of state.

The fundamental variables for the geometry are:

� : lapse function,

&k : shift vector,

'ij : metric in 3D spatial hypersurface,

' �e12� � det�'ij�;

~'ij �e
�4�'ij;

Kij : extrinsic curvature. (7)

As in the series of our papers, we evolve ~'ij, �, ~Aij �
e�4��Kij � 'ijKk

k�, and trace of the extrinsic curvature
Kk
k together with three auxiliary functions Fi � *jk@j ~'ik

with an unconstrained free evolution code as in
[12,18,24,26–30].

The Einstein equations are solved in Cartesian coor-
dinates. To impose axisymmetric boundary conditions,
084005
the Cartoon method is used [31]: Assuming reflection
symmetry with respect to the equatorial plane, simula-
tions are performed using a fixed uniform grid with the
grid size N 
 3
 N in �x; y; z� which covers a computa-
tional domain as 0 � x � L, 0 � z � L, and �� � y �
�. Here, N and L are constants and � � L=N. The
axisymmetric boundary conditions are imposed at y �
��. Details about the numerical methods as well as the
results of longterm and stable test simulations are found
in [24] to which the readers may refer.

As the slicing condition we impose an ‘‘approximate’’
maximal slicing condition in which the condition Kk

k � 0
is imposed [27]. As the spatial gauge, we adopt a dynami-
cal gauge condition proposed in [13,32], with which the
shift vector is determined from the equation

@t&k � ~'kl�Fl � �t@tFl�; (8)

where �t denotes the time step in numerical computation.
Note that in this gauge condition, &i obeys a hyperbolic-
type equation for a sufficiently small value of �t because
the right-hand side of the evolution equation for Fi con-
tains a vector Laplacian term [26]. The outstanding merit
of this gauge condition is that we can save computational
time significantly. Furthermore, it has already been illus-
trated that stable simulations for rotating stellar collapse
and merger of binary neutron stars are feasible in this
gauge [13,30].

An outgoing wave boundary condition is imposed for
hij�� ~'ij � *ij�, ~Aij, and Fi at outer boundaries of the
computational domain. The condition adopted is the same
as that described in [26]. On the other hand, for� andKk

k ,
the outer boundary conditions imposed are r� � const
and Kk

k � 0, respectively.
A black hole may be formed as a result of collapse. We

determine the location of it using an apparent horizon
finder developed in [33]. As the system approaches a
stationary state, the apparent horizon will approach the
event horizon. In a dynamical spacetime we compute the
apparent horizon mass MAH which is defined as [34]

MAH �

���������
A

16/

s
; (9)

where A denotes area of an apparent horizon.
During the numerical simulations, conservation of the

mass and the angular momentum and violation of the
Hamiltonian constraint, Herror, are monitored as code
checks. Here, Herror is evaluated with a weighted average
of the violation by ��

Herror �

R
��jVjd3xR
��d

3x
�

1

M�

Z
��jVjd

3x; (10)

where V is defined by
-3
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V �
~� � 1

8 
~R� 2/ 5��hw2 � P� �  5

8
~Aij ~A

ij �  5

12 �K
k
k�

2

j~� j � 1
8 j 

~Rj � 2/ 5��hw2 � P� �  5

8
~Aij ~A

ij �  5

12 �K
k
k�

2
: (11)
In Eq. (11),  � e4�, w � �ut, and ~� and ~R are the
Laplacian and the Ricci scalar with respect to the con-
formal metric ~'ij.

III. INITIAL CONDITIONS AND PREDICTIONS

A. Method of Preparing Initial Conditions

In this paper, we adopt simplified initial conditions
following Stark and Piran [10]: We first give a marginally
stable spherical polytrope against gravitational collapse,
and then, add an angular momentum artificially as well as
reduce the pressure to induce the collapse. Selected values
for � are 1:5, with which an insight into the collapse of
stars with moderately soft equations of state will be
obtained, and 2, the value that Stark and Piran adopted
[10]. Simulations with � � 2 are performed for confirma-
tion of the previous result [10].

In more detail, we generate the initial conditions in the
following procedure. First, we give a spherical star which
is marginally stable against gravitational collapse, using
the polytropic equations of state with � � 1:5 or 2:0.
Second, we reduce the pressure to an arbitrarily chosen
fraction fP of its equilibrium pressure. Third, an angular
momentum is artificially added according to

u’ � e4�$2ut�; and ut �

�������������������������������������
�1

��2 ��2e4�$2

s
;

(12)

where � and � denote the lapse function and the confor-
mal factor of the spherical polytropes, and � is given by
TABLE I. Central density �c, angular velocity of rotational axi
radius of the spherical polytrope in the isotropic coordinates), grav
the nondimensional parameter (spin parameter) q � J=M2, q� � J
of G � c � K � 1. fP denotes a fraction of the initial pressure dep
rigid rotation.

�c �0 R0=RS M M�

0.005 0.050 1 (rigid) 0.510 0.530

0.005 0.065 1 (rigid) 0.512 0.535
0.005 0.065 1.5 0.501 0.534

0.005 0.090 1 (rigid) 0.529 0.546
0.005 0.090 1.0 0.519 0.541
0.005 0.090 2=3 0.511 0.537

0.005 0.100 1 (rigid) 0.538 0.552
0.005 0.100 1.0 0.524 0.545
0.005 0.100 2=3 0.514 0.540

0.005 0.115 1 (rigid) 0.562 0.563
0.005 0.115 1.0 0.540 0.553
0.005 0.115 2=3 0.526 0.546
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��$� � �0 exp
�
�
$2

2R2
0

�
: (13)

Here, $ �
����������������
x2 � y2

p
, R0 is a parameter which controls

the degree of differential rotation, and �0 is the angular
velocity along the z axis. For R0 ! 1, the rotation ap-
proaches the rigid rotation (we refer to the case withR0 !
1 as the rigidly rotating case in the following ). Finally,
the Hamiltonian and momentum constraints are reim-
posed by solving the constraint equations, and then the
time evolution is set out.

In Tables I and II, we list characteristic quantities for
the initial conditions with � � 1:5 and 2.0 used in the
present work. RS � 6:45 is a coordinate radius of the
marginally stable spherical polytrope with � � 1:5 in
the isotropic coordinates. All the quantities are scaled
to be nondimensional using the relations (5).

B. Predicting the Final Outcome

Using essentially the same method as described in [7],
the final outcome after the collapse for our initial con-
ditions with q > 1 is predicted. We pay particular atten-
tion to the black hole formation assuming that (i) the
collapse proceeds in an axisymmetric manner, (ii) the
viscous angular momentum transport during the collapse
is negligible, and (iii) the pressure or heating effects never
halt the collapse. Because of the assumption that the
viscous effect is negligible during the collapse, the spe-
cific angular momentum j of each fluid element is con-
served in the axisymmetric system. Here, j is defined by
s �0, differential rotation parameter R0 (RS is the coordinate
itational mass M, baryon rest-mass M�, angular momentum J,
=M2

� , and qc of the initial data for models with � � 1:5 in units
letion.‘‘rigid’’ denotes that rotational velocity field is initially in

J q q� qc fP

0.227 0.87 0.81 0.50 0.35

0.300 1.14 1.05 0.64 0.25
0.282 1.08 0.99 0.64 0.25

0.444 1.59 1.49 0.84 0.1
0.377 1.40 1.29 0.86 0.1
0.319 1.22 1.11 0.87 0.1

0.512 1.77 1.68 0.91 0.01
0.427 1.55 1.44 0.94 0.01
0.358 1.36 1.23 0.96 0.01

0.640 2.03 2.02 1.01 0.01
0.515 1.77 1.68 1.05 0.01
0.319 1.54 1.42 1.08 0.01
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TABLE II. The same as Table I but for models with � � 2:0.

�c �0 R0 M M� J q q� qc fP

0.318 0.65 1 (rigid) 0.179 0.197 0.0364 1.13 0.93 0.90 0.01
0.318 0.67 1 (rigid) 0.182 0.199 0.0383 1.16 0.97 0.91 0.01
0.318 0.68 1 (rigid) 0.183 0.199 0.0393 1.17 0.99 0.92 0.01

FIG. 1. (a) The distribution of q�j� and (b) jISCO as a function
of m�j�=M�� m��j�=M�� for models with �0 � 0:065 and for
� � 1:5. The solid and dashed curves denote the results for
rigid rotation and differential rotation with R0 � 1:5RS, re-
spectively. The filled diamonds indicate values of m�j�=
M�� m��j�=M�� and q�j� at the maximum value of jISCO.
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j � hu’: (14)

Then, we define a rest-mass distribution m��j� as a func-
tion of j, which is the integrated baryon rest-mass of fluid
elements with the specific angular momentum less than j:

m��j� � 2/
Z
j0<j

��r2drd�cos8�: (15)

Similarly, a specific angular momentum distribution is
defined according to

J�j� � 2/
Z
j0<j

��j0r2drd�cos8�: (16)

Gauge independency and conservation of these distribu-
tion functions come from the axial symmetry (the exis-
tence of the rotational Killing vector field) and can be
proven by the hydrodynamical equations

@��

@t
�
@���v

I�

@xI
� 0; (17)

@���j�
@t

�
@���jvI�

@xI
� 0; (18)

where the index I denotes the component of $ and z.
For the following analysis, it is better to define a

quasilocal gravitational mass since in contrast with the
case of the soft equations of state (� & 4=3) studied in
[7], stars are compact with R=M & 15, and hence, differ-
ence between the rest-mass and the gravitational mass is
not negligible (see Table I). However, the gravitational
mass cannot be locally defined in general relativity. Thus,
here, assuming that the ratio of the ‘‘quasilocal gravita-
tional mass’’ to the rest-mass is uniform inside a star, we
define a ‘‘gravitational mass distribution’’ as

m�j� �
M
M�

m��j�: (19)

Note that m�j� is equal to M for a maximum value of j
(hereafter jmax) and that for � � 4=3, m�j� is approxi-
mately identical with m��j�.

From these distribution functions, we define spin pa-
rameter distributions as

q��j� �
J�j�

m��j�2
and q�j� �

J�j�

m�j�2
: (20)
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These may be approximately regarded as the spin pa-
rameters of an inner region composed of fluid elements
with the specific angular momentum less than j. Al-
though it is not clear which of the two spin parameters
is better for the analysis, we adopt q�j� because of the
following reasons: (i) since q�j� is equal to the global
quantity q for j � jmax, q�j� would be the better quantity
for a large value of j; (ii) M� is always larger than M for
all the models. (This is likely to be the case for all the
stable stars.) This implies that q�j�> q��j�. As a result,
for q�j�< 1, q��j� is also smaller than unity.

In Figs. 1(a), 2(a), 3(a), and 4, q�j� as a function of
m��j�=M� are displayed for the models with � � 1:5
listed in Table I. Figure 5 also shows the same relation
for models with � � 2:0 listed in Table II. These figures
indicate that the values of q�j� and q��j� at the center of
stars (hereafter denoted as qc and q�;c) can be much
smaller than unity even if the global values of q (or
q��jmax� which is hereafter denoted by q�) are larger
than unity. An outstanding difference between the results
-5



FIG. 3. The same as Fig. 2 but for model of �0 � 0:100.FIG. 2. The same as Fig. 1 but for �0 � 0:090. The solid,
dashed, and dotted curves denote the results for rigid rotation,
differential rotation with R0 � RS, and with R0 � RS=1:5,
respectively.

FIG. 4. The same as Fig. 2(a) but for model of �0 � 0:115.
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for two values of � is found in the ratio of q=qc for the
rigidly rotating case; q=qc � 2 for � � 1:5, while � 1:25
for � � 2. (Note that for � � 4=3, q=qc � 2:5.) This
difference results from the fact that for softer equations
of state, the star has a more centrally-condensed
structure.

As the collapse proceeds, an inner region of the star
will collapse faster. This property will be more outstand-
ing for the softer equations of state since the stars have
more centrally-condensed structures. Taking these pre-
dictions and the profile of q�j� into account, we assume
that the inner region in which q�j�< 1 may collapse first
to form a ‘‘seed’’ black hole. Assuming that a seed black
hole is formed during the collapse, we predict the sub-
sequent evolution in the following manner. Here, we
focus only on the rapidly rotating case with a large value
of q > 1 but with qc < 1. Since the centrifugal force of
the rapidly rotating progenitors is large enough, the col-
lapse in an early stage will dominantly proceed in the z
direction to be a disklike structure. The formed disk will
subsequently collapse to form a black hole. In a formed
disk, fluid elements at the same cylindrical radius are
084005
likely to have an approximately identical value of the
specific angular momentum j. Therefore, the fluid ele-
ments of the same value of j will simultaneously collapse
or fall into the black hole even if they are initially at
different locations.

Now, let us consider innermost stable circular orbit
(ISCO) around the growing seed black hole located at
-6



FIG. 5. The same as Fig. 4 but for rigidly rotating models
with � � 2:0. The solid, dashed, and dotted curves denote the
results for �0 � 0:68, 0.67, and 0.65, respectively.
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the center. If the value of j of a fluid element is smaller
than that at the ISCO, jISCO, the element will fall into the
seed black hole eventually. In fact, there is a possibility
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that some fluid elements can be captured even for j >
jISCO if it is on a noncircular orbit. Ignoring such trajec-
tories yields the minimum amount of fluid elements that
will fall into the black hole. The value of jISCO will
change as the ambient fluid elements accrete onto the
seed black hole. If jISCO increases as a result of the
accretion, the more ambient fluid elements will fall
into the black hole. On the other hand, if jISCO decreases
during the accretion, no more fluid element will fall into
the black hole, and as a result, the dynamical growth of
the black hole will terminate. The above speculation
suggests that the evolution of the baryon mass m��j�
and the angular momentum J�j� enclosed inside the
seed black hole will be approximately determined
by the initial distribution of m��j� and J�j� if all
viscous effects such as angular momentum transfer are
negligible.

To estimate the value of jISCO and to predict the growth
path of the seed black hole, we assume that the spacetime
metric can be instantaneously approximated by that of a
Kerr spacetime of the mass m�j� and the spin q�j�. On
these approximations, we can compute jISCO of a seed
black hole as [35–37],
jISCO �

��������������������
m�j�rISCO

p
�rISCO

2 � 2q�j�m�j�
��������������������
m�j�rISCO

p
� �q�j�m�j��2�

rISCO�rISCO
2 � 3m�j�rISCO � 2q�j�m�j�

��������������������
m�j�rISCO

p
�1=2

; (21)
TABLE III. The maximum values of jISCO, and correspond-
ing values of m��jISCO�=M� and q�jISCO� for � � 1:5 initial
models of �0 � 0:050, 0.065, 0.090, and 0.100.

�0 R0 jISCO:max=M m��jISCO:max�=M� q�jISCO:max�

0.050 1 (rigid) 2.29 0.953 0.792

0.065 1 (rigid) 1.70 0.815 0.904
0.065 RS=1:5 1.77 0.845 0.902

0.090 1 (rigid) 0.734 0.435 0.979
0.090 RS 0.753 0.454 0.982
0.090 1:5RS 0.836 0.511 0.984

0.100 1 (rigid) 0.399 0.256 0.992
0.100 RS 0.330 0.222 0.995
0.100 1:5RS 0.287 0.201 0.997
where

rISCO � m�j��3� Z2 � f�3� Z1��3� Z1 � 2Z2�g
1=2�;

Z1 � 1� �1� q�j�2�1=3�f1� q�j�g1=3 � f1� q�j�g1=3�;

Z2 � �3q�j�2 � Z2
1�

1=2:

Here, m�j� and q�j� are not strictly the gravitational mass
and the spin parameter. We guess that they may have a
systematic error of magnitude j�mj=m � j1� �m�=m�

�M=M��j & j1�M=M�j for the mass and j�qj=q &

2j1�M=M�j for the spin parameter. This implies that
the value of jISCO determined by Eq. (21) will also include
a systematic error. The magnitude of the error for jISCO
may be &10% (see Table I).

In Figs. 1(b), 2(b), and 3(b), we show jISCO�m�j�; q�j��
as a function of m�j�=M for the models with � � 1:5.
These figures show that for the models in which the
degree of differential rotation is not too high, jISCO has
a maximum (hereafter denoted as jISCO:max). Thus,
we predict that the seed black hole will grow until j
reaches jISCO:max. In Table III, we show jISCO:max=M,
m�jISCO:max�=M, and q�jISCO:max� for � � 1:5. Note that
for models of �0 � 0:115 in which qc > 1, we predict
that no seed black hole is formed.

Here, m�jISCO:max�=M and q�jISCO:max� may be approxi-
mately regarded as the mass fractionMBH=M and the spin
parameter qBH of the final black hole (which is in a
quasistationary state), namely,
MBH � m�jISCO:max�; (22)

qBH � q�jISCO:max�: (23)

This approximate estimate suggests that an appreciably
massive disk (Mdisk=M � 0:1 �0:8) will be formed even-
tually. Note that MBH and qBH computed above might
include a systematic error because of the reason that we
approximate a spacetime composed of a black hole and a
massive disk simply as a Kerr spacetime. However, jISCO
is likely to be determined from the local quantities near
-7



FIG. 6. Evolution of (a) the central density ��;c and (b) the
central value of the lapse function �c for � � 1:5. In both
figures, the solid, dashed, and dotted curves denote the differ-
entially rotating models of RS � R0=1:5 with �0 � 0:090,
0:100, and 0:115 (qc � 0:87, 0.96, and 1.08), respectively. All
the results are obtained with �x � 0:006. Here, ��1=2

c;0 � 25M.
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the black hole and, hence, we consider that our treatment
may be approximately correct.

It is found that for a fixed value of qc, the correspond-
ing value of q�jISCO:max� is almost independent of the
differential rotation parameter R0, i.e., the value of q.
This suggests that the spin parameter of the final state
of the black hole may be determined by the value of qc
and independent of q as far as q�j� is an increasing
function of j.

In summary, we have predicted the following facts in
this section: (I) even if the global spin parameter q
significantly exceeds unity, an inner region of a star
with qc < 1 will collapse first to form a seed black
hole;, i.e., the black hole formation will be determined
by the local value qc independent of the global value of q.
On the other hand, for qc > 1, no black hole will be
formed; (II) the formed seed black hole will grow as
the ambient fluid subsequently accretes onto it; (III) the
evolution of the relation between the rest-mass m� and
angular momentum J enclosed inside the growing seed
black hole will agree approximately with the initial rela-
tion betweenm��j� and J�j�; (IV) the final outcome of the
dynamical collapse of a star with qc < 1 is a black hole
surrounded by a disk.

These predictions made from the analysis of the initial
conditions are quite reasonable, but they are nothing but
predictions. Thus, to confirm them, it is obviously neces-
sary to perform fully general relativistic simulations. In
the next section, we present the results of numerical
simulations and verify the predicted facts.

IV. RESULTS OF NUMERICAL SIMULATION

A. Results for � � 1:5

We performed simulations for the various initial mod-
els listed in Table I, varying grid spacing as �x � 0:018,
0.015, 0.01125, 0.009, and 0.006 (in units of G � c �
K � 1). In the simulations, the uniform grid is adopted
and the outer boundaries along the x and z axes are
located at L * 10 * 20M. Simulations were performed
changing the location of the outer boundaries, but we
found that the numerical results depend very weakly on
the location. Numerical results could be affected by the
location of the outer boundaries in a very longterm simu-
lation [38]. However, in the present paper, the timescale of
black hole formation is much shorter than the timescale
in which effects from the outer boundaries located at a
finite radius are amplified. Numerical simulations were
performed on FACOM VPP5000 in the data processing
center of the National Astronomical Observatory of
Japan, and personal computers with Pentium-4 process-
ors, each of which has 2 Gbytes memory and a 3.0 GHz
clock.

In Figures 6(a) and 6(b) we display the evolution of the
central value of �� (denoted as ��;c) and the central value
of the lapse function �c for the differentially rotating
084005
models with � � 1:5, RS � R0=1:5, and �0 � 0:090,
0.100, and 0.115. The grid resolution adopted for all these
simulations is �x � 0:006. A convergent result is ob-
tained for the models of �0 � 0:090 and 0:115 even for
�x � 0:009. For the model of �0 � 0:100, we should be
careful since the formed black hole is very small and thus
a highly accurate grid resolution is required to follow the
black hole formation. In this case, in simulations with
coarse grid resolutions, we may conclude that a black hole
is not formed. However, for �x & 0:009, we have found
that a black hole is formed. Thus, for all the models with
qc < 1 (�0 � 0:100), the collapse proceeds to form an
apparent horizon irrespective of the values of q. It is
clearly illustrated that even if the value of q is much
larger than unity, a black hole may be formed for qc <
1. These results are obviously counterexamples of the
previous criterion, q > 1, for no black hole formation.

For all the models with �0 � 0:115 for which qc > 1,
on the other hand, we find that black hole is not formed
-8



FIG. 7. Snapshots of the density contour curves of �� and of the velocity field of �vx; vz� at selected time slices for the rigidly
rotating model with �0 � 0:065. The contour curves are drawn for �� � �a 
 10�0:5j, with j � 0; 1; 2; 
 
 
 ; 10, where �a � 0:011,
1, and ten at t�1=2

c;0 � 0, 1.45, and 1.95. The small thick solid circle with the radius �0:2M of the last panel denotes the apparent
horizon.
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and that the stars experience bounces and oscillation. This
results from the fact that the centrifugal force near the
rotational axis is too strong to form a seed black hole.

In Figs. 7 and 8, we plot snapshots of the contour curves
of �� and of the velocity field of �vx; vz� at selected time
slices for the rigidly rotating model with �0 � 0:065 and
for the differentially rotating model with � � 0:115 and
R0 � RS=1:5. As we predicted in Sec. III, the collapse
first proceeds in the direction of the rotational axis (z
axis) to be a disklike structure. Then, the formed disk
collapses to the center to form a black hole for qc < 1.
Irrespective of the degree of differential rotation, the
collapse proceeds in essentially the same manner and a
seed black hole is formed. For qc > 1, the centrifugal
force is strong enough to prevent black hole formation. In
this case, an oscillating disk is the outcome after the
collapse (see Fig. 8). Such a disk may be unstable against
a nonaxisymmetric instability (e.g., [19,28]).

Even if the value of q is much larger than unity, a black
hole is formed for models with qc < 1, as predicted in
Sec. III. To confirm this conclusion strictly, we performed
084005
convergence tests varying the grid resolution for a wide
range. In Figs. 9(a)–9(c) we show Herror and the central
density ��;c with different grid spacing (�x � 0:009,
0.015, and 0.018) for �0 � 0:065 and R0 � 1:5RS.
Figure 9(a) shows that the accuracy is improved with
decrease of the grid spacing. To clarify at what order
the convergence is achieved, in Fig. 9(b), we plot the ratio
of Herror of �x � 0:015 and 0.018 to that of 0.009. It is
found that the magnitude of the error for �x � 0:015 and
0.018 is about 4–5 and 7–9 times as larger as that for
�x � 0:009 for t & ��1=2

c;0 . This implies that the third-
order convergence is approximately achieved. This seems
to be because our hydrodynamical scheme is of the third-
order accuracy in space in the absence of shocks [24] and
because Herror is defined with a weight factor �� (cf.,
Eq. (10)). For t * 1:2��1=2

c;0 , the convergence changes
from the third to the first order fairly rapidly. This is
because for such late time, shocks are formed, and around
shocks, transport terms in the hydrodynamic equations
are computed using a first-order scheme. After the shock
-9



FIG. 8. The same as Figs. 7 but for the differentially rotating model with �0 � 0:115 and R0 � RS=1:5. The contour curves are
drawn for �� � �a 
 10�0:5j, with j � 0; 1; 2; 
 
 
 ; 10 where �a � 1 for all the time steps.
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formation, shock waves propagate in a wide region of a
collapsed star, and as a result, the order of the conver-
gence factor eventually relaxes to the first order.

To accurately determine the threshold values of qc or q,
it is also crucial that the rest-mass distribution m��j� as a
function of the specific angular momentum is conserved
[39] accurately at least until the first formation of an
apparent horizon. In Figs. 10(a) and 10(b) we compare
the rest-mass distribution at t � 0 and at the first forma-
tion of apparent horizon for the rigidly rotating case with
�0 � 0:065 and 0.090. These figures demonstrate that the
rest-mass distribution m��j� is conserved well, implying
that a spurious numerical transfer of the angular momen-
tum is small.

For all the models with �0 � 0:100 in which
qc � 0:91–0.96, we find that a seed black hole is formed.
However, in this case, it is not easy to obtain the con-
vergent result for MAH, say within 10% error, in the
present computational setting because of the restriction
of the grid resolution. Numerical experiments have told
us that the grid spacing to follow the black hole formation
should be smaller than �0:1Mseed;AH (not �x & 0:1M),
with which the black hole horizon is covered by �10 grid
084005
points. For the model with �0 � 0:100, we found that
mass of the seed black hole is Mseed;AH & 0:1M. This
implies that for this model, the required grid spacing is
�x & 0:1Mseed;AH & 0:01M � 0:005. This value is nearly
equal to the finest grid spacing that we adopted in this
work.

In Figs. 11(a) and 11(b) we show the time evolution of
the apparent horizon mass for the rigidly rotating models
with �0 � 0:065 and 0.090. These figures indicate that
the black hole evolution can be divided into two phases.
One is a phase in which a seed black hole is formed at the
central region. The other is a phase in which the seed
black hole grows as the ambient fluid falls into it. We
define the mass of the seed apparent horizon MAH;seed

from the location of the break of the curves for MAH�t�.
Then, it is found that MAH;seed is much smaller than the
total mass of the system M and MBH defined in Eq. (22).
As a reasonable result, it is also found that MAH;seed is
smaller for the larger value of �0 and R0 (i.e., for the
more rapidly and more rigidly rotating cases). Note that at
the accretion phase, the system is composed of a black
hole and a surrounding massive disk accreting onto the
central black hole (see Fig. 7).
-10



FIG. 9. (a) Violation of the Hamiltonian constraint Herror,
(b) ratio of the violation Herror��x � 0:015�=Herror��x �
0:009� and Herror��x � 0:018�=Herror��x � 0:009�, and (c) the
central value of �� (��;c) as a function of time for �0 � 0:065
and R0 � 1:5RS. In panel (a), the solid, dashed, and dotted
curves denote the results of �x � 0:009, 0.015, and 0.018. In
panel (b) and (c), the filled diamonds and the open triangles
denote the results of �x � 0:015 and 0.018.

FIG. 10. Rest-mass distribution as a function of specific an-
gular momentum j (a) for the rigidly rotating models with
�0 � 0:065 and (b) for �0 � 0:090. In both panels, the solid
curves denote the initial rest-mass distributions and the filled
diamonds the rest-mass distributions when an apparent horizon
is first formed. The grid resolution is �x � 0:01125 for (a) and
�x � 0:006 for (b).
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For a Kerr black hole of the mass MBH and the spin
parameter qBH, the irreducible mass of the event horizon
Mirr is defined as [6]
084005
�Mirr�MBH; qBH��2 �
1

2
M2

BH�1�
�����������������
1� q2BH

q
�: (24)

Provided that the final state of the black hole may be
approximated as a Kerr black hole (even though it is
surrounded by an appreciable disk), MAH should asymp-
totically approach Mirr�MBH; qBH�. Assuming that MBH

and qBH may be evaluated from the approximate relations
(22) and (23), Mirr=M is � 0:69, 0.72, 0.34, and 0.39 for
��0; R0� � �0:065;1�, �0:065; 1:5RS�, �0:090;1�, and
�0:090; 2RS=3�, respectively, (see the horizontal lines in
Fig. 11).

For �0 � 0:065 (the solid curves in Fig. 11(a)), MAH

appears to approach the irreducible mass. For �0 �
0:090, on the other hand, the computation crashes in the
middle of the black hole evolution. To carry out a simu-
lation beyond this time, the so-called black hole excision
techniques [22] are necessary. As far as we know, how-
ever, all groups [19,20] which performed simulations of
rotating stellar collapse have adopted the so-called simple
-11



FIG. 11. Evolution of the apparent horizon mass MAH for the
rigidly rotating models with (a) �0 � 0:065 and
(b) �0 � 0:090. In both panels, the horizontal lines denote
the irreducible mass Mirr which is � 0:69M and 0:72M for
��0; R0� � �0:065;1� and �0:065; 1:5RS�, and � 0:34M and
0:39M for ��0; R0� � �0:090;1� and �0:090; 2RS=3�.
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excision technique developed by Alcubierre and
Brügmann [23]. This method will be robust for nearly
stationary systems because the boundary conditions near
the black hole horizon are imposed in terms of the time
derivatives for the geometric variables. For the collapse of
a marginally stable polytrope with a stiff equation of
state (with � * 5=3), all the matter collapse to a black
hole rather simultaneously. In such cases, the system
settles down to a stationary black hole fairly quickly after
the first formation of the apparent horizon [13]. Thus, the
simple excision technique is likely to work. However, in
other cases such as the collapse of a marginally stable star
with soft equations of state, the collapse does not proceed
simultaneously, and hence, the system does not settle
down to a stationary state soon after the first formation
of a black hole. As illustrated in this paper, in such
collapse, a seed black hole of small mass is first formed,
and then, it grows gradually as a result of accretion of the
surrounding matter. During the growth of the black hole,
the system is dynamical, and hence, there is no reason
084005
that the simple excision technique works well. Actually,
our recent numerical experiments have indicated that it is
difficult to perform accurate simulations for the collapse
with soft equations of state using the simple excision
technique [40]. Thus, we suspect that there may be no
fully general relativistic implementation with the black
hole excision techniques which is applicable for problems
with soft equations of state (with � & 1:5). Developing
such an implementation is an issue for the future. We note
that numerical instabilities that may be associated with
the simple excision are also reported in simulations of
dynamical black hole spacetimes (e.g., [41–43]).

To confirm prediction (IV), it will be necessary to
continue simulations for a long time >100M after the
formation of apparent horizons. Unfortunately, the com-
putations crash in �20M after the first formation of
apparent horizons, due to the grid stretching around the
black hole horizons, and thus, we cannot confirm this
prediction strictly. Although some implementations
with a black hole excision code are in operation, they
are applicable only for stiff equations of state and for the
duration of <100M [19,20]. Again, it is necessary to
develop a robust excision technique to confirm the pre-
diction (IV).

Although simulations do not clarify the final state of
the collapse, the above results strongly suggest that the
final outcome of the dynamical collapse of a rotating star
with q > 1 and qc < 1 is a black hole surrounded by a
massive disk of mass of order 0:1M. We also note that
MAH;seed is always smaller than Mirr by a factor of �2.
This implies that the black hole significantly grows dur-
ing the accretion phase.

From the above results, we have confirmed the predic-
tions (I) and (II) suggested in Sec. III B: We have found
that qc � 1 is an approximate threshold for the black hole
formation and that after its formation, the seed black hole
significantly grows due to accretion.

To confirm the prediction (III), we compute the evolu-
tion of the total baryon rest-mass and the total angular
momentum enclosed inside an apparent horizon (denoted
as m�;AH�j� and JAH�j�, respectively) and compare the
relation between them with the initial one between
m��j� and J�j�. In Fig. 12(a), we display evolution of
m�;AH�j� and JAH�j� (the diamonds) together with the
initial relation (the solid curve) for the rigidly rotating
model with �0 � 0:065. It is found that the evolutionary
track of the black hole is approximately determined by
the initial distribution of the mass and the angular mo-
mentum, until a numerical error is accumulated signifi-
cantly. To confirm this result more firmly, we also
performed a simulation for a moderately rapidly rotating
star (rigid rotation with �0 � 0:050). In Fig. 12(b), we
show the evolution track of m�;AH�j� and JAH�j� together
with the initial distribution for this case. It is found that
the initial distribution approximately determines an evo-
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FIG. 13. Evolution of (a) the central density ��c and (b) the
central value of the lapse function �c for � � 2. In both panels,
the solid, dashed, and dotted curves denote the models of �0 �
0:68, 0.67, and 0.65, respectively.

FIG. 12. Evolution of the baryon rest-mass m�;AH and the
angular momentum JAH enclosed inside apparent horizons
(filled diamonds) for the rigidly rotating models with
(a) �0 � 0:065 and (b) �0 � 0:050. The solid curve denotes
the initial relation between m��j� and J�j�. The cross denotes
the location of m��jISCO:max� and J�jISCO:max�, which are the
predicted final values of the mass and the angular momentum
of a black hole.
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lutionary track of the rest-mass and the angular momen-
tum enclosed inside the apparent horizon. These results
confirm the prediction (III) of the previous section. This
conclusion is quite natural, in particular, in the present
case because we initially reduce the pressure by a signifi-
cant factor to quickly form a disklike structure, for which
fluid elements of the same value of a cylindrical radius
have almost the same value of j, and therefore, the initial
distribution of m��j� and J�j� should determine the evo-
lution of the system.

B. Results for � � 2:0

For comparison with the results of the moderately soft
(� � 1:5) equation of state and for reconfirmation of the
previous result by Stark and Piran [10], we also per-
formed simulations for the rotating collapse adopting a
stiff equation of state with � � 2. The simulations were
performed with N � 1000 and �x � 0:005 (in units of
G � c � K � 1). To check the convergence, test simula-
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tions with a coarser grid resolution (�x � 0:0075) were
also performed, and we found that the numerical results
depend very weakly on the grid resolution as long as
�x � 0:0075 and that the threshold for black hole for-
mation is unchanged.

As in the case of � � 1:5, a black hole is formed even
from the initial data sets with q > 1. In Figs. 13(a) and
13(b) we show the time evolution of the central density
��c and the central value of the lapse function �c for
models listed in Table II. It is found that the rigidly
rotating stars with �0 & 0:67 collapse to form a black
hole. On the other hand, for the rigidly rotating stars with
�0 * 0:68, no black hole is formed. Therefore, the
threshold value of q for the direct black hole formation
is about �1:2 for the rigidly rotating models with � � 2,
which agrees approximately with that found by Stark and
Piran [10] and is consistent with the result by Duez et al.
[19]. For the critical model, the value of qc is � 0:92,
close to unity. Since there is no reason to believe that the
particularly large value of q� 1:2 should be the threshold
for the black hole formation, we propose the quasilocal
value of qc � 0:92� 1 as the threshold.
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A plausible reason why the critical value of qc is some-
what smaller than unity may be as follows. First, note that
the configuration of stars with stiffer equations of state is
less centrally-condensed and more uniform, and thus, the
collapse proceeds in a more coherent manner; i.e., the
fluid elements collapse to a black hole rather simulta-
neously. Accordingly, the criterion for the black hole
formation is unlikely to be determined only by the central
properties of stars. Indeed, we find that ratio of the mass
of the first seed apparent horizon to the total mass of the
system for � � 2:0 is much larger than that for � � 1:5
case; MAH;seed=M� 0:35 at the critical value of qc for
� � 2:0, in contrast with that for � � 1:5, MAH;seed=M�

0:1. This indicates that for � � 2, not qc but a value of
q�j� at a moderately large value of j (denoted as j1) may
determine the black hole formation (note that q�j1�< 1).
Since q�j� is an increasing function of m��j�, q�j1� is
larger than qc and closer to unity. Therefore, the critical
value in terms of qc may well be smaller than unity for
stiff equations of state.

Figure 14 shows the time evolution of MAH for models
with � � 2:0. It is found that the process of the black hole
formation can also be divided into two phases: a phase in
which a seed black hole is formed at the central region
(t & 5:6��1=2

c;0 ) and the other phase in which the seed
black hole grows as the ambient fluid falls into it
(t * 5:6��1=2

c;0 ).
Before closing this section, let us explain the reason

that q � 1 has been believed as the threshold value for the
black hole formation in the number of previous works.
Stark and Piran [10] and Duez et al. [19] adopted only a
stiff (� � 2) equation of state. As described above, such
stars have rather uniform density distribution and the
collapse proceeds fairly simultaneously for all the fluid
elements. Furthermore, the distribution of q�j� as a func-
FIG. 14. Evolution of the apparent horizon mass MAH for the
rigidly rotating models with � � 2:0 and �0 � 0:67. The
horizontal line of MAH � 0:51M is Mirr in this case.
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tion of m��j� with stiff equations of state is rather uni-
form. Indeed, for the rigidly rotating case with � � 2:0,
q=qc is �1:25 in contrast with the � � 1:5 cases for
which q=qc � 2 (compare Fig. 5 and Fig. 3(a)] for rigidly
rotating models). These two facts imply that q � 1 may
be an approximate threshold value for predicting no black
hole formation in the case of � � 2. Nakamura and his
collaborators performed simulation for highly differen-
tially rotating stars [8,9]. The higher the degree of dif-
ferential rotation becomes, the flatter the distribution of
q�j� is, as indicated in Fig. 4. As a result, the ratio q=qc
approaches unity. In their initial data, the degree of dif-
ferential rotation is very high, and hence, q=qc would be
�1. This is the reason that the value q � 1 was regarded
as the threshold of black hole formation. Abrahams et al.
[11] performed simulations for toroidal star clusters.
Having a toroidal configuration implies that they are
rotating with a high degree of differential rotation.
Again, qc � q for such systems, and hence, the global
parameter q may be used as the threshold.
V. SUMMARY

We have reported new results about the black hole
formation in the collapse of rapidly rotating stars with
q > 1 and with moderately soft (� � 1:5) and stiff (� �
2:0) equations of state, analyzing initial conditions and
performing axisymmetric simulations in full general
relativity.

The initial conditions were given, following Stark and
Piran [10]; we first gave marginally stable spherical poly-
tropes with � � 1:5 or � � 2:0 and then artificially added
an angular momentum and significantly deplete internal
energy and pressure. Using the same analysis carried out
in [7], we predicted that (I) the inner region in which
qc & 1 will collapse first to form a seed black hole even if
the global value of q is much larger than unity; (II) the
formed seed black hole will subsequently grow as
the ambient fluid accretes onto it; (III) the evolution of
the relation between the rest-mass and the angular mo-
mentum enclosed inside the growing black hole will
agree approximately with the initial relation between
m��j� and J�j�; (IV) the final outcome of the dynamical
collapse of sufficiently massive stars with q > 1 and qc <
1 will be a black hole surrounded by an appreciable disk.

To confirm these predictions, we performed fully gen-
eral relativistic hydrodynamic simulations using a high-
resolution shock-capturing scheme with the �-law equa-
tions of state. As a result of numerical simulations, we
confirmed the predictions (I), (II), and (III). From these
results, we conclude that the previous criterion for black
hole formation (i.e., no black hole is formed for q * 1) is
not always valid, in particular, for soft equations of state
with � & 1:5. The universal criterion for no black hole
formation is likely to be the condition qc * 1.
-14
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Previous works have suggested that q � 1 is the thresh-
old value for the black hole formation. We have illustrated
that this is approximately the case for � � 2. (This will
be also the case for � � 2 since for such large values of �,
q=qc � 1:25.) However, this is not always the case for
� � 1:5. The main reason is that stars with such soft
equations of state have a centrally-concentrated density
distribution. This results in the fact that the ratio q=qc
becomes �2 for the rigidly rotating case with � � 1:5.
This implies that even if q is much larger than unity, qc
can be much smaller than unity, and, namely, the central
region of the star does not rotate so rapidly that the
central region can form a black hole after collapse. For
� � 1:5 and for the rigidly rotating case, q=qc * 2, and
hence, predicting no black hole formation in terms of q
becomes even worse. For 1:5< �< 2, we have not per-
formed a simulation, and it is not clear whether q � 1
may be used as an approximate threshold. However, in
this case, we know that 1:25< q=qc < 2 for the rigidly
rotating case, and therefore, qwill also not be a very good
parameter.

Numerical results suggest that prediction (IV) would
be valid. To confirm it, however, it is necessary to perform
a longterm simulation until the growth of black hole
evolution terminates, which cannot be done at present.
To perform such a long run, an excision technique will be
required, but there is no good technique to follow the
collapse with soft equations of state. Developing a robust
excision technique that can be used for a wide variety of
problems is one of the important issues in the field of
numerical relativity.

Associated with the prediction (II), we have found that
the process of black hole formation is divided into two
phases: the first is the black hole formation phase in which
the seed black hole is formed, and the other is the accre-
tion phase in which a large amount of the ambient fluid
elements are swallowed into the formed seed black hole.
During the accretion phase, the system is composed of a
black hole and the surrounding massive disk accreting
onto the central black hole. The final state will be a
rapidly rotating black hole surrounded by massive disks.

In the present paper, we have focused on clarifying the
criterion of black hole formation analyzing simple toy
models. To obtain a scientific result that can be compared
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with observational data such as gravitational waves,
however, simulations with realistic initial conditions
and realistic equations of state are necessary. The
rapidly rotating black hole will be formed after rapidly
rotating massive stellar core collapse and pair-unstable
collapse, if the value of qc for progenitors is smaller than
unity at the onset of collapse. Formation of rapidly rotat-
ing black holes of qBH & 1 and accretion of the large mass
onto such rapidly rotating black holes are likely to be
strong burst sources of gravitational waves for the laser
interferometric detectors. Thus, performing realistic nu-
merical simulations of black hole formation is an impor-
tant subject for predicting the gravitational waveforms.
We plan to attack these computations in a fully general
relativistic manner extending previous works [38,44].

For qc > 1, the black hole will not be formed promptly.
In such case, the collapse leads to formation of the self-
gravitating disk or torus. They will be subsequently
unstable against nonaxisymmetric deformation [19,28].
After the nonaxisymmetric instabilities turn on, the an-
gular momentum will be transported from the inner
region to the outer region, decreasing the value of q�j�
around the inner region below unity. As a result, the seed
black hole may be formed. To follow these processes, it is
necessary to perform a numerical simulation without
assuming the axial symmetry. During the collapse, the
typical length scale may change by a factor of 104 from
R=M� 104 to 1. To follow the collapse by numerical
simulation, very large computational resources will be
necessary and, thus, the simulation for this phenomenon
will be one of the computational challenges in the field of
numerical relativity.
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[29] M. Shibata and K. Uryū, Phys. Rev. D 61, 064001 (2000);
Prog. Theor. Phys. 107, 265 (2002).

[30] M. Shibata, K. Taniguchi, and K. Uryū, Phys. Rev. D 68,
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