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Axisymmetric collapse simulations of rotating massive stellar cores in full general relativity:
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We perform axisymmetric simulations for gravitational collapse of a massive iron core to a black hole
in full general relativity. The iron cores are modeled by � � 4=3 equilibrium polytrope for simplicity. The
hydrodynamic equations are solved using a high-resolution shock-capturing scheme with a parametric
equation of state. The Cartoon method is adopted for solving the Einstein equations. Simulations are
performed for a wide variety of initial conditions changing the mass ( � 2:0–3:0M�), the angular
momentum, the rotational velocity profile of the core, and the parameters of the equations of state which
are chosen so that the maximum mass of the cold spherical polytrope is � 1:6M�. Then, the criterion for
the prompt black hole formation is clarified in terms of the mass and the angular momentum for several
rotational velocity profile of the core and equations of state. It is found that (i) with the increase of the
thermal energy generated by shocks, the threshold mass for the prompt black hole formation is increased
by 20–40%, (ii) the rotational centrifugal force increases the threshold mass by & 25%, (iii) with the
increase of the degree of differential rotation, the threshold mass is also increased, and (iv) the
amplification factors shown in the results (i)–(iii) depend sensitively on the equation of state. We also
find that the collapse dynamics and the structure of the shock formed at the bounce depend strongly on the
stiffness of the adopted equation of state. In particular, as a new feature, a strong bipolar explosion is
observed for the collapse of rapidly rotating iron cores with an equation of state which is stiff in
subnuclear density and soft in supranuclear density. Gravitational waves are computed in terms of a
quadrupole formula. It is also found that the waveform depends sensitively on the equations of state.
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I. INTRODUCTION

The black hole is one of the most striking and intriguing
objects predicted in general relativity. A wide variety of
recent observations have shown that black holes actually
exist in the universe [1]. Among several types of the black
holes, the existence of the stellar-mass black holes has been
tightly confirmed. So far, about 20 stellar-mass black holes
for which the mass is determined within a fairly small error
have been observed in binary systems of our Galaxy and
the large magellanic clouds [2]. Such black holes are
believed to be formed from the stellar core collapse of
massive stars. This fact stimulates the theoretical study for
clarifying the physics of gravitational collapse and forma-
tion mechanism of the stellar-mass black holes. The for-
mation of the black hole through the gravitational collapse
is a highly nonlinear and dynamical phenomena.
Therefore, numerical simulation in full general relativity
is the unique approach to this problem.

Realistic simulations for the formation of stellar-mass
black holes in massive rotating stellar core collapse is also
increasingly important due to its possible association with
gamma-ray bursts [3]. Recent observations have indicated
that at least long-duration gamma-ray bursts are of cosmo-
logical origin [4] and associated with rotating stellar core
collapse [5,6], probably to a black hole surrounded by a
massive disk as suggested by [7–9]. Recent numerical
analyses have also shown that if a progenitor of the col-
lapse is massive and the angular momentum is large
enough, a black hole surrounded by a massive disk will
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be indeed formed [10–12]. However detailed simulations
have not yet been done.

Stellar-mass black holes can be formed through the
gravitational collapse of a degenerate iron core in excess
of the Chandrasekhar mass [13,14]. It is well known that
stars whose initial mass are larger than � 10M� evolve to
form a core mainly composed of iron group elements [14].
Since the iron is the most stable nuclei and it does not
generate energy by nuclear burning, the iron core contracts
gradually. Accordingly, the central temperature, Tc, and
central density, �c, rise to be Tc * 1010 K and �c >
109 g=cm3, resulting in the photo-dissociation of iron to
lighter elements and subsequent electron capture that re-
duce the entropy of electrons. As a result, the adiabatic
index �s decreases below 4=3 and the iron core is destabi-
lized to collapse. If the mass of the iron core is much larger
than the maximum neutron star mass, a black hole will be
formed soon after the collapse. However, the threshold
mass of the iron core for prompt formation of a black
hole has not been clarified yet. Note that due to the con-
tribution of the thermal pressure and rotation, the iron core
can be much larger than the maximum allowed neutron star
mass of �2M� for a sufficiently massive and rotating star.

Since massive stars in nature are rapidly rotating in
general [15], it is necessary to explore the gravitational
collapse of a rotating star in full general relativity for
clarifying the black hole formation. Since Nakamura [16]
and his collaborators [17] first presented a series of pre-
liminary numerical simulations, a number of simulations
for rotating stellar collapse to a black hole have been
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performed in full general relativity [18–23]. However, the
initial conditions and equations of state in the previous
works are not very realistic for modeling the stellar core
collapse. Thus, the simulations with a realistic setting
remain to be an unsolved issue in general relativity.

Realistic simulations of rotating stellar core collapse
have been performed intensively in the framework of
Newtonian gravity [24–33]. Most of these studies mainly
aim at clarifying the effect of the rotation on the dynamics
of neutron star formation and gravitational waveforms
from it. In particular, a comprehensive parameter study
sweeping through various values of the stiffness of a para-
metric equation of state as well as rotational parameters
was performed in [29]. It was shown that the dynamics of
the collapse and resulting gravitational waveforms depend
strongly not only on rotation but also on the stiffness of
equations of state. Dimmelmeier et al. [34] extended the
aforementioned study to general relativistic case using a
conformal flatness formalism [35]. Fully general relativis-
tic numerical studies of neutron star formation have been
recently performed [36,37]. As shown in [34,36], the gen-
eral relativistic effects significantly modify the dynamics
of the collapse even in the formation of neutron stars.

Taking into account the present status described above,
in this paper, we study a criterion for prompt black hole
formation in the iron core collapse performing fully gen-
eral relativistic simulations. The iron cores are modeled by
� � 4=3 polytropes in equilibrium for simplicity. The
major purpose of this paper is to clarify the threshold
mass of the iron core for the prompt black hole formation
and its dependence on the angular momentum, the rota-
tional velocity profiles of the iron core, and the equations
of state. To clarify the dependence on the equations of state
in a clear manner, we adopt a parametric equation of state
following previous papers [36,38].

The simulations are performed assuming that the col-
lapse proceeds in an axisymmetric manner. This assump-
tion is reasonable as far as the progenitor of the collapse is
not very rapidly and highly differentially rotating (e.g.,
[38]). In this paper, we do not adopt such progenitor that
are likely to be dynamical unstable against nonaxisymmet-
ric deformation (cf. Sec. IV D 2 for discussion). Although
for several models, the rotational kinetic energy is so large
that the outcome formed in the collapse may be secularly
unstable against nonaxisymmetric deformation, the secular
time scale is much longer than the dynamical time scale of
the core collapse. Hence, the collapse will proceed in an
approximately axisymmetric manner in the time scale of
interest. On the other hand, rapidly and differentially rotat-
ing stellar core collapse has to be studied in the three-
dimensional simulation. Such simulation was recently per-
formed and the detailed results are shown in a companion
paper [38].

This paper is organized as follows. In Sec. II, we briefly
review our formulation for general relativistic hydrody-
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namic simulations, equations of state, and a quadrupole
formula adopted in the present paper. In Sec. III, we
describe the initial conditions. A detail of computational
setting is also described. Sec. IV presents the numerical
results, emphasizing the threshold mass for the prompt
black hole formation and its dependence on the angular
momentum and the adopted equations of state.
Gravitational waveforms emitted in the neutron star for-
mation are also shown. Sec. V is devoted to a summary.
Throughout the paper, we adopt the geometrical units G �
c � 1 where G and c are the gravitational constant and
speed of light, respectively. The Latin indices i; j; k; � � �
denote the spatial components of x; y, and z, and the Greek
indices � � � � denote the spacetime components.
II. NUMERICAL IMPLEMENTATION

A. Brief summary of formulation and
numerical method

We perform fully general relativistic simulations for
rotating stellar core collapse in axial symmetry using the
same formulation and numerical method as those presented
in [39], to which the reader may refer for details of basic
equations and successful test simulations.

In the 3 � 1 formulation, the metric can be written in the
form

ds2 � ���2 � �k�k	dt2 � 2�kdtdxk � �ijdxidxj; (1)

where �, �k, and �ij are the lapse function, the shift vector
and metric in 3D spatial hypersurface, respectively. The
extrinsic curvature is defined by

�@t �L�	�ij � �2�Kij; (2)

where L� is the Lie derivative with respect to �k.
As in the series of our papers, we evolve

� 
 log�det�ij	=12, ~�ij 
 e�4��ij, ~Aij 
 e�4��Kij �
�ijKk

k	, and trace of the extrinsic curvature Kk
k together

with three auxiliary functions Fi 
 �jk@j ~�ik with an un-
constrained free evolution code as in [20,39–44]. The
Einstein equations are solved in Cartesian coordinates.
To impose axisymmetric boundary conditions, the
Cartoon method [45] is used with the grid size N � 3 �
N in �x; y; z	 which covers a computational domain as 0 �
x � L, 0 � z � L, and �� � y � �. Here, N and L are
constants and � � L=N.

The fundamental variables for the hydrodynamics are
�: rest-mass density, ": specific internal energy, P : pres-
sure, u� : four velocity, and

vi �
dxi

dt
�
ui

ut
: (3)

As the variables to be evolved in the numerical simulations,
we define a weighted density, �, a weighted four-velocity
û�, and a specific energy density as
-2
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� 
 �we6�; ûi � hui; ê 
 hw�
P
�w

; (4)

where w 
 �ut, and h 
 1 � "� P=�. From these varia-
bles, the total baryon rest mass and angular momentum of
the system, which are conserved quantities in an axisym-
metric spacetime, can be defined as

M �
Z
d3x�; (5)

J �
Z
d3x�û’: (6)

The general relativistic hydrodynamic equations are solved
using a so-called high-resolution shock-capturing scheme
[46] on the y � 0 plane with the cylindrical coordinates
�x; z	 (in Cartesian coordinates with y � 0). Details about
our numerical scheme are described in [39].

We neglect effects of viscosity and magnetic fields. The
time scale of dissipation and angular momentum transport
due to these effects are much longer than the time scale of
collapse �100 ms, unless the magnitude of viscosity or
magnetic fields is extremely large [47]. Thus neglecting
them is an appropriate assumption.

As the slicing condition we impose an ‘‘approximate’’
maximal slicing condition in which Kk

k � 0 is required
[40]. As the spatial gauge, we adopt a dynamical gauge
condition [48] in which the equation for the shift vector is
written as

@t�
k � ~�kl�Fl � �t@tFl	: (7)

Here, �t denotes the time step in numerical computation
[21]. Note that in this gauge condition, �i obeys a
hyperbolic-type equation for a sufficiently small value of
�t because the right-hand side of the evolution equation
for Fi contains a vector Laplacian term [43]. It has already
been illustrated that stable simulations for rotating stellar
collapse and merger of binary neutron stars are feasible in
this gauge [21,42].

An outgoing-wave boundary condition is imposed for
hij�
 ~�ij � �ij	, ~Aij, and Fi at the outer boundaries of the
computational domain. The condition adopted is the same
as that described in [43]. On the other hand, for� and Kk

k,
other types of outer boundary conditions are imposed as
r� � const and Kk

k � 0, respectively.
Existence of a black hole is determined using an appar-

ent horizon finder developed in [49]. We compute the
apparent horizon mass MAH which is defined as [50]

MAH �

���������
A

16*

s
; (8)

where A denotes area of an apparent horizon.
During the numerical simulations, conservation of the

Arnowitt-Deser-Misner (ADM) mass, MADM, and the an-
gular momentum are monitored as code checks. The ADM
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mass is defined by

MADM �
Z
d3

�
 5��hw2 � P	 �

 5

16*

�
~Aij ~Aij �

2

3
�Kk

k	2
�

�
1

16*
~R 

�
; (9)

where  
 e�.
For the analysis of numerical results, we define a rest-

mass distribution m�j	 [19], which is the integrated
baryon rest mass of fluid elements with the specific angular
momentum less than a given value of j � û’:

m�j	 
 2*
Z
j0<j

�r2drd�cos/	: (10)

Similarly, a specific angular momentum distribution is
defined according to

J�j	 
 2*
Z
j0<j

�j0r2drd�cos/	: (11)

These distribution functions are preserved in axisymmetric
spacetimes of ideal fluid. Gauge independence and preser-
vation of these distribution functions in axial symmetry can
be proven by the hydrodynamical equations

@�

@t
�
@��vI	

@xI
� 0; (12)

@��j	
@t

�
@��jv

I	

@xI
� 0; (13)

where the index I denotes the component of $ and z.
From these distribution functions, we define a spin

parameter distribution as

q�j	 

J�j	

m�j	2
: (14)

This may be approximately regarded as a spin parameter of
the inner region of the core composed of fluid elements
with the specific angular momentum less than j.

B. Equations of state

During dynamical evolution, a parametric equation of
state is adopted following Müller and his collaborators
[29,34,51]. In this equation of state, one assumes that the
pressure consists of the sum of polytropic and thermal parts
as

P � PP � Pth: (15)

PP denotes the cold (zero temperature) nuclear equation of
state and is given by PP � KP��	�

���	 where KP and � are
functions of �. In this paper, we follow [34] for the choice
ofKP��	 and ���	: For the density smaller than the nuclear
density, �nuc, we set � � �1 < 4=3, and for � � �nuc, � �
�2 > 2. Namely,
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TABLE I. Adopted sets of ��1;�2; �nuc;�th	. The values of �1,
�2, and �nuc are chosen so that the maximum ADM mass of a
cold spherical polytrope for each set becomes � 1:6M�.

Model �1 �2 �nuc�g=cm3	 �th Mmax

a 1.32 2.25 2:0 � 1014 1.32 1.623
b 1.30 2.5 2:0 � 1014 1.30 1.600
c 1.30 2.22 1:0 � 1014 1.30 1.599
d 1.28 2.75 2:0 � 1014 1.28 1.597

P

FIG. 1. The pressure, P, as a function of the density, �, for cold
equations of state with the parameters listed in Table I.
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PP �

�
K1�

�1 ; � � �nuc;
K2��2 ; � � �nuc;

(16)

where K1 and K2 are constants. Since PP should be con-
tinuous at � � �nuc, the relation, K2 � K1�

�1��2
nuc , is re-

quired. Following [29,34], the value of K1 is fixed to be
5 � 1014 cgs. With this choice, the polytropic part of the
equation of state for � < �nuc, in which the degenerate
pressure of electrons is dominant, is approximated well.
Since the specific internal energy should be also continu-
ous at � � �nuc, the polytropic part of the specific internal
energy, "P, is defined as

"P �

8<
:

K1

�1�1�
�1�1; � � �nuc;

K2

�2�1�
�2�1 � ��2��1	K1�

�1�1
nuc

��1�1	��2�1	 ; � � �nuc:
(17)

With this setting, a realistic equation of state for high-
density, cold nuclear matter is mimicked.

For realistic simulations of stellar core collapse, it would
be better to adopt realistic equations of state [52,53].
However, in the realistic equations of state, many micro-
physical processes are simultaneously taken into account
together. In such cases, it is not easy to extract an important
element responsible for an output of numerical simula-
tions. With the parametric equations of state, on the other
hand, one can systematically investigate dependence of the
dynamics of stellar core collapse on the equations of state
by changing their own parameters. Therefore, as a first step
to the more realistic simulations of rotating stellar core
collapse, we adopt the parametric equations of state. We
now plan to perform simulations with realistic equations of
state. Some discussion comparing the parametric equations
of state and a realistic equation of state is presented in
Appendix A.

There are four parameters in the parametric equations of
state, namely ��1;�2; �nuc;�th	. In this paper, we choose
sets of ��1;�2; �nuc	 so that the maximum allowed ADM
mass of the cold spherical polytrope becomes an approxi-
mately identical value as MADM;max � 1:6M�. Note that
this value is larger than the mass of neutron stars in binary
neutron stars accurately determined, and thus, a reasonable
choice [54]. Following [29,34], we typically set
�nuc � 2:0 � 1014g/cm3 (�14 
 �nuc=�1014g=cm3	 �
2:0). For �1, we choose the three values of 1.32, 1.30,
and 1.28. Requiring that the maximum allowed ADM
mass should be � 1:6M�, the values of �2 are determined
to be 2.25, 2.50, and 2.75, respectively. To investigate the
dependence of the output physics on the value of �nuc, we
also pick up a case with �nuc � 1:0 � 1014g=cm3 (�14 �
1:0) and set ��1;�2	 � �1:30; 2:22	 for comparison.

To summarize, the parameter sets adopted in this paper
are ��1;�2; �14	 � �1:32; 2:25; 2:0	, �1:30; 2:50; 2:0	,
�1:30; 2:22; 1:0	, and �1:28; 2:75; 2:0	 which are referred
to as equations of state ‘‘a,’’ ‘‘b,’’ ‘‘c,’’ and ‘‘d,’’ respec-
tively, (cf. Table I). Although the maximum allowed mass
of the cold spherical neutron star in equilibrium is approxi-
084013
mately identical for all of the equations of state, the dif-
ference in the values of ��1;�2; �nuc	 yields a significant
variation in the collapse dynamics and in the criterion for
prompt black hole formation.

Figure 1 shows relations between the pressure and the
density for each set of ��1;�2; �nuc	. It is found that for the
smaller value of �1, the depletion fraction of the pressure
for � � �nuc is increased by a large factor. It is also worthy
to note that the equation of state ‘‘c’’ is stiffer than ‘‘b’’ in
the density range between 1014 and � 2 � 1015 g=cm3.
These result in significant difference in the collapse dy-
namics and the threshold mass for the prompt black hole
formation.
Pth is related to the thermal energy density, "th 
 "�

"P, as

Pth � ��th � 1	�"th: (18)

In this paper we set �th � �1 for simplicity. As shown in
[36], the collapse dynamics depends rather weakly on �th

as far as it is in the range 4=3 & �th & 5=3, besides the fact
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that the oscillation amplitude of a formed protoneutron star
depends slightly on it.

To prepare rotating stars in equilibrium as initial con-
ditions, we use the polytropic equations of state with � �
4=3

P � K0�
4=3 � �Kdeg � KT	�

4=3; (19)

where following [34], Kdeg is set to be 5 �

1014 cm3=s2=gr1=3, with which a soft equation of state
governed by the electron degenerate pressure is approxi-
mated well [13]. Here, Kdeg and K1 are related by K1 �

Kdeg�
4=3��1
0 where we set �0 � 1 g=cm3. The extra pres-

sure of PT 
 KT�4=3 denotes the pressure generated by the
ideal gas pressure and the radiation pressure that are non-
zero only for the finite temperature. The values of K0 and
KT adopted in the present paper are described in Sec. III.
To induce the collapse, we slightly decrease the value of
the adiabatic index from � � 4=3 to �1 < 4=3 at t � 0.
This implies that at t � 0, PP � Kdeg�

�1 and Pth � KT�
�1 ,

respectively.

C. Quadrupole formula

In the present work, gravitational waveforms are com-
puted using a quadrupole formula described in [36,55]. In
quadrupole formulas, only the +-mode of gravitational
waves with l � 2 is nonzero in axisymmetric spacetime
and it is written as

hquad
� �

(Izz�tret	 � (Ixx�tret	

r
sin2/; (20)

where Iij denotes a quadrupole moment, (Iij its second time
derivative, and tret a retarded time.

In fully general relativistic and dynamical spacetime,
there is no unique definition for the quadrupole moment
and nor is for (Iij. Following a previous paper [55], we
choose the simplest definition as

Iij �
Z
�xixjd3x: (21)

Then, using the continuity equation of the form

@t� � @i��v
i	 � 0; (22)

the first time derivative can be written as

_I ij �
Z
��v

ixj � xivj	d3x: (23)

To compute (Iij, the finite differencing of the numerical
result for _Iij is carried out.

In the following, we present

A2�tret	 � (Izz�tret	 � (Ixx�tret	; (24)

in the quadrupole formula. This provides the amplitude of
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l � 2 mode measured by an observer located in the most
optimistic direction (i.e., in the equatorial plane).

The energy power spectrum of gravitational waves is
given in [56] as

dE
df

�
*
2
�4*r2	f2hj~h��f	j

2i �f > 0	; (25)

where ~h��f	 denotes the Fourier transform

~h��f	 �
Z
hquad
� �t	e2*iftdt; (26)

and the bracket denotes the angle-averaged value. This can
be expressed in the present case as (e.g. [57])

hj~h��f	j
2i �

8

15

1

r2 j
~A2�f	j

2; (27)

where

~A 2�f	 �
Z
A2�t	e2*iftdt: (28)

Thus, the effective amplitude of gravitational waves ob-
served in the most optimistic direction is denoted by

heff 

jfA2�f	j

r

� 5:0 � 10�20

�
dE=df

1046 erg=Hz

�
1=2

�
10 kpc

r

�
: (29)

As indicated in [55], it is possible to compute gravita-
tional waves from oscillating and rapidly rotating neutron
stars of high values of compactness fairly accurately with
the present choice of Iij, besides possible systematic errors
for the amplitude of order M=R. For the stellar core col-
lapse in which the outcomes are protoneutron stars of
M=R� 0:1–0:2, it is likely that the wave amplitude is
computed within an error of �10–20%. The phase of
gravitational waves will be computed very accurately as
indicated in [55]. For the stellar core collapse to a black
hole, on the other hand, the quadrupole formula will be no
longer valid because the value of M=R is high and, more-
over, quasinormal mode ringing of the formed black hole is
not taken into account.

III. INITIAL CONDITIONS AND
COMPUTATIONAL SETTING

A. Initial conditions

Recent numerical study [58,59] for stellar evolution of
very massive and low metallicity stars from main-sequence
to the pre-iron-core-collapse suggests that initially massive
stars evolve to form an iron core of mass * 2M�–3M�.
Taking these fact into account, we consider a wide range of
the mass for the progenitor of the collapse as 2M� & M &

3M�.
It should be addressed that such large mass of the iron

core may not be a special product of low metallicity or
-5
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large progenitor mass. Recently, Hirschi et al. [60] study
presupernova evolution of rotating massive star of solar
metallicity and show that mass of the iron core at the onset
of the collapse depends strongly on the treatment of both
convection and rotation. They find that the rotation signifi-
cantly increases (by a factor of �1:5) the core mass: An
iron core of mass of � 2:0M� is formed from the ZAMS
(zero-age main sequence ) of 15M� by including the
rotation while its nonrotating counterpart yields an iron
core of mass � 1:5M�. This result is quite different from
that in [61]. This suggests that mass of the iron core at the
onset of collapse may depend sensitively on the chemical
abundance, and the stellar rotation as well as the magnitude
of the viscosity and the mixing length which are not well
understood.

The central density and the central temperature of such
very massive iron cores are �c * 5 � 109 g=cm3 and Tc �
1010K, respectively [59]. Thus, we set the central density
of the initial conditions to be 1010 g=cm3. The electrons
under such a high density are extremely degenerate even
with T � 1010 K, since ratio of the Fermi energy of free
electrons, "F, to thermal energy, kBT, is much larger than
unity [13] according to

"F
kBT

� 10
�
Ye

0:45

�
1=3

�
�

1010 g=cm3

�
1=3

�
T

1010 K

�
�1
: (30)

Therefore, the main contribution of the pressure comes
from the electron degenerate pressure that is denoted by
the polytropic form as Pdeg � Kdeg�

4=3.
In addition to the electron degenerate pressure, the

thermal and radiation pressure should be taken into ac-
count. The adiabatic index relevant for them in the iron
core may be close to 4=3 at the onset of the collapse since
the photo-dissociation of the irons are accelerated with
increasing the density to reduce the pressure. Hence, we
put the gas and radiation pressure together into the poly-
tropic form as

PT 
 Pgas � Prad � KT�
4=3: (31)

With these assumptions, rotating polytropes in equilibrium
with the polytropic index � � 4=3 and the polytropic
constant K0 � Kdeg � KT [see Eq. (19)] are given as the
initial models of rotating iron cores.

The iron core model adopted in this paper is nothing
more than a simplified one. The nature is more complicated
and the iron core of the evolved massive star are not simple
polytropes [33]. We will nevertheless use the term ‘‘iron
core’’ in the following, to emphasizing that we aim at
clarifying the threshold mass of the iron core for the
prompt black hole formation.

We adopt the values of K14 
 K0=1014 (cgs) to be 6.0,
6.5, 6.75, 7.0, 7.25, 7.5, 7.75, and 8.0, which we refer to
models A, B, C, D, E, F, G, and H, respectively, (cf.
Table II). In the Newtonian case, mass of the � � 4=3
spherical polytrope is given by M � 4:555�K0=G	3=2.
084013
Thus, for the adopted values of K0, the ADM mass of the
initial spherical iron cores are MADM=M� � 2:0, 2.2, 2.3
2.4, 2.6, 2.7, 2.9, and 3.0, respectively, (see Table II). These
values are larger than the maximum allowed ADM mass,
� 1:6M�, of the spherical cold polytrope adopted in this
paper. Namely, in the absence of shock heating and rota-
tion, the core collapses to a black hole.

For our choice of the iron core mass, the corresponding
helium core mass is MHe=M� � 17, 22, 25, 30, 32, 35, 40,
and 42 for models A, B, C, D, E, F, G, and H, respectively,
according to the calculation by Umeda and Nomoto [59].
Note that these values are larger than a critical value of
helium core mass for direct black hole formation � 15M�

estimated in [62,63].
The velocity profiles of equilibrium rotating cores are

given according to a popular relation [64,65]

utu’ � $2
d�0a � 0	; (32)

where 0a denotes the angular velocity along the rotational
axis, and $d is a constant. In the Newtonian limit, the
rotational profile is written as

0 � 0a
$2
d

$2 �$2
d

: (33)

Thus, $d controls the steepness of differential rotation. In
this paper, we pick up mainly the rigidly rotating models in
which$d ! 1. For illustration of the effect of differential
rotation, we select differentially rotating models with A 

$d=Re � 1 and 0.5 (see Table III).

For rigidly rotating initial models, we choose the axial
ratio Rp=Re of polar radius, Rp, to equatorial radius, Re, as
1 (spherical configuration), 119=120, 115=120, 110=120,
105=120, 100=120, 90=120, and 80=120. The models with
these axial ratios are referred to as models X0, X1, X15,
X2, X25, X3, X4, and X5, where X denotes A–H. For
example, a model with K14 � 7:0 and Rp=Re � 80=120 is
abbreviated as D5. Note that for models with Rp=Re �
80=120, the angular velocity at the equatorial stellar sur-
face is nearly equal to the Keplerian velocity;, namely, a
rapidly rotating initial condition near the mass-shedding
limit is chosen for this case. On the other hand, differ-
entially rotating initial models are chosen only for a se-
lected set of parameters with K14 � 7:0 and 8.0, since the
purpose in this paper is to clarify the effect of differential
rotation, comparing the results with those for the rigidly
rotating initial models of nearly identical values of mass
and angular momentum.

In Tables II and III, several fundamental quantities for
the models adopted in the present numerical computation
are listed. Here, q is a nondimensional spin parameter
defined by J=M2

ADM. Trot and W are the rotational kinetic
energy and the gravitational potential energy, and defined
according to [66,67]
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TABLE II. The values of K0, axial ratio Rp=Re, ADM mass MADM, equatorial circumferential
radius Rec, ratio of the rotational kinetic energy, Trot, to the gravitational potential energy, W,
nondimensional spin parameter q 
 J=M2

ADM, and angular velocity 0a for rigidly rotating iron
cores in equilibrium used as the initial condition for numerical simulation.

Model K0 (cgs) Rp=Re MADM�M�	 Rce �km	 Trot=W q 0a �1=s	
A0 6:0 � 1014 1 1.920 1717 0.0 0.0 0.0
A1 6:0 � 1014 119/120 1.921 1718 3:98 � 10�4 0.234 0.904
A2 6:0 � 1014 110/120 1.940 1836 3:68 � 10�3 0.716 2.71
A3 6:0 � 1014 100/120 1.957 1999 6:51 � 10�3 0.959 3.56
A4 6:0 � 1014 90/120 1.967 2207 8:28 � 10�3 1.086 3.98
A5 6:0 � 1014 80/120 1.971 2478 8:88 � 10�3 1.128 4.11

B0 6:5 � 1014 1 2.163 1793 0.0 0.0 0.0
B1 6:5 � 1014 119/120 2.163 1793 3:98 � 10�4 0.224 1.01
B2 6:5 � 1014 110/120 2.185 1914 3:67 � 10�3 0.688 2.71
B3 6:5 � 1014 100/120 2.203 2080 6:50 � 10�3 0.921 3.56
B4 6:5 � 1014 90/120 2.215 2300 8:27 � 10�3 1.044 3.98
B5 6:5 � 1014 80/120 2.219 2582 8:87 � 10�3 1.084 4.11

C0 6:75 � 1014 1 2.286 1812 0.0 0.0 0.0
C1 6:75 � 1014 119/120 2.289 1824 3:97 � 10�4 0.221 0.901
C15 6:75 � 1014 115/120 2.298 1876 1:92 � 10�3 0.487 1.97
C2 6:75 � 1014 110/120 2.310 1948 3:67 � 10�3 0.675 2.70
C25 6:75 � 1014 105/120 2.321 2030 5:20 � 10�3 0.807 3.20

D0 7:0 � 1014 1 2.412 1845 0:0 0.0 0.0
D1 7:0 � 1014 119/120 2.414 1859 3:97 � 10�4 0.217 0.902

D15 7:0 � 1014 115/120 2.425 1909 1:92 � 10�3 0.478 1.97
D2 7:0 � 1014 110/120 2.438 1986 3:67 � 10�3 0.663 2.70

D25 7:0 � 1014 105/120 2.449 2065 5:20 � 10�3 0.792 3.20
D3 7:0 � 1014 100/120 2.459 2162 6:49 � 10�3 0.888 3.55
D4 7:0 � 1014 90/120 2.472 2387 8:26 � 10�3 1.006 3.97
D5 7:0 � 1014 80/120 2.476 2679 8:86 � 10�3 1.045 4.10

E2 7:25 � 1014 110/120 2.568 2019 3:66 � 10�3 0.652 2.70
E25 7:25 � 1014 105/120 2.580 2103 5:20 � 10�3 0.780 3.19
E3 7:25 � 1014 100/120 2.590 2198 6:49 � 10�3 0.873 3.55
E4 7:25 � 1014 90/120 2.604 2428 8:25 � 10�3 0.989 3.97
E5 7:25 � 1014 80/120 2.608 2726 8:86 � 10�3 1.03 4.09

F0 7:5 � 1014 1 2.672 1909 0.0 0.0 0.0
F1 7:5 � 1014 117/120 2.680 1951 1:17 � 10�3 0.361 1.55
F2 7:5 � 1014 110/120 2.700 2056 3:66 � 10�3 0.641 2.71
F3 7:5 � 1014 100/120 2.723 2238 6:49 � 10�3 0.858 3.55
F4 7:5 � 1014 90/120 2.738 2471 8:26 � 10�3 0.972 3.97
F5 7:5 � 1014 80/120 2.742 2773 8:86 � 10�3 1.010 4.10

G0 7:75 � 1014 90/120 2.874 2510 8:24 � 10�3 0.957 3.96
G5 7:75 � 1014 80/120 2.879 2818 8:85 � 10�3 0.993 4.09

H0 8:0 � 1014 1 2.940 1972 0.0 0.0 0.0
H5 8:0 � 1014 80/120 3.016 2864 8:84 � 10�3 0.978 4.10
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Trot 

1

2

Z
d3x�û’0; (34)

W 
 M �
Z
�"d3x�MADM � Trot; (35)

where W is defined to be positive. Note that for the rigidly
rotating case, the maximum value of Trot=W is � 0:009.
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For the rigidly or weakly differentially rotating stars, the
stability against nonaxisymmetric perturbation is deter-
mined by Trot=W [68]. A star with Trot=W * 0:27 and
Trot=W * 0:14 will become unstable against the nonaxi-
symmetric dynamical and secular instabilities, respec-
tively. Here, the secular timescale is much longer than
the collapse timescale, so that the dynamical instabilities
are only relevant during collapse and bounces. Since we
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TABLE III. The values of K0, A 
 $d=Re, MADM, Re, Trot=W, q 
 J=M2
ADM, and angular

velocity at the rotational axis 0a for differentially rotating initial models.

Model K0 (cgs) A MADM(M�) Re(km) Trot=W q 0a(1/s)
D20d1 7:0 � 1014 1.0 2.437 1912 3:54 � 10�3 0.647 3.06
D22d1 7:0 � 1014 1.0 2.441 1924 4:12 � 10�3 0.698 3.29
D23d1 7:0 � 1014 1.0 2.445 1936 4:69 � 10�3 0.746 3.50
D25d1 7:0 � 1014 1.0 2.450 1950 5:26 � 10�3 0.791 3.69
D15d05 7:0 � 1014 0.5 2.424 1858 1:75 � 10�3 0.440 2.84
D17d05 7:0 � 1014 0.5 2.430 1866 2:63 � 10�3 0.541 2.84
D20d05 7:0 � 1014 0.5 2.437 1874 3:52 � 10�3 0.626 3.47
D25d05 7:0 � 1014 0.5 2.444 1881 4:42 � 10�3 0.702 4.21

H5d1 8:0 � 1014 1.0 3.019 2190 9:03 � 10�3 0.978 4.75
H5d05 8:0 � 1014 0.5 3.020 2054 8:98 � 10�3 0.941 6.31

YU-ICHIROU SEKIGUCHI AND MASARU SHIBATA PHYSICAL REVIEW D 71, 084013 (2005)
assume that the rotating iron core collapse proceeds in an
axisymmetric manner, it is important to ensure that the iron
core should not spin up to be dynamically unstable against
nonaxisymmetric deformation. We will discuss the spin-up
and the stabilities of the inner cores formed after the
bounce in Sec. IV D 2.

For the differentially rotating case with a small value of
A, it is possible to make equilibrium states with Trot=W �
0:009. With such an initial condition, the collapsing core
may form a differentially rotating object of a highly non-
spherical shape and of a high value of Trot=W [38,30]. It is
also known that rapidly rotating neutron stars of a high
degree of differential rotation is dynamically unstable
against nonaxisymmetric deformation even for Trot=W �
O�0:01	 (e.g., [69] and references therein). To follow such
collapse, a nonaxisymmetric simulation will be necessary.
In this paper, we do not choose such initial conditions and
focus only on dynamically stable cases against nonaxisym-
metric deformation. The collapse of highly differentially
rotating initial conditions is studied in three-dimensional
simulations in [38].

B. Computational settings

The central density increases from 1010 g=cm3 to *

1015 g=cm3 during the collapse. This implies that the
characteristic length scale of the system varies by a factor
of �100. To compute such a collapse accurately saving the
CPU time efficiently, a regridding technique as described
in [19,36] is helpful. The regridding is carried out when-
ever the characteristic radius of the collapsing star de-
creases by a factor of a few. At each regridding, the grid
spacing is decreased by a factor of 2. All the quantities in
the new grid are calculated using the cubic interpolation.
To avoid discarding the matter in the outer region, we also
increase the grid number at the regridding.

For the regiridding, we define a relativistic gravitational
potential 1c 
 1 � �c�1c > 0	. Since 1c is approxi-
mately proportional toM=R, 1�1

c can be used as a measure
of the characteristic length scale of the core for the regrid-
ding. We typically choose N at each regridding in the
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following manner. From t � 0 to the time at which 1c �
0:025, we set N � 620 with the grid spacing �Re=600. At
1c � 0:025, the characteristic stellar radius becomes ap-
proximately one fourth of the initial value. Then, the first
regridding is performed; the grid spacing is changed to the
half of the previous one and the grid number is increased to
N � 1020. Subsequently, the value of N is chosen in the
following manner; for 0:025 � 1c � 0:05, we set N �
1020; for 0:05 � 1c � 0:1, we set N � 1700; and for
0:1 � 1c � 0:25, we set N � 2500, and keep this number
until the termination of the simulations. For the typical
cases, the physical size of the grid spacing is � � 4 km at
the beginning of simulations and �0:5 km at the end.

In the case of black hole formation, 1c approaches to 1.
In this case, we carry out one more regridding at the time of
1c � 0:25. In this final regridding, the grid spacing is
made half while keeping N � 2500. For the typical cases
in which a black hole is formed, the physical size of the
grid spacing is � � 4 km at the beginning of simulations
and �0:25 km at the end. In this treatment, the total
discarded fraction of the baryon rest-mass which is located
outside the new regridded domains is & 4%.

Simulations for each model with the higher grid resolu-
tion are performed for 40 000–100 000 time steps. The
required CPU time for one model is about 30–90 hours
using 8 processors of FACOM VPP 5000 at the data
processing center of National Astronomical Observatory
of Japan.

IV. NUMERICAL RESULTS

A. General feature of the collapse

We first summarize the outline of the dynamics of stellar
core collapse. Detailed features of the collapse will be
presented in the subsequent subsections. In Figs. 2–5, we
display evolution of the central density �c and the central
value of the lapse function �c for selected models. As
indicated in these figures, rotating stellar core collapse to
a neutron star can be divided into three phases; the infall
phase, the bounce phase, and the ring-down (or post-
bounce oscillation) phase [26,29].
-8



FIG. 2. Evolution of the central density �c (upper panel) and
the central value of the lapse function �c (lower panel) for
models D2a (long dashed curve), D3a (dashed curve), D5a (solid
curve), and F5a (dotted curve).

FIG. 4. The same as Fig. 2 but for models D1c (long dashed
curve), D15c (dotted dashed curve), D5c (solid curve). Results
for models D1b (dotted curve) and D5b (dashed curve) are also
displayed for comparison.
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The infall phase sets in due to the onset of the gravita-
tional instability of the progenitor triggered by the sudden
softening of the equation of state which is associated with
the reduction of the adiabatic index. During this phase, the
central density, �c, (the central value of the lapse function,
�c), monotonically increases (decreases) until it reaches
the nuclear density, provided that the core is not very
rapidly rotating initially. The inner part of the core, which
FIG. 3. The same as Fig. 2 but for models D1b (long dashed
curve), D2b (dashed curve), D5b (solid curve), and F5b (dotted
curve).

084013
collapses nearly homologously with a subsonic infall ve-
locity, constitutes the inner core. On the other hand, the
outer region in which the infall velocity is supersonic
constitutes the outer core [26,29].

The bounce phase sets in when the density around the
central region exceeds the nuclear density. At this phase,
FIG. 5. The same as Fig. 2 but for models D1d (dotted curve),
D2d (long dashed curve), D3d (dotted dashed curve), and D5d
(solid curve).
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TABLE IV. Summary of the outcome in the iron core collapse with rigidly rotating initial models. The adopted equations of state are
discriminated by a single alphabet: ’’’a’’ for ��1;�2; �14	 � �1:32; 2:25; 2:0	, ‘‘b’’ for �1:3; 2:50; 2:0	, c for �1:3; 2:22; 1:0	, and d for
�1:28; 2:75; 2:0	. ‘‘BH’’ implies that a black hole (BH) is formed in a dynamical time scale of the collapse. ‘‘no BH’’ implies that a
black hole is not formed promptly. ‘‘� � �’’ in the last column implies that we did not perform simulations for such models.

Initial model K0 (cgs) Rp=Re MADM�M�	 q Adopted equations of state
a b c d

B0 6:5 � 1014 1 2.163 0.0 BH BH no BH BH
B1 6:5 � 1014 119/120 2.163 0.217 no BH no BH no BH no BH
B2 6:5 � 1014 110/120 2.185 0.688 no BH no BH no BH no BH
B3 6:5 � 1014 100/120 2.203 0.921 no BH no BH no BH no BH
B4 6:5 � 1014 90/120 2.215 1.044 no BH no BH no BH no BH
B5 6:5 � 1014 80/120 2.219 1.084 no BH no BH no BH no BH

C0 6:75 � 1014 1 2.286 0.0 BH BH BH � � �

C1 6:75 � 1014 119/120 2.289 0.221 BH BH no BH � � �

C15 6:75 � 1014 115/120 2.298 0.487 BH BH no BH � � �

C2 6:75 � 1014 110/120 2.310 0.675 BH no BH no BH � � �

C25 6:75 � 1014 105/120 2.321 0.807 no BH no BH no BH � � �

D0 7:0 � 1014 1 2.412 0.0 BH BH BH BH
D1 7:0 � 1014 119/120 2.414 0.217 BH BH BH BH

D15 7:0 � 1014 115/120 2.425 0.478 BH BH BH BH
D2 7:0 � 1014 110/120 2.438 0.663 BH BH no BH BH

D25 7:0 � 1014 105/120 2.449 0.792 BH BH no BH BH
D3 7:0 � 1014 100/120 2.459 0.888 BH no BH no BH no BH
D4 7:0 � 1014 90/120 2.472 1.006 no BH no BH no BH no BH
D5 7:0 � 1014 80/120 2.476 1.045 no BH no BH no BH no BH

E2 7:25 � 1014 110/120 2.568 0.652 BH BH BH � � �

E25 7:25 � 1014 105/120 2.580 0.780 BH BH no BH � � �

E3 7:25 � 1014 100/120 2.590 0.873 BH BH no BH � � �

E4 7:25 � 1014 90/120 2.604 0.989 BH no BH no BH � � �

E5 7:25 � 1014 80/120 2.608 1.03 BH no BH no BH � � �

F0 7:5 � 1014 1 2.672 0.0 BH BH BH BH
F1 7:5 � 1014 119/120 2.680 0.361 BH BH BH BH
F2 7:5 � 1014 110/120 2.700 0.641 BH BH BH BH
F3 7:5 � 1014 100/120 2.723 0.858 BH BH BH BH
F4 7:5 � 1014 90/120 2.738 0.972 BH BH no BH BH
F5 7:5 � 1014 80/120 2.742 1.010 BH BH no BH BH

G4 7:75 � 1014 90/120 2.874 0.957 BH BH BH � � �

G5 7:75 � 1014 80/120 2.879 0.993 BH BH BH � � �

H0 8:0 � 1014 1 2.940 0.0 BH BH BH BH
H5 8:0 � 1014 80/120 3.016 0.978 BH BH BH BH
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the inner core decelerates rapidly due to (a) the sudden
stiffening of the equation of state or (b) the strong cen-
trifugal force. Hereafter, we pay attention to the case (a)
since the collapse is halted due to the sudden stiffening of
the equation of state for all the models (cf. Figures 2–5).
Because of its large inertia and large kinetic energy in-
duced by the infall, the inner core overshoots its hypotheti-
cal equilibrium state. The degree of the overshooting
depends on the mass, the amount of rotational kinetic
energy, and the stiffness of the equation of state.

If its mass is not too large, the inner core experiences a
bounce. The stored internal energy of the inner core at
maximum compression is released through a strong pres-
084013
sure wave generated inside the inner core [26]. The pres-
sure wave travels from the center to the outer region until it
reaches the sonic point located at the edge of the inner core.
Since the sound cones tilt inward beyond the sonic point,
the pressure disturbance cannot travel further and forms a
shock just inside the sonic point. During the formation of
the shock, the inner core transfers its kinetic energy to the
shock through compressional work that powers the shock
[26,70]. It is important to note that the shock is formed at
the outer edge of the inner core, and hence, the bulk of the
inner core matter never undergoes shock heating and ac-
celeration. Therefore, the shock heating is relatively less
efficient for models with larger mass of the inner core.
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FIG. 6. The distribution map of the outcome in the iron core
collapse for rigidly rotating initial models. The horizontal and
vertical axes denote the spin parameter q and MADM. The filled
squares denote the models whose final outcome is a black hole
irrespective of the equations of state. The open stars denote the
models whose final outcome is a black hole for the equations of
state of a and ‘‘b,’’ and a neutron star for the equation of state
‘‘c.’’ The crosses denote the models whose final outcome is a
black hole only for the equations of state ‘‘a.’’ The open squares
indicate no black hole formation irrespective of the equations of
state. The solid, dotted, and dashed curves indicate the threshold
mass above which a black hole is formed as a result of the
collapse for the equations of state ‘‘a,’’ ‘‘b,’’ and ‘‘c,’’ respec-
tively, (see Sec. IV B 4 for locating these curves). The long
dashed curve denotes the mass-shedding limit for rigidly rotating
initial models; i.e., no equilibrium configurations for rigidly
rotating initial condition exist in the right-hand side of this curve.
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On the other hand, if the mass and inertia of the inner
core at the bounce are sufficiently large, the pressure
supplied by the sudden stiffening of the equation of state
and the centrifugal force cannot halt the collapse. Then, the
inner core will promptly collapse to a black hole without
any distinct bounce (cf. models D2a, D3a, and D5a in
Fig. 2 in which a black hole is formed). As illustrated in
Sec. IV B 2, shocks do not propagate outward in such
cases.

In the ring-down phase, the inner core oscillates quasir-
adially and then settles down to a quasistationary state,
since the compressional work done by the inner core on the
matter of the outer region leads to damping of the oscil-
lation. In this phase, the amplitude of the oscillation and
the strength of shocks generated by the outward oscillation
depend on the stiffness of the equation of state for the
formed protoneutron star. In the outer region, on the other
hand, shock waves propagate and are accelerated due to the
density gradient in the outer core. They sweep materials of
the outer envelopes, and convert the infall kinetic energy
into the thermal energy, which helps further driving the
shock outward. However, if the explosion is too weak to
eject sufficient matter of the progenitor star, the subsequent
fallback of the matter into the formed protoneutron star
will trigger formation of black hole.

B. Criterion for prompt black hole formation

In Table IV, we summarize the outcomes in the iron core
collapse for all of rigidly rotating initial models listed in
Table II and with equations of state listed in Table I. It is
important to note that even for models in which a black
hole is not formed promptly (models ‘‘no BH’’), a long-
term fallback of matter may lead to black hole formation.
In this paper, we do not study such longterm black hole
formation. Since the simulations are performed for the iron
core (only part of the whole star), we stop the simulations
when the shock front reaches its surface located at a radius
of �1000 km. To follow the collapse due to the fallback, it
would be necessary to take into account not only the iron
core but the carbon-oxygen envelope. Also, neutrino cool-
ing that is ignored in this paper will play a role for a
longterm fallback with the duration >100 ms [71].

Figure 6 illustrates that the threshold mass for the
prompt black hole formation depends on the adopted equa-
tion of state as well as the angular momentum. In the
following section, we describe, in more detail, the depen-
dence of the threshold mass on thermal pressure, rotation,
differential rotation, and adopted equations of state,
separately.

1. Contribution of thermal pressure

First, we focus on spherical collapse. Because of no
rotational effect in this case, the threshold mass depends
only on equations of state. Figure 6 shows that the thresh-
old mass for the prompt black hole formation locates
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between � 2:1M� (model A0) and � 2:3M� (model C0)
depending on the adopted equations of state. This value is
by 20–40% larger than the maximum allowed mass for the
cold spherical polytrope � 1:6M�.

For the equations of state ‘‘a’’ and ‘‘b,’’ the threshold
mass is � 2:1–2:2M�. On the other hand, for the equation
of state c in which the value of �1 is the same as the
equation of state b but the value of �nuc is smaller, the
threshold mass is � 2:3M�. This fact suggests that magni-
tude of the thermal pressure Pth generated by the shocks is
larger for the equations of state with the smaller value of
�nuc. This difference in the strength of the shock results
from the difference in the collapse dynamics. Detailed
discussions about the dynamics of the collapse are pre-
sented in the next subsection.

2. Dependence on �1 and �2

As discussed and illustrated in [29,34,36], the most
important parameter for the dynamics of the collapse dur-
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FIG. 7. Snapshots of the density contour curves and velocity vectors in the x-z plane for model D2 with the equation of state ‘‘a,’’ at
t � 193:29, 193.58, and 193.77 ms. The density contour curves are drawn for �=�max � 10�0:4j, �j � 0; 1; 2; � � � 20	 where �max is the
maximum density at the selected time slices. The thick solid curve in the last panel denotes the location of the apparent horizon.
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ing the infall phase is �1. For the smaller value of �1 (for
the larger value of j�1 � 4=3j), the depleted pressure at t �
0 is larger. As a result, the collapse is accelerated more and
the elapsed time in the infall phase is shorter. Furthermore,
since the depleted fraction of the pressure is larger in the
central region than in the outer region for the smaller value
of �1, the collapse in the central region proceeds more
rapidly. Accordingly, the iron core contracts less coher-
ently and only the collapse in the inner region of the iron
core is accelerated. Therefore, the mass of the inner core at
the bounce phase is smaller for the smaller value of �1. The
smaller mass of inner core indicates that the fraction of the
iron core which undergoes the shock heating is larger since
the shock wave is generated at the outer edge of the inner
core. Therefore, the contribution of the thermal pressure to
the inner core is more important for models with the
smaller value of �1.

Since the mass of the inner core in the infall and bounce
phases is larger for the larger value of �1, the degree of the
FIG. 8. The same as Fig. 7 but for model D2 with the equation of
curve in the last panel denotes the location of the apparent horizon.

084013
overshooting of the inner core at the bounce phase is larger,
due to the stronger gravitational attraction force. Also, for
the smaller value of �2, the degree of the overshooting at
the bounce phase is larger since a relatively higher density
is required to supply the sufficient pressure to halt the
collapse. In the case that mass of the inner core is not so
large as to collapse to a black hole, the larger overshooting
results in stronger shock generation, since the stored en-
ergy of the inner core at the bounce becomes larger (cf.
Sec. IV D 1). However, the larger overshooting also in-
creases the risk of collapsing to a black hole since the
compactness (the value of �c) at the bounce becomes
larger (smaller).

To understand the dependence of the collapse on equa-
tions of state in more details, we generate Figs. 7 and 8, in
which we display the snapshots of the density contour
curves and velocity vectors in the x-z plane for models
D2a and D2b. For models with the equation of state a in
which �1 � 1:32 and �2 � 2:25, the collapse proceeds
state ‘‘b’’ at t � 113:12, 116.38, and 117.10 ms. The thick solid
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coherently due to the fact that �1 is close to 4=3, and hence,
the mass of the inner core increases to be larger than the
maximum allowed mass of the corresponding rotating
neutron star at the bounce. Consequently, the inner core
promptly collapses to a black hole without generating
shocks (cf. Figure 7). This result indicates that for the
smaller value of j�1 � 4=3j, the prompt black hole forma-
tion is more liable and the threshold mass of the iron core
for the prompt black hole formation is smaller.

For the equations of state ‘‘b’’ and ‘‘d,’’ on the other
hand, the collapse proceeds less coherently due to the
smaller values of �1 (the larger values of j�1 � 4=3j). As
a result, the mass of the inner core at the bounce is below
the maximum allowed mass, and hence, the inner core
experiences a bounce and forms a compact protoneutron
star for a while before collapsing to a black hole. Also, the
shock is formed at the outer edge of the inner core and then
propagates outward (cf. Figure 8). This implies that the
thermal pressure which helps supporting the inner core is
generated in contrast to the case for model D2a. Because of
this difference, the threshold mass of the iron core for the
prompt black hole formation with the equation of state b is
larger than that for ‘‘a.’’ However, the shock formed is not
strong enough to blow up the sufficient matter outward
even for model D2b: A part of the matter in the outer region
falls into the inner core located at the center. This fallback
leads to an accretion induced collapse to a black hole (see
the third panel Fig. 8).

On the other hand, we do not find significant difference
in the threshold mass for the prompt black hole formation
between the equations of state ‘‘b’’ and ‘‘d’’ (see Table IV).
The plausible reason is described as follows. First, since
the mass of the inner core formed at the bounce is smaller
for models with the equation of state ‘‘d,’’ the larger
fraction of the matter inside the protoneutron star will
experience the shock heating. On the other hand, the shock
wave itself is weaker for the equation of state d since the
amplitude of the core bounce and the value of �th ( � �1) is
smaller. These two contrary effects cancel each other
resulting in approximately the same threshold mass for
the prompt black hole formation. A more sophisticated
parameter study is required to clarify the small difference
in the threshold mass.
3. Dependence on �nuc

In Fig. 4, we show the evolution of �c and �c for models
D1c and D15c, for which a black hole is formed promptly
as a result of the collapse. For comparison, the result for
model D1b is shown together. The evolution of �c and �c
with two equations of state ‘‘b’’ and ‘‘c’’ are identical
during the infall phase. However, in the bounce and sub-
sequent phases, increase of �c (decrease of �c) is delayed
and the value of �c (�c) is smaller (larger) for the equation
of state ‘‘c.’’ This is a result from the fact that the sudden
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stiffening occurs at an earlier stage of the collapse with the
equation of state c due to the smaller value of �nuc.

Figure 4 also indicates that the amplitude of oscillation
of the inner core at the bounce is larger for models with the
equation of state ‘‘c.’’ Several effects are responsible for
this result. First, the small value of �nuc in the equation of
state c results in a smaller mass of the inner core and
smaller averaged density at the bounce. As mentioned in
Sec. IV B 2, the smaller mass of the inner core results in the
fact that a larger amount of the matter experiences the
shock heating. The smaller density implies that the pres-
sure at the surface of the inner core is smaller, and hence,
the work exhausted by the inner core in converting the
oscillation energy to the infalling outer envelop is smaller.
Accordingly, the amplitudes of the bounce and the subse-
quent oscillation of the inner core become larger. Also, the
equation of state ‘‘c’’ is ‘‘stiffer’’ than ‘‘b’’ in the (higher)
density range between � � 1:0 � 1014 and � 2 �
1015 g=cm3 (cf. Figure 1). This also contributes to gener-
ating stronger shock waves. Because of these effects, the
smaller value of �nuc results in the larger threshold mass for
the prompt black hole formation.

4. Effects of the rotation

As the value of q increases, the threshold mass for the
prompt black hole formation becomes larger because the
effect of the rotation effectively supplies additional pres-
sure to the iron core and reduces the amount of matter
falling into the central region. The threshold mass may be
written approximately as a quadratic form [44]:
Mthreshold � kq2 �M0, where M0 is the threshold mass
for the spherical case. This reflects that the rotational
kinetic energy (or the centrifugal force) depends on q2.
Assuming this form of the threshold mass, we approxi-
mately draw the threshold curves in Fig. 6. It is found that
the rotational effect increases the threshold mass by &

15–25% for q� 1. This value is comparable with the
amplification factor of the maximum mass for rigidly
rotating neutron stars in equilibrium [67].

The coefficient, k, depends on the strength of the shock
and the adopted equation of state. The threshold mass for
the prompt black hole formation at the maximum value of
q is larger for the models with the smaller value of �nuc as
discussed in the previous subsection (compare models with
equations of state b and c in Table IV). However, the
dependence of the threshold mass at the maximum value
of q on �1 is not very simple. Comparing models with
equations of state a and ‘‘b,’’ the black hole is more liable
to be formed with equation of state ‘‘a,’’ i.e., for the larger
value of �1. On the other hand, comparing models with
equations of state ‘‘b’’ and ‘‘d,’’ no difference is found in
the present numerical study. This is because the process of
the black hole formation for models with �1 � 1:32 is
significantly different from those with �1 � 1:30 and
1.28, as described in Sec. IV B 2.
-13



FIG. 9. The same as Fig. 7 but for model F5 with the equation of state ‘‘a,’’ at t � 198:74, 199.03, and 199.35 ms. The thick solid
curve in the last panel denotes the location of the apparent horizon.
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To see the effect of the rotation on the collapse dynamics
in more detail, in Figs. 9 and 10, we display the snapshots
of the density contour curves and velocity vectors at se-
lected time slices for models F5a and F5b. For these
models, the value of q is nearly maximum among the
rigidly rotating initial models of a given mass. For model
FIG. 10. The same as Fig. 7 but for model F5 with the equation of
The thick solid curve in the last panel denotes the location of the a
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F5a, the collapse proceeds more rapidly in the direction of
rotational axis (z axis) than in the equatorial plane during
the infall phase. This is because the centrifugal force is
stronger in the equatorial plane than around the z axis (see
the first panel of Fig. 9). Accordingly, the collapsing inner
region is deformed to be an oblate shape. As the collapse
state ‘‘b,’’ at t � 114:50, 116.38, 119.19, 124.90, and 131.86 ms.
pparent horizon.
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proceeds, the density contour in the outer part of the inner
core is deformed to be a concave structure. At the bounce,
this leads to formation of a steep density gradient along the
rotational axis (see the second panel of Fig. 9). This would
result in stronger shock waves along the rotational axis
than in the equatorial plane. For model F5a, however, the
mass of the inner core at the bounce is so large that the
strong gravitational attraction force prevents the shock
from being propagated. Consequently, the inner core
promptly collapses to a black hole. On the other hand,
for less massive cases, shock waves propagate outward.
In the shock propagation, this asymmetry generates aniso-
tropic shocks (see also Sec. IV D).

For model F5b, shock waves propagate outward since
the mass of the inner core at the bounce is smaller than the
maximum allowed mass due to the smaller value of �1. In
this case, however, the density gradient along the z axis is
not so steep as that for model F5a (see the first panel of
Fig. 10), although the mass and the angular momentum of
the progenitor are identical between F5a and F5b. As a
result, the asymmetry in the shock front is small (see the
second to fourth panels of Fig. 10). The reason is that the
mass of the inner core at the bounce is smaller for model
F5b. For rigidly rotating initial models, the centrifugal
force is stronger for larger cylindrical radius, and hence,
the smaller mass of the inner core implies that the effect of
rotation is less important.

For model F5b, the shock is strong enough to reach the
surface of the iron core (see the fifth panel of Fig. 10).
However, in a region behind the shock, the fluid elements
(in particular) around the rotational axis fallback into a
protoneutron star formed at the center, and eventually, the
protoneutron star collapses to a black hole (see the last
panel in Fig. 10). This illustrates that a black hole may be
formed in a rather long time scale even for models in which
the black hole is not formed promptly, if the progenitor is
rotating.
TABLE V. Summary of the final outcome in the iron core
collapse with differentially rotating initial models. The adopted
equation of state is type b for all the cases; i.e., ��1;�2; �14	 �
�1:3; 2:5; 2:0	.

Model K0 (cgs) A MADM=M� q outcome
D20d1b 7:0 � 1014 1.0 2.437 0.647 BH
D22d1b 7:0 � 1014 1.0 2.441 0.698 BH
D23d1b 7:0 � 1014 1.0 2.445 0.746 no BH
D25d1b 7:0 � 1014 1.0 2.450 0.791 no BH

D15d05b 7:0 � 1014 0.5 2.424 0.440 BH
D17d05b 7:0 � 1014 0.5 2.430 0.541 BH
D20d05b 7:0 � 1014 0.5 2.437 0.626 no BH
D25d05b 7:0 � 1014 0.5 2.444 0.702 no BH

H5d1 8:0 � 1014 1.0 3.019 0.978 BH
H5d05 8:0 � 1014 0.5 3.020 0.941 no BH
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5. Effects of differential rotation

Table V shows the outcomes of the collapse for all of
differentially rotating initial models listed in Table III. In
the simulation for differentially rotating models, we only
adopt the equation of state ‘‘b.’’ Model D25d1 with A �
1:0 does not form a black hole, while its rigidly rotating
counterpart D25 for which the mass and the angular mo-
mentum are approximately the same as those of D25d1
collapses to a black hole. For differentially rotating model
D20d05 for which A � 0:5, and the mass and the angular
momentum are slightly smaller than those for rigidly rotat-
ing model D2, black hole is not formed. For A � 0:5, black
hole is not formed promptly even from a very massive
initial model H in which MADM � 3:0M� (cf. Table V).
These indicate that the black hole is less liable to be formed
promptly for the higher degree of differential rotation.

The results found here are quite reasonable since with
the decrease of A, the angular velocity in the inner region
increases. To clarify this effect in a more quantitative
manner, we generate Fig. 11, which shows the spin pa-
rameter distribution q�j	 defined by Eq. (14). First, note
that a black hole is formed for models D25 and D22d1 but
not for D3 and D25d1 with the equation of state ‘‘b.’’ The
two dotted curves in Figs. 11(a) and 11(b) denote q�j	 of
these two models D3b (upper dotted curve) and D25b
(lower dotted curve), respectively. The solid and dashed
curves in Fig. 11(a) denote q�j	 for models D25d1 and
D22d1 for which A � 1:0. Although the total value of the
spin parameter of the differentially rotating iron cores of
D25d1 (q � 0:791) is smaller than that for rigidly rotating
model D3 (q � 0:888), the value of q around the central
region (m�j	 & M=2) exceeds that of D3. As shown in
[12] in detail, the value of q around the center plays a
crucial role in determining the criterion for prompt black
hole formation; i.e, the iron core with a larger value of q
around the center is less liable to collapse to a black hole.
Therefore, it is reasonable that black hole is not formed for
model D25d1. On the other hand, the value of q around
the center for model D22d1 (q � 0:698) is as large as that
for model D25 around the central region. This implies the
rotational centrifugal force is not strong enough to prevent
the iron core from collapsing to a black hole.

Figure 11(b) shows q�j	 for models D20d05 (solid
curve) and D17d05 (dashed curve) with A � 0:5. A black
hole is not formed for D20d025 while it is formed for
D17d05. Figure 11(b) clarifies that the spin parameter
distribution is flatter with the smaller value of A.
Therefore, the values of the global spin parameter q for
A � 0:5 are much smaller than those of the rigidly rotating
counterparts. On the other hand, the value of q around the
central region becomes larger. As a result, black hole
formation is more effectively prevented. This quantita-
tively indicates that the threshold mass for the prompt
black hole formation is larger for models with larger
degree of differential rotation.
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FIG. 12. The distribution of q�j	 (top panel) and the value of
jISCO as a function of m�j	=M for models H5 (solid curve), F5
(dashed curve), and D3 (dotted curve). The dotted dashed
vertical line denotes m�j	=M � 0:9 where jISCO for F5 takes

FIG. 11. The spin parameter distribution inside differentially rotating iron cores of (a) D25d1 (solid curve) and D22d1 (dashed
curve); (b) D20d05 (solid curve) and D17d05 (dashed curve). The two dotted curves in both figures denote the spin parameter
distribution for the rigidly rotating models D3 (upper dotted curve) and D25 (lower dotted curve). Note that for model D3b, a black
hole is formed promptly, while for D25b, a neutron star is formed.
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C. Prediction of the final system

Because of the assumption that the viscous effect is
negligible during the collapse, the specific angular momen-
tum j � û’ of each fluid element is conserved in the
axisymmetric system and so do the functions m�j	 and
J�j	. Using this fact, the final outcome after the black hole
formation can be predicted [10,12,19].

Let us consider innermost stable circular orbit (ISCO)
around the growing black hole located at the center.
Assuming that a fluid element around a black hole is
approximately in a circular orbit, it will fall into the seed
black hole eventually if its value of j is smaller than that at
the ISCO (jISCO). The value of jISCO depends on the mass
and the angular momentum of the black hole and changes
as the ambient fluid elements accrete onto the black hole. If
jISCO increases as a result of the accretion, the more
ambient fluid elements will fall into the black hole. On
the other hand, if jISCO decreases during the accretion, no
more fluid element will fall into the black hole, and as a
result, the dynamical growth of the black hole will termi-
nate. Therefore, if jISCO has a maximum (hereafter denoted
as jISCO: max), the black hole will grow until j reaches
jISCO: max. Namely, it is reasonable to expect that the final
values of the mass and the spin parameter of the black hole
will be

MBH � m�jISCO: max	; (36)

qBH � q�jISCO: max	: (37)

with the disk mass MADM �m�jISCO: max	.
 the maximum value approximately.
084013-16



AXISYMMETRIC COLLAPSE SIMULATIONS OF . . . PHYSICAL REVIEW D 71, 084013 (2005)
To estimate the value of jISCO, we assume that the spacetime metric can be instantaneously approximated by that of a
Kerr spacetime of the mass m�j	 and the spin q�j	. On these approximations, we can compute jISCO of a growing black
hole as [13,72],

jISCO �

����������������������
m�j	rISCO

p
�rISCO

2 � 2q�j	m�j	
����������������������
m�j	rISCO

p
� �q�j	m�j		2	

rISCO�rISCO
2 � 3m�j	rISCO � 2q�j	m�j	

����������������������
m�j	rISCO

p
	1=2

; (38)
where

rISCO � m�j	�3 � Z2

� f�3 � Z1	�3 � Z1 � 2Z2	g
1=2�;

Z1 � 1 � �1 � q�j	
2�1=3�f1 � q�j	g

1=3

� f1 � q�j	g1=3�;

Z2 � �3q�j	
2 � Z2

1�
1=2:

In Fig. 12, we show the quasilocal spin parameter dis-
tributions inside the iron core, defined by Eq. (14), and the
value of jISCO evaluated by Eq. (38) for models H5, F5, and
D3. As described above, the dynamical evolution of the
formed black hole will terminate when jISCO reaches a
local maximum. Then, the mass, MBH, and spin, qBH, of
the the dynamically evolved black hole are given by
Eqs. (36) and (37).

Figure 12 indicates that for model F5 and H5, the inner
region collapse to form a black hole of MBH=M � 0:90
and qBH � 0:76. On the other hand, the matter in the outer
region of high specific angular momentum will form a
massive disk of Mdisk=M � 0:10 around the black hole.
Similarly, for model D3, a black hole of MBH=M � 0:93
and qBH � 0:73 will be formed. Such a rapidly rotating
black hole surrounded by a massive disk is one of the
promising candidates for the central engine of the long-
duration gamma-ray bursts [7–9].

Although the above prediction is quite reasonable [12],
confirmation of this prediction requires to carry out a
simulation until the black hole plus disk system is formed.
To accomplish this, the so-called black hole excision tech-
niques are required. For the case of the collapse with stiff
(� � 2:0) equations of state, we have confirmed it possible
to continue the simulation more than �100M after the
formation of black hole by using techniques based on the
so-called simple excision developed by Alcubierre and
Brügmann [73]. We plan to wrestle with the confirmation
of the above prediction by extending the techniques to the
collapse with soft equations of state.

D. Protoneutron star formation

1. Dependence of explosion on the equations of state

As discussed in the previous subsections, the dynamics
of the collapse and the threshold mass for the prompt black
hole formation depend sensitively on the equations of state.
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In the case of neutron star formation, we also find that
features of the explosion depend sensitively on the equa-
tions of state. We illustrate this fact focusing on rapidly
rotating model D5 in which black hole is not formed
promptly irrespective of the equations of state.

In Fig. 13, we display the contour plots for model D5a.
For the collapse with the equation of state ‘‘a’’ which is
stiff in the subnuclear density (with larger value of �1)
while soft in the supranuclear density (with smaller value
of �2), the steep density gradient is formed around the
rotational axis of the inner core. On the other hand, such
steep gradient is not formed around the equatorial plane
(see the second panel of Fig. 13). Because of the steep
gradient, strong shock waves are generated along the rota-
tional axis. Consequently, a jetlike explosion is seen (see
the third panel of Fig. 13). The explosion velocity in the
direction of the rotational axis is much larger than that in
the equatorial plane (see the fourth and fifth panels of
Fig. 13): The maximum speed becomes � 0:8c around
the rotational axis near the shock. Thus, the shock wave
reaches the surface of the iron core much more quickly (see
the last panel of Fig. 13). At this time, a funnel structure is
formed around the rotational axis.

The structure of bipolar shock waves depends on mass of
progenitor. For model A5a in which MADM � 1:97M�, a
steep density gradient is also formed along the rotational
axis (see Fig. 14), but it is formed only in narrower region
than that for model D5a (compare the first panel of Fig. 14
and the second panel of Fig. 13). Reflecting this result, the
structure of the shock front is sharper than that for model
D5a and is deformed to be spearlike (compare the second
panel of Fig. 14 and the third panel of Fig. 13).

Such bipolar and energetic supernova explosion is re-
quired to explain the observations of several hypernovae,
which are suggested to be associated with a gamma-ray
burst [6,74–77]. Indeed, the energetic explosion along the
rotational axis is preferable to avoid the baryon-loading
problem in the fireball model of the gamma-ray bursts [9].
The present results suggest that the collapse of rapidly
rotating iron cores of M * 2M� with a class of equations
of state similar to a is preferable for realizing such a state.

To see the dependence of the features of the explosion on
the equations of state, we also display the contour plots for
models D5b and D5d in Figs. 15 and 16. As the first panel
of these figures show, the magnitude of the density gradient
along the rotational axis is not very different from that in
the equatorial plane, and hence, structure of the shock is
-17



FIG. 13. The same as Fig. 7 but for model D5 with the equation of state ‘‘a,’’ at t � 199:47, 199.69, 200.31, 202.01, 203.33, and
205.84 ms.
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not very aspherical (see the second panel of the Figs. 15
and 16).

The shock for model D5b is strong enough to quickly
propagate through the outer core, sweeping the matter
falling into the shock. For model D5d, on the other hand,
the shock is not as strong as that for D5b, and hence, the
propagation speed is slow. Also, the density gradient
FIG. 14. The same as Fig. 7 but for model A5 with the equ
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formed around the shock is not very different between
along the rotational axis and in the equatorial plane, and
hence, the structure of the shock becomes eventually oblate
(not prolate) due to the effect of the rotation (see the third
panel of Fig. 16). As the matter behind the shock falls and
beats the protoneutron star at the center, it oscillates and
the shocks are formed continuously. Thus, the shocks
ation of state ‘‘a,’’ at t � 201:53, 201.88, and 203.69 ms.
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FIG. 15. The same figure as Fig. 7 but for model D5 with the equation of state ‘‘b,’’ at t � 114:72, 115.63, 116.75, 118.60, 120.37,
and 124.25 ms.
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propagates outward and helps sweeping the infalling mat-
ter outward (see the fourth and fifth panels of Fig. 16). The
features found for models D5b and D5d are not found in
model D5a. This fact implies that the explosion mechanism
depends sensitively on the equations of state for rapidly
rotating iron core collapse.

It should be also mentioned that the bipolar explosion
has not been found in the previous study [36] in which the
same parametric equation of state with ��1;�2	 �
�1:32; 2:5	 and smaller core mass of 1:5M� is adopted.
(Note that this equation of state is stiffer in supranuclear
density than the equation of state a of the present paper).
This fact implies that an equation of state with not only a
large value of �1�� 1:32	 but also a small value of �2 �
2:25 may be required for producing the bipolar explosion.

2. Rotational profile of the protoneutron star

In this subsection, we present the rotational profiles of
the inner region during the collapse and consider the
possibility for the onset of the nonaxisymmetric instabil-
ities. Figs. 17–20 show the angular velocity profile along
the x axis at selected time slices for models D5a, D5b, D5c,
and D5d, respectively. The first panels of Figs. 17–20 show
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the angular velocity profile around the bounce phase. As
the collapse proceeds, the angular velocity around the
central region increases toward the maximum value,
0max, achieved at the bounce. The values are 0max �
8000, 10000, 6000, and 7500 s�1 for models D5a, D5b,
D5c, and D5d, respectively, (see dotted lines in the first
panels). The inner core at the bounce, when the maximum
angular velocity is achieved, is approximately rigidly ro-
tating irrespective of the equations of state, although the
fluid elements outside the inner core is differentially rotat-
ing as a whole. These results indicate that the differential
rotation is not enhanced in the inner core during the infall
and bounce phases.

The second panels of Figs. 17–20 show the angular
velocity profiles in the ring-down phase, from which we
find that differential rotation is enhanced in the ring-down
phase due to the oscillation of the protoneutron star and the
infall of the fluid elements of high specific angular mo-
mentum from the outer region. However, the degree of the
differential rotation is not very high. This feature is also
found in a Newtonian simulation [33]. These panels also
indicate that the amplitude of the oscillation of the angular
velocity is larger for models with the equation of state ‘‘c.’’
-19



FIG. 16. The same as Fig. 7 but for model D5 with the equation of state ‘‘d,’’ at t � 83:92, 84.76, 86.78, 88.92, 90.24, and 100.01 ms.

FIG. 17. The angular velocity profile inside the iron core along the x axis for model D5a at selected time slices: (a) at the bounce
phase of t � 199:43 (solid curve), 199.62 (long dashed curve), 199.73 (dashed curve), and 199.86 ms (dotted curve); (b) at the ring-
down phase of t � 206:49 (solid curve), 206.75 (long dashed curve), 206.94 (dashed curve), and 207.12 ms (dotted curve).
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FIG. 18. The same as Fig. 17 but for model D5b at selected time slices: (a) at the bounce phase of t � 114:39 (solid curve), 114.61
(long dashed curve), 114.74 (dashed curve), and 114.87 ms (dotted curve); (b) at the early ring-down phase of t � 118:86 (solid curve),
119.16 (long dashed curve), 119.29 (dashed curve), and 119.53 ms (dotted curve); (c) at the late ring-down phase of t � 122:06 (solid
curve), 122.36 (long dashed curve), 122.67 ms (dashed curve).
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This is due to the fact that the amplitude of the oscillation
of the protoneutron star is larger as described in
Sec. IV B 3.

In the post-bounce oscillation phase, the oscillation of
the protoneutron star gradually damps. The damping is
caused by the compressional work of the protoneutron
star to the infalling matter from the outer envelop. As a
result of damping, a quasistationary protoneutron star ro-
tating rapidly at the period P 
 2*=0 � 1 ms is eventu-
ally formed. Note that inner region of the formed
protoneutron star is rigidly rotating (see the third panel
of Fig. 18).
FIG. 19. The same as Fig. 17 but for model D5c at selected time s
(long dashed curve), 114.72 (dashed curve), and 114.83 ms (dotted
121.11 (long dashed curve), 121.67 (dashed curve), and 121.97 ms
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To infer the nonaxisymmetric stabilities, we estimate the
value of Trot=W at the bounce. Note that in general rela-
tivity, there is no unique definition for Trot=W for dynami-
cal spacetimes. In this paper, we define the rotational
kinetic energy, Trot, and the gravitational potential energy,
W, for dynamical spacetime by

Trot 

1

2

Z
d3x�û’v’; (39)

W 
 Ttotal �U; where U 

Z
d3x�": (40)
lices: (a) at the bounce phase of t � 114:46 (solid curve), 114.59
curve); (b) at the ring-down phase of t � 120:96 (solid curve),
(dotted curve).
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FIG. 20. The same as Fig. 17 but for model D5d at selected time slices: (a) at the bounce phase of t � 83:78 (solid curve), 83.91
(long dashed curve), 84.04 (dashed curve), and 84.15 ms (dotted curve); (b) at the ring-down phase of t � 86:10 (solid curve), 86.32
(long dashed curve), 86.51 (dashed curve), and 86.71 ms (dotted curve).
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To define W, we use the fact that MADM � M �W �
Ttotal �U and M � MADM. Ttotal denotes a total kinetic
energy. Unfortunately, we do not know the appropriate
definition for Ttotal. However, as far as configurations at
the maximum compression and at a final relaxed state are
concerned, the rotational kinetic energy Trot is nearly equal
to Ttotal, and thus, Ttotal in Eq. (40) may be replaced by Trot.
In this definition, Trot=W will give slightly overestimated
values in other stages such as the infall phase. The value of
Trot=W at the bounce is � 0:10 and � 0:13 for models D5b
and D5a. These values are much smaller than the plausible
critical value of Trot=W for the onset of the dynamical
instability Trot=W � 0:24–0:25 for nearly rigidly rotating
stars [65,68,78], and hence, the inner core at the bounce
and formed protoneutron star is unlikely to be unstable
against nonaxisymmetric perturbations in the dynamical
time scale. However, these values are as large as the critical
value of Trot=W for the secular instabilities driven by
gravitational wave emission [65,79,80], or driven by vis-
cosity [65,81]. Therefore, the formed protoneutron star
may be unstable against nonaxisymmetric perturbations
in secular time scales � 100 ms.

A sufficiently rapidly and differentially rotating iron
core may collapse to form a protoneutron star of Trot=W *

0:25 and become unstable against nonaxisymmetric per-
turbations. Such a rotating nonaxisymmetric object will be
a strong gravitational wave emitter. In a companion paper
[38], we study conditions for the onset of the dynamical
instabilities in three-dimensional numerical simulation in
full general relativity. We find that the dynamical instabil-
ities set in only for the case that the progenitor is highly
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differentially rotating with A & 0:1. Thus, the assumption
of axial symmetry in this paper is justified.

E. Gravitational waves

1. Gravitational waveforms

Gravitational waveforms are computed in terms of the
quadrupole formula described in Sec. II C. As illustrated in
a previous paper [55], approximate gravitational wave-
forms can be computed even for highly relativistic, highly
oscillating, and rapidly rotating neutron stars using the
quadrupole formula except for systematic underestimate
of the amplitudes of O�M=R	. In the case of protoneutron
star formation, gravitational waves are emitted mainly by
its oscillation. Thus, with the quadrupole formula, it is
possible to approximately compute gravitational wave-
forms emitted during rotating iron core collapse to a pro-
toneutron star.

In Figs. 21–23, gravitational waves for models D2–D5
with equations of state ‘‘a,’’ ‘‘b,’’ and ‘‘d’’ are shown. The
gravitational waveforms during the black hole formation
evaluated by the quadrupole formula are also presented
together for models D3a, D2b, and D2d. We note that from
A2 � (Izz � (Ixx, the amplitude of gravitational waves at a
distance of r from the source is calculated by

h � 3 � 10�20

�
A2

1000 cm

��
10 kpc

r

�
sin2/; (41)

where / denotes the angle between the line of sight and the
rotational axis, and hsin2/i � 2=3. Thus, the typical am-
plitude is �2 � 10�20 for a event at the galactic center.
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FIG. 21. Gravitational waveforms computed by the quadru-
pole formula described in Sec. II C for models D5a (solid curve)
and D4a (dotted dashed curve), and D3a (dashed curve).
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Figs. 21–23 show that the strong dependence of the
dynamics of the collapse on the values of �1 is reflected
in the amplitude of gravitational waveforms. The following
features are, in particular, worthy to note. First, the ampli-
tudes of gravitational waves during the infall and bounce
phases are smaller for the smaller value of �1 (the larger
value of j�1 � 4=3j). The reason is that the smaller value of
�1 results in the smaller mass of the inner core at the
bounce (cf. discussion in Sec. IV B 2). This feature agrees
with that found in previous works [29,34,36].

Second, the time-averaged amplitudes of the gravita-
tional waves in the ring-down phase are negative for mod-
FIG. 22. The same as Fig. 21 but for models D5b (solid curve),
D3b (dotted dashed curve), and D2b (dashed curve).
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els with equations of state ‘‘b’’ and ‘‘d’’ while positive for
the model with ‘‘a.’’ This results from the difference of the
dynamics in the infall phase. For the equations of state ‘‘a,’’
the matter collapses and bounces in a coherent manner,
while for the equations of state ‘‘b’’ and ‘‘d,’’ in a less
coherent manner. In the case ‘‘b’’ and ‘‘d,’’ therefore, the
matter in the outer region infalling toward the center
suppresses the oscillation of the protoneutron star. On the
other hand, for models with ‘‘a,’’ such suppression dose not
work effectively because of the smaller-mass fraction in
the outer region.

Third, the gravitational waveforms for rapidly rotating
models with the equations of state a (models D4a and D5a
in Fig. 21) are qualitatively different from those for others.
The modulation of the gravitational waveforms are quite
remarkable. This reflects the bipolar explosion, in which
absolute value of (Izz is much larger than that of (Ixx.

Fourth, the so-called ‘‘type-III’’ gravitational wave-
forms [29] are not found in any model. Previous studies
have indicated that type-III waveforms are generated for a
small value of �1 � 1:28 [29,34,36]. In these waveforms,
the amplitude of the first spike is significantly suppressed
to the value j (Izz � (Ixxj � 30 cm. This is because the mass
of the protoneutron star at the bounce phase is very small
for such small value of �1. In the present case, the mass of
the adopted iron core is much larger than that for the
previous studies [29,34,36]. As a result, the mass of the
protoneutron star is not very small, and hence, the type-III
gravitational waveforms are not generated.

For a given mass, the amplitude of gravitational waves is
increased with the increase of the angular momentum in
the present numerical results. However, this is not trivial
result because of the following reasons. First, recall that the
amplitude of gravitational waves is proportional to the
FIG. 23. The same as Fig. 21 but for models D5d (solid curve),
D3d (dotted dashed curve), and D2d (dashed curve).
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quadrupole moment (jIzz � Ixxj) and the inverse square of
the dynamical time scales, >char, of the system. The value
of jIzz � Ixxj increases as the total angular momentum
increases since the radius and the degree of deformation
of the inner core become larger due to the increasing
centrifugal force. On the other hand, the characteristic
time scale becomes longer as the angular momentum of
the inner core increases since the rotation effectively sup-
plies additional pressure to the inner core and the collapse
is decelerated. Thus, these two contrary effects may cancel
each other with a certain value of spin parameter q, result-
ing in the saturation of the burstlike gravitational wave
signals. Indeed, such saturation was found at q� 1 in
previous Newtonian studies (e.g., [28]) since at such a
large value of q, the iron core does not collapse to a
sufficiently compact state. However, saturation is not found
in the general relativistic studies [34,36]. This implies that
the general relativistic gravity is strong enough to over-
come the centrifugal force for the rigidly rotating case with
q & 1. This effect also suppresses to yield type-II gravita-
tional waves [34] which appear in the case that the cen-
trifugal force is too strong for the iron core to reach the
nuclear density.

In Fig. 24, we show gravitational waveforms for models
B5b, D5b, and F5b to illustrate the dependence of them on
the mass of the iron core. In the infall phase, the amplitude
of gravitational waves is larger for the larger-mass model.
This is quite natural since for the larger-mass model, the
quadrupole moment of the inner cores are larger. On the
other hand, the amplitude of the strong spike at the bounce
saturates when the mass of the iron core reaches � 2:5M�.
The plausible reason is that the inner core shrinks to be so
compact that the quadrupole moment is decreased
significantly.
FIG. 24. The same as Fig. 21 but for models F5b (solid curve),
D5b (dotted dashed curve), and B5b (dashed curve).
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The effect of mass on the amplitude of gravitational
waves can be analyzed by comparing the present results
with the previous results in [36], in which collapse of the
iron core of mass M � 1:5M� and rotational energy
Trot=W � 0:009 are studied. In [36], we found that the
amplitudes of gravitational waves at the bounce are j (Izz �
(Ixxj � 650 200, and 30 cm for models with (�1, �2	 �
�1:32; 2:0	, (1.31, 2.5), and (1.28, 2.5). These results should
be compared with the present results for D5a, D5b, and
D5d, in which M � 2:5M� and Trot=W � 0:009 and the
amplitudes of gravitational waves are j (Izz � (Ixxj � 1350,
1200, and 750 cm, respectively. These values are larger
than those found in [36] by factors of � 2, 6, and 25. Thus,
with the increase of the mass, the amplitude is increased in
a nonlinear manner. For �1 � 1:32, the increase factor is
small. The reason is that for this case, the inner core at the
bounce becomes sufficiently large due to the coherence
collapse in the infall phase, and the mass is close to the
value for the saturation as mentioned above. For other
cases, the increase factor is much larger. In particular, the
increase factor for �1 � 1:28 is outstanding. This is asso-
ciated with the fact that the dynamics in the bounce phase
qualitatively changes with the increase of mass. For �1 �
1:28 with a small mass M� 1:5M�, the mass of the inner
core formed at the bounce is very small, and as a result,
type-III gravitational waves are emitted [34] with the small
maximum amplitude as j (Izz � (Ixxj � 30 cm. On the other
hand, for �1 � 1:28 with a large mass M� 2:5M�, the
mass of the inner core can be sufficiently large due to its
strong self-gravity. As a result, type-I gravitational waves
are emitted and the amplitude of gravitational waves is
significantly increased.

An interesting finding in gravitational waveforms for the
larger-mass model is that the first spike in the ring-down
phase emitted just after the strong negative spike at the
bounce decreases as the mass of the iron core increases
(see Fig. 24). This spike is associated with the outward
motion of the inner core and usually positive for the
smaller-mass models (such as models of M � 1:5M�

studied in [29,34,36]). For models of larger mass such as
studied in this paper, on the other hand, the post-bounce
first spike becomes negative due to suppression of the
outward oscillation by the infalling matter. The suppres-
sion is larger, in particular, in the direction of the rotational
axis because of the absence of the centrifugal force. This
decreases the oscillation amplitude to be negative.

Gravitational waveforms for models D5b and D5c are
compared to see the dependence on �nuc in Fig. 25. It
shows that differences in the dynamics associated with
the difference in the value of �nuc are reflected in gravita-
tional waveforms. For example, the amplitude at the
bounce for D5c is smaller than that for D5b. This is
because the central density at the bounce is smaller for
D5c, and accordingly, the characteristic time scale is lon-
ger. On the other hand, the amplitude of the post-bounce
-24



FIG. 25. The same as Fig. 21 but for models D5b (dashed
curve) and D5c (solid curve).
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first spike is larger for D5c. This is because the amplitude
of oscillation of the inner core is larger for D5c as de-
scribed in Sec. IV B 3.

Before closing this subsection, we comment on the
frequency of gravitational waves emitted in the case of
black hole formation. After the formation of a black hole,
the ambient matter falls into it. As a result, the so-called
quasinormal modes (e.g. [82]) of the black hole will be
excited and gravitational waves associated with the space-
time oscillation will be emitted. According to Echeverria
[83], semiempirical expression for the real part of the
quasinormal mode frequency for l � 2 is given by

f � 12
�
M
M�

�
�1
�
F�q	

37=100

�
kHz; (42)

where

F�q	 � 1 �
63

100
�1 � q	3=10: (43)

Equation (42) indicates that the frequency of gravitational
waves associated with the quasinormal mode is �7:5 kHz
for models D3 and F5 for which the mass and spin pa-
rameter of the formed black hole are predicted to be M �
2:3–2:4M� and q � 0:7 (see Sec. IV C). This value is far
out of the best-sensitive frequency range for detection of
laser interferometric gravitational wave detector [84].

In reality, the mass of black hole will significantly
increase in a longterm evolution since the matter outside
the iron core will fall into a black hole. After such accre-
tion, the frequency of the quasinormal mode will be de-
creased significantly. Gravitational waves emitted from a
high-mass black hole M * 20M� may have an appropriate
frequency for detection by the laser interferometric
detectors.
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2. Energy power spectra

In Fig. 26, we show the energy power spectra of gravi-
tational waves with a mode of l � 2 and m � 0 for se-
lected models. For all the models, the maximum values of
the spectra are located at fpeak � 1–2 kHz, which are
consistent with the typical bounce time intervals of these
models �0:5–1 ms. The value fpeak � 1–2 kHz is by a
factor of �2 larger than the previous Newtonian results
[29,33]. This reflects the features in the dynamics of the
collapse that the central density and compactness of the
inner core at the bounce in general relativity are larger than
those in the Newtonian results due to the stronger attraction
force [34]. The peak frequency is slightly larger than that
found by Dimmelmeier et al. [34]. This is due to the fact
that the mass of the iron core adopted in this work is larger
than theirs. For f * 2 kHz, the spectra decline steeply for
all the models. This feature is consistent with that in
[33,34].

The spectrum for model D5a [see Fig. 26(a)] is rather
broad for a low frequency region (100 & f & 1000 Hz)
and flatter than those for other models. Such characteristic
spectrum results from the nature of the bipolar explosion.
For models D5b–D5d [see Fig. 26(b)–26(d)], on the other
hand, the spectra are quite similar to that of typical type-I
burstlike gravitational waves [26,29,34]. In these cases, a
few sharp peaks appear at the frequency between 1 and 2
kHz. In Fig. 26(b), the energy power spectrum for smaller-
mass model A5b is shown for comparison with the spec-
trum for model D5b. It is found that the shape of the spectra
for these two models is quite similar although the height of
the peak for model A5b is smaller than that for model D5b
and the peak slightly shifts to the low frequency side due to
the fact that the mass is smaller.

The spectrum for model D5c [see Fig. 26(c)] is similar to
that for model D5b except for slight shift of the spectrum to
low frequency side. The smaller peak frequency results
from the fact that the central density at the bounce and of
the formed protoneutron star for model D5c is smaller than
those for model D5b (cf. Figures 3 and 4), and hence, the
dynamical time scale is longer. In Fig. 26(c), the energy
power spectrum for model D2c is also shown to see de-
pendence of the spectra on the angular momentum of the
progenitor. The magnitude of the spectrum for model D2c
is overall smaller than that for model D5c, indicating the
magnitude of the angular momentum plays an important
role for amplifying the gravitational wave amplitude. Also
found is that the peak at f � 1 kHz is dominant for model
D2c. This indicates that for the smaller value of the angular
momentum, a single mode is dominantly excited. The
reason is likely to be that the degree of deformation of
the inner core is smaller for the smaller value of the angular
momentum, and hence, the fundamental quadrupole mode
of the formed protoneutron star is dominantly excited.

The spectrum for model D5d [see Fig. 26(d)] has a more
complicated shape than those for models D5b and D5c. In
-25



FIG. 26. The energy power spectra of ~A2�f	 mode for (a) model D5a, (b) models D5b (solid curve) and A5b (dashed curve), (c)
models D5c (solid curve) and D2c (dashed curve), and (d) model D5d. Note that gravitational waveforms for models D5a, D5b, D5c,
and D5d are shown in Figs. 21, 22, 25, and 23, respectively.
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particular, several small peaks in the low frequency region
are found between 100 and 1000 kHz, indicating that
several oscillation modes are excited simultaneously.
This reflects the manner on the generation of the shocks
at the surface of the protoneutron star in the equation of
state d: As mentioned in Sec. IV D, the mass of the formed
protoneutron star is initially small with the equation of
state ‘‘d,’’ and as a result, the accretion of the matter which
gradually falls from the shock layer subsequently proceeds.
The accreted matter intermittently hits the protoneutron
star and excites its oscillation modes in a complicated
084013
manner. As a result, gravitational waves of several charac-
teristic oscillation frequencies are generated.
V. SUMMARY

We performed fully general relativistic simulations for
black hole formation through the collapse of rotating iron
cores on assumption of the axial symmetry for a wide
variety of the mass, the angular momentum, the velocity
profile, and the equation of state. To systematically study
the dependence of the threshold mass for the prompt black
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hole formation on the equations of state, we adopt a para-
metric equation of state [29,34,51]. We choose the parame-
ters so that the maximum mass of the cold spherical
neutron star becomes � 1:6M�. The rotating iron cores
before collapse are simply modeled by the rotating � �
4=3 polytrope in equilibrium. The mass of the iron core is
set to be � 2:0–3:0M�. The amount of rotational kinetic
energy of the core is changed in a wide range from
Trot=W � 0 to � 0:009.

We have found that the threshold mass for the prompt
black hole formation depends sensitively on the angular
momentum, the rotational velocity profile of the initial
core, and the equations of state. The dependence of the
threshold mass on the these elements can be summarized as
follows: (i) The thermal pressure generated by shocks
increases the threshold mass by 20–40%. The magnitude
of this factor depends on the adopted equation of state: (ii)
With the increase of the spin parameter q, the threshold
mass increased by �25q2% for the case that the progenitor
is rigidly rotating: (iii) Effect of differential rotation further
increases the threshold mass, since the centrifugal force
around the central region can be efficiently increased: (iv)
The threshold mass depends sensitively on the equations of
state since the dynamics of the collapse does. For the
smaller value of j�1 � 4=3j and for the larger value of
�nuc, prompt black hole formation becomes more liable
since the mass of the inner core at the bounce is larger for
such equations of state.

About the dynamics of the collapse, we have found the
following features: (i) if �1 is close to 4=3, the collapse
proceeds in an approximately homologous manner, and
thus, the most part of the iron core collapses nearly simul-
taneously. This implies that the mass of the inner core
formed at the bounce is larger for the smaller value of
j�1 � 4=3j, that helps prompt black hole formation as
mentioned above. In the case that the mass of the progeni-
tor is not large enough, not a black hole but a protoneutron
star is formed. Since the mass of the inner core is larger for
the small value of j�1 � 4=3j, the inner core shrinks more
significantly resulting in a larger degree of the aspherical
deformation and in a significant spin-up. As a result, the
shape of the shock is highly aspherical and the explosion
proceeds in a strongly bipolar manner if the progenitor is
rapidly rotating as Trot=W � 0:009 (see Sec. IV D 1): (ii)
For �1 & 1:3, the collapse does not proceed in the homolo-
gous manner. Instead, only the central region rapidly col-
lapses and forms the inner core of a small mass at the
bounce. As a result, prompt black hole formation is less
liable. For the cases of protoneutron star formation, the
aspherical deformation of the inner core is not very re-
markable since its mass at the bounce is not sufficiently
large, and hence, the effect of the centrifugal force is not
very important. Consequently, the shape of the shock is
only sightly aspherical even when the progenitor is rapidly
rotating (see Sec. IV D 1): (iii) For the equation of state
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‘‘c’’ in which the value of �nuc is smaller than that for
others, the pressure for 1014 g=cm3 � � & 2 �
1015 g=cm3 is larger than that for the equations of state
‘‘b’’ and ‘‘d.’’ As a result, strength of the shocks formed at
the bounce is enhanced, and therefore, black holes are less
liable to be formed.

Gravitational waveforms are approximately computed
in terms of a quadrupole formula [55]. It is found that the
amplitude of gravitational waves at the bounce increases
monotonically as the mass and angular momentum of the
iron core increase as far as M & 2:5M�. In contrast to the
previous results (e.g., [28]), we do not find any tendency
that the maximum amplitude saturates with the increase of
the angular momentum for a given mass. This is due to the
fact that the general relativistic gravity is strong enough for
the inner core to form a compact protoneutron star over-
coming the centrifugal force in the present choice of the
spin parameter (0 � q & 1) for the rigidly rotating case.

Gravitational waveforms depend sensitively on the
equation of state. For models with the equations of state
‘‘b,’’ ‘‘c,’’ and ‘‘d,’’ the so-called type-I gravitational waves
are emitted even with the mass M� 2–2:5M� as in the
case of mass M � 1:4–1:5M� which is studied in the
previous papers [34,36]. With the increase of the mass,
the amplitude and the frequency of gravitational waves
become higher. Thus, the difference is only quantitative
for the equations of state ‘‘b’’ and ‘‘c.’’ A point worthy to
note is that type-I gravitational waves are emitted for M *

2M� even for the equation of state ‘‘d’’ (with �1 � 1:28).
For M � 1:5M�, type-III gravitational waves are emitted
for such small value of �1 since the mass of the inner core
is very small at the bounce. However, in the higher-mass
case with M * 2M�, the mass of the inner core formed at
the bounce is large enough to emit type-I gravitational
waves. Gravitational waveforms in the collapse of rapidly
rotating iron core with the equation of state a in which
�1 � 1:32 are qualitatively different from others. The rea-
son is that in such case, an outstanding bipolar explosion is
induced along the rotational axis and gravitational waves
associated with such extreme explosion and with the re-
sulting oscillation of the inner core in the direction of the
rotational axis are emitted. Because of this change, the
shape of the energy power spectrum is also qualitatively
different from others.

In this paper, we assume that the collapse proceeds in the
axisymmetric manner. However, the rotating iron core may
be dynamically unstable against the nonaxisymmetric de-
formation during the collapse if the spin is increased sig-
nificantly during the collapse, and as a result, the value of
Trot=W exceeds a critical value �0:27. To determine the
criterion for the onset of nonaxisymmetric instabilities, we
performed three-dimensional simulation for the iron core
collapse in a companion paper [38], which shows that in
the collapse for rigidly rotating models, the value of Trot=W
for the formed protoneutron star is far below the critical
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value for the onset of the dynamical instabilities, and the
nonaxisymmetric instability does not set in. Therefore, the
assumption of the axial symmetry adopted in this paper is
justified.

Finally, we mention a direction of our next study. In this
paper, we have clarified a criterion for prompt black hole
formation in the iron core collapse adopting the parametric
equations of state as a first step. We have shown that the
dynamics of the collapse and the criterion for the black
hole formation depend sensitively on the equations of state.
To obtain more realistic outputs that will be in nature, in
the next step, it is necessary to adopt more realistic equa-
tions of state. We plan to perform such realistic simulations
adopting a realistic equation of state [53] in the fully
general relativistic framework.
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APPENDIX: COMPARISON WITH REALISTIC
EQUATION OF STATE

In this appendix, we compare the parametric equation of
state (PEOS) adopted in this paper (see Sec. II B) with a
P

FIG. 27. The pressure, P, as a function of the density, �, for the
realistic equation of state at zero temperature. The solid curve
corresponds to the case Ye � 0:5 and the long dashed to Ye �
0:2. The three dotted curves denote the cold equations of state
with the parameters listed in Table I.
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realistic equation of state proposed by Shen et al. [53]
(REOS). In Fig. 27, we show relations between the pres-
sure and the density of REOS at zero temperature (adding
the degenerate electron pressure) together with those of
PEOS. Since REOS depends on Ye, we consider the two
values Ye � 0:5 and 0:2. The P-� relations of REOS and
PEOS shows a good agreement, in particular, in the sub-
nuclear density. In the supranuclear density, on the other
hand, difference between the two equations of state be-
comes outstanding: The REOS is stiffer than PEOS (see
discussion about �2 below). This fact leads to the larger
maximum mass of the spherical cold neutron star for
REOS. Indeed, the maximum ADM mass is � 2:2M�

[53], much larger than that for PEOS ( � 1:6M�).
We first consider the validity of the adiabatic index of

PEOS at subnuclear density �1. The adiabatic index �1

includes the effect of the electron capture. This implies that
it corresponds to an average value h�Mi of the ‘‘effective’’
adiabatic index �M [26,85] which describes the change of
the pressure along a collapse trajectory of a given mass
element:

�M �
@ logP
@ log�

S;Ye

�
@ logP
@Ye

�;S

�Ye
� log�

M

�
@ logP
@S

�;Ye

�S
� log�

M
; (A1)

where �S � 0 at zero temperature. The crucial quantity for
the dynamical behavior of the core is this effective adia-
batic index �M [26,86].

On the other hand, the P� � relations for REOS in
Fig. 27 do not include the effect of the electron capture.
Since Ye decreases during the collapse due to the electron
capture, the P� � relation will shift toward that of the
smaller Ye. If the electron capture rate is small, the effec-
tive adiabatic index will be close to 4=3, while the rate is
large, the index will deviate from 4=3.

A plausible value of h�Mi for REOS in subnuclear
density would be estimated as follows. First, previous
studies suggest that the initial value of Ye is � 0:42 and
�0:11 & �Ye & �0:04 during the collapse [13,87].
Assuming these values and � log� � 4, the average value
of ��Ye=� log�	jM is �0:01– � 0:0275. On the other hand,
the value of �@ logP=@Ye	j�;S of REOS is � 1:4–1:9 for
108 & � & 1014 and 0:31 & Ye & 0:42, and its averaged
value is � 1:6. Thus, the average value for REOS is 1:29 &

h�Mi & 1:32 depending the electron capture rate.
Therefore, the range 1:28 � �1 � 1:32 adopted in this
paper would be reasonable.

Then, let us consider the adiabatic index �2 at supra-
nuclear density. The adiabatic index of REOS at supra-
nuclear density is larger (� � 3) than that of PEOS
�2:25 � �2 � 2:75	. This is due to a relatively larger value
of incompressibility of the REOS: Ks � 281 MeV [53].
Although the real value of Ks is uncertain at current status,
a recent study [88] reported that a plausible range of the
-28
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value of Ks is � 220–270 MeV. Therefore, the adiabatic
index can be much smaller for a smaller value of Ks. For
example, the adiabatic index is � 2:2 around the nuclear
matter density for a realistic equation of state by Lattimer
and Swesty with Ks � 220 MeV [52]. Thus, the range
084013
2:25 � �2 � 2:75 adopted in this paper may be a plausible
choice.

In summary, we conclude that the parameter range
adopted in the present paper is not far from predictions
and suggestion of realistic equations of state.
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