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A new implementation for magnetohydrodynamics (MHD) simulations in full general relativity
(involving dynamical spacetimes) is presented. In our implementation, Einstein’s evolution equations
are evolved by a Baumgarte-Shapiro-Shibata-Nakamura formalism, MHD equations by a high-resolution
central scheme, and induction equation by a constraint transport method. We perform numerical
simulations for standard test problems in relativistic MHD, including special relativistic magnetized
shocks, general relativistic magnetized Bondi flow in stationary spacetime, and a long-term evolution for
self-gravitating system composed of a neutron star and a magnetized disk in full general relativity. In the
final test, we illustrate that our implementation can follow winding-up of the magnetic field lines of
magnetized and differentially rotating accretion disks around a compact object until saturation, after

which magnetically driven wind and angular momentum transport inside the disk turn on.
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I. INTRODUCTION

Hydrodynamics simulation in general relativity is proba-
bly the best theoretical approach for investigating dynami-
cal phenomena in relativistic astrophysics such as stellar
core collapse to a neutron star and a black hole and the
merger of binary neutron stars. In the past several years,
this field has been extensively developed (see e.g., [1-7])
and, as a result, now it is feasible to perform accurate
simulations of such general relativistic phenomena for
yielding scientific results (e.g., [6—9] for our latest results).
For example, with the current implementation, radiation
reaction of gravitational waves in the merger of binary
neutron stars can be taken into account within ~1% error
in an appropriate computational setting [6,7]. This fact
illustrates that the numerical relativity is a robust approach
for detailed theoretical study of astrophysical phenomena
and gravitational waves emitted.

However, so far, most of the scientific simulations in full
general relativity have been performed without taking into
account detailed effects except for general relativistic grav-
ity and pure hydrodynamics. For example, simplified ideal
equations of state have been adopted instead of realistic
ones (but see [7]). Also, the effect of magnetic fields has
been neglected although it could often play an important
role in the astrophysical phenomena (but see [10]). In the
next stage of numerical relativity, it is necessary to incor-
porate these effects for more realistic simulations. As a step
toward a more realistic simulation, we have incorporated
an implementation for ideal magnetohydrodynamics
(MHD) equations in fully general relativistic manner. In
this paper, we describe our approach for these equations
and then present numerical results for test problems com-
puted by the new implementation.

Magnetic fields indeed play an important role in deter-
mining the evolution of a number of relativistic objects. In
the astrophysical context, the plasma is usually highly
conducting, and hence, the magnetic fields are frozen in
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the matter. This implies that a small seed field can wind up
and grow in the complex motion of the matter, resulting in
a significant effect in the dynamics of the matter such as
magnetically driven wind or jet and angular momentum
redistribution. Specifically, in the context of the general
relativistic astrophysics, the magnetic fields will play a role
in the following phenomena and objects: Stellar core col-
lapse of magnetized massive stars to a protoneutron star
[11] or a black hole, stability of accretion disks (which are
either non-self-gravitating or self-gravitating) around
black holes and neutron stars, magnetic braking of differ-
entially rotating neutron stars [10] which are formed after
merger of binary neutron stars [6,7] and stellar core col-
lapse [8,9,12—14], and magnetically induced jet around the
compact objects (see e.g., [15]). To clarify these phe-
nomena, fully general relativistic MHD (GRMHD) simu-
lation (involving dynamical spacetimes) is probably the
best theoretical approach.

In the past decade, numerical implementations for
GRMHD simulation in the fixed gravitational field have
been extensively developed (see e.g., [15—22]). In particu-
lar, it is worth mentioning that Refs. [17-21] recently have
presented implementations for which detailed tests have
been carried out for confirmation of the reliability of their
computation, in contrast with the attitude in an early work
[15]. They are applied for simulating magnetorotational
instability (MRI) of accretion disks and subsequently in-
duced winds and jets around black holes and neutron stars.
On the other hand, little effort has been paid to numerical
implementations of fully GRMHD (in the dynamical gravi-
tational field). About 30 years ago, Wilson performed a
simulation for collapse of a magnetized star in the presence
of poloidal magnetic fields in general relativity. However,
he assumes that the three-metric is conformally flat 23],
and hence, the simulation is not fully general relativistic,
although recent works have indicated that the conformally
flat approximation works well in the axisymmetric collapse
(e.g., compare results among [13,24,25]). The first fully
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GRMHD simulation for stellar collapse was performed by
Nakamura about 20 years ago [26]. He simulated collapse
of nonrotating stars with poloidal magnetic fields to inves-
tigate the criteria for formation of black holes and naked
singularities. Very recently, Duez et al. presented a new
implementation capable of evolution for the Einstein-
Maxwell-MHD equations for general cases [10]. They
report successful results for test simulations. Valencia
group has also developed a GRMHD implementation
very recently [27].

In this paper, we present our new implementation for
fully GRMHD which is similar to but in part different from
that in [10]." As a first step toward scientific simulations,
we have performed simulations in standard test problems
including special relativistic magnetized shocks, general
relativistic Bondi flow in stationary spacetime, and long
term evolution of fully general relativistic stars with mag-
netic fields. We here report the successful results for these
test problems.

Before proceeding, we emphasize that it is important to
develop new GRMHD implementations. In the presence of
magnetic fields, matter motion often becomes turbulence-
like due to MRIs in which a small scale structure often
grows most effectively [28]. Furthermore in the presence
of general relativistic self-gravity which has a nonlinear
nature, the matter motion may be even more complicated.
Perhaps, the outputs from the simulations will contain
results which have not been well understood yet, and
thus, are rich in new physics. Obviously high accuracy is
required for such frontier simulation to confirm novel
numerical results. However, because of the restriction of
computational resources, it is often very difficult to get a
well-resolved and completely convergent numerical result
in a fully general relativistic simulation. In such cases,
comparison among various results obtained by different
numerical implementations is crucial for checking the
reliability of the numerical results. From this point of
view, it is important to develop several numerical imple-
mentations in the community of numerical relativity. By
comparing several results computed by different imple-
mentations, reliability of the numerical results will be
improved by each other. Our implementation presented
here will be useful not only for finding new physics but
also for checking numerical results by other implementa-
tions such as those very recently presented in [10,27].

In Sec. II, we present formulations for Einstein,
Maxwell, and GRMHD equations. In Sec. III, numerical
methods for solving GRMHD equations are described. In
Sec. IV, methods for a solution of initial value problem in
general relativity is presented. In Secs. Vand VI, numerical
results for special and general relativistic test simulations

'For instance, our formulation for Einstein’s evolution equa-
tions, gauge conditions, and our numerical scheme for GRMHD
equations are different from those in [10] as mentioned in
Secs. II and IIII.
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are shown. In the final subsection of Sec. VI, we illustrate
that our implementation can follow growth of magnetic
fields of accretion disks in fully general relativistic simu-
lation. Sec. VII is devoted to a summary and a discussion.
Throughout this paper, we adopt the geometrical units in
which G = ¢ =1 where G and ¢ are the gravitational
constant and the speed of light. Latin and Greek indices
denote spatial components and spacetime components,
respectively. 1, and 8;;(= 6") denote the flat spacetime
metric and the Kronecker delta, respectively.

I1. BASIC EQUATIONS

A. Definition of variables

Basic equations consist of Einstein’s equations, general
relativistic hydrodynamic equations, and Maxwell equa-
tions. In this subsection, we define the variables used in
these equations. The fundamental variables for geometry
are «: lapse function; Bk : shift vector; vy; I metric in three-
dimensional spatial hypersurface; and K;;: extrinsic curva-
ture. The spacetime metric g,,, is written as

g,uv = 7;/,1} - n,unw (1)

where n* is a unit normal to a spacelike spatial hypersur-
face X and is written as

1
nt = (l —E> or n, = (—a0). 2)
o o

In the BSSN formalism [29], one defines y = ne!?? =
det(y;;): determinant of y;;; ¥; = e *?y;;: conformal
three-metric; K = Kkk: trace of the extrinsic curvature;
and Aij = e *¥(K;; — Kv;;/3): a tracefree part of the
extrinsic curvature. Here, 1 denotes the determinant of
flat metric; in the Cartesian coordinates, n = 1; and in
the cylindrical coordinates (@, ¢, z), 7 = @>. In the fol-
lowing, V u» Di, and ﬁi denote the covariant derivatives
with respect to g,,, ¥;j, and ¥;;, respectively. A and A
denote the Laplacians with respect to y;; and ¥;;. R;; and
R;; denote the Ricci tensors with respect to y;; and ¥,
respectively.

The fundamental variables in hydrodynamics are p: rest-
mass density; e: specific internal energy; P: pressure; and
u*: four velocity. From these variables, we define the
following variables which often appear in the basic equa-
tions:

p. = pwed?, 3)
Cdxt . u;
UlEE:;:_,B""Y”u—i, “)
P
h=1+¢g+ ;, (&)
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Here, p. is a weighted baryon rest-mass density from
which the conserved baryon rest mass can be computed as

M, — f pun\ P %)

The fundamental variable in the ideal MHD is only b#:
magnetic field. The electric field E# in the comoving frame
F*¥y, is assumed to be zero, and electric current j* is not
explicitly necessary for evolving the field variables. Using
the electromagnetic tensor F#”, b, is defined by [30]

b =

“ _EG/UJQ,BMVFQB’ (8)

where €,,,,4 18 the Levi-Civita tensor with €;153 = \/— ¢
and €''* = —1/,/=g. Equation (8) implies
bHu, = 0, ©)
Using Eq. (8), F*” in the ideal MHD is written as
Frv = etv@By by, (10)
and thus, it satisfies the ideal MHD condition
Fu” =0. (11

The dual tensor of F,,, is defined by

u, —b,u (12)

ES _1 o
F, = 5e,m,,gF B=p T

w

For rewriting the induction equation for the magnetic fields
into a simple form (see Sec. IID), we define the three-
magnetic field as

Bi= —e6¢yijF*j“nM = % (wb' — ab'u’). (13)
Here, we note that B' =0 (i.e., B*n, = 0), and thus,
B; = v;;B’. Egs. (13) and (9) lead to
_ Btu,

t
b ae®?

1 )
and bi = W(Bl + Bjujul) (14)

Using the hydrodynamic and electromagnetic variables,
energy-momentum tensor is written as

T,, = THwd + TEM. (15)

Th and TEY denote the fluid and electromagnetic parts

defined by
TiMd = (p + pe + P)uyu, + Pg,, = phuyu, + Pg,,,

(16)
i
T,]LELI)//[ = F,U,G'FVO- - Zg;LVFaBFaB
|
_ <§g/“, + uﬂuy>b2 ~b,b, 17)

where
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B? + (Biu;)?
b2 = b’ubM = W (18)
Thus, T, is written as
1
T, = (ph + buyu, + (P + 5b2>gw — b,b,. (19)

For the following, we define magnetic pressure and total
pressure  as Py, =b*/2  and Py =P+ b?/2,
respectively.

The (3 + 1) decomposition of T, is

PH = TMVHMI’IV = (Ph + b2)w2 — Pt — (abt)2’ (20)
J; = —T,,n*y"; = (ph + b )wu; — ab'b,, (21

Si; = Tuy*v"; = (ph + b)uju; + Pyy;; — bib;.

(22)

Using these, the energy-momentum tensor is rewritten in
the form

T,LLV = pHn/.an + Ji'yi,unu + Ji’yiun/.l, + Sijyiuyju'
(23)

This form of the energy-momentum tensor is useful for
deriving the basic equations for GRMHD presented in
Sec. II C. For the following, we define

So = e py, (24)

Si = 664)][‘. (25)

These variables together with p, and B are evolved ex-
plicitly in the numerical simulation of the ideal MHD (see
Sec. I1C).

B. Einstein’s equation

Our formulation for Einstein’s equations is the same as
in [6] in three spatial dimensions and in [31] in axial
symmetry. Here, we briefly review the basic equations in
our formulation. Einstein’s equations are split into con-
straint and evolution equations. The Hamiltonian and mo-
mentum constraint equations are written as

- 2
Rlli — A AV + §K2 = 167py, (26)
L2

or, equivalently

5

Ay = R* = 2mpy’ — %(AUAU - §K2>, (28)

oo | &

D (yoA") — %wb K = 8wy, (29)
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where iy = e¢?. These constraint equations are solved to set
initial conditions. A method in the case of GRMHD is
presented in Sec. IV.

In the following of this subsection, we assume that
Einstein’s equations are solved in the Cartesian coordinates
(x, v, z) for simplicity. Although we apply the implemen-
tation described here to axisymmetric issues as well as
nonaxisymmetric ones, this causes no problem since
Einstein’s equations in axial symmetry can be solved using
the so-called Cartoon method in which an axisymmetric
boundary condition is appropriately imposed in the
Cartesian coordinates [31-33]: In the Cartoon method,
the field equations are solved only in the y = 0 plane,
and grid points of y = £Ax (Ax denotes the grid spacing
in the uniform grid) are used for imposing the axisymmet-
ric boundary conditions.

We solve Einstein’s evolution equations in our latest
BSSN formalism [6,29]. In this formalism, a set of varia-
bles (')7,»1-, b, Aij, K, F;) are evolved. Here, we adopt an
auxiliary variable F; = §/9 1¥i; that is the one originally
proposed and different from the variable adopted in [10] in
which 9;9" is used. Evolution equations for ¥;;, ¢, A;
and K are

j°

- L . 2
(9, — B'a)yi = —2aA; + FuB' j + ViuB* — g%’jﬁk,k’

(30)
- 1
(9, — BlapA;; = e_4¢|:a<Rij - §e4¢7inkk>
1
- <D1DJC¥ - §e4¢’)~/UAa>:|
+ CY(KAU - 2AikA~jk) + ﬁk’iAvkj
~ 2 ~
+ ,Bk,jAki - g.Bk,kAij
1
- 877&/(674‘7"’5” - g’?l’jskk>’ (31)
1
(0, — Blape = 6(_CYK + B4, (32)

~ o~ 1
(a[ - ﬁlal)K: a|:A,~jA” +§K2i| - Aa + 47Ta(pH + Skk).
(33)

For a solution of ¢, the following conservative form may
be adopted [6]:

0,65 — 9,(Be®) = —aKeb?. (34)

For computation of R;; in the evolution equation of A;
we decompose

jo

- P ¢
Rij = RU + Rij’ (35)

where
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R, = —2D,D;¢ —27,;Ad +4D;¢D;¢
— 49,;D ¢ D* ¢, (36)

- 1 -
R;;= §|:8kl(_hij,kl + i+ Ry + 20, (T 5))
-aryr | G37)

In Eq. (37), we split ¥;; and ¥ as §,; + h;; and 87 + f,
respectively. ff»‘j is the Christoffel symbol with respect to
¥i;»and I;k,,-j = 5/k1ffj. Because of the definition det(¥y;;) =
1 (in the Cartesian coordinates), we use fﬁi = 0.

In addition to a flat Laplacian of 4; s I?l-j involves terms
linear in h;; as 6"hy ;; + 8" hj ;. To perform numerical
simulation stably, we replace these terms by F;; + F;.
This is the most important part in the BSSN formalism,
pointed out originally by Nakamura [26]. The evolution
equation of F; is derived by substituting Eq. (30) into the
momentum constraint as

(8, - ,BIBZ)Fi = _167TCYJI + Za{fkaiik’j + fkj,ink

2
- _K,i}

1 Ajl Ak
- EAJ hjl,i + 6¢,kA i 3

+ 5jk{—2a,kA,-j + lBlykhij,l
v ! Ly l 2 Ly 1
N\ YaB' ;T YaB i — g%jﬁ,z [ (38)

We also have two additional notes for handling the
evolution equation of A; ;- One is on the method for evalu-
ation of R.* for which there are two options, use of the
Hamiltonian constraint and direct calculation by

RiyU = e * R} + R 7). (39)

We always adopt the latter one since with this, the conser-
vation of the relation A;;#" = 0 is much better preserved.
The other is on the handling of a term of ¥/ 8" h;; ;; which
appears in R kk . This term is written by

778 hij = =8y fV ), (40)

where we use det(¥;;) = 1 (in the Cartesian coordinates).

As the time slicing condition, an approximate maximal
slice condition K = 0 is adopted following previous papers
(e.g., [34]). As the spatial gauge condition, we adopt a
hyperbolic gauge condition as in [6,35]. Successful nu-
merical results for merger of binary neutron stars and
stellar core collapse in these gauge conditions are pre-
sented in [6—8,24]. We note that these are also different
from those in [10].
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C. GRMHD equations Then, using Eq. (23), they are written to
Hydrodynamic equations are composed of ‘ '
—o(nt*J. + v*iS. )] = _ o+ J.9.8:
Vﬂ(puﬂ) :O, (41) a;l,[ g(n ‘IJ y Sl])] \/_y_< pHa]a Jlajﬁ
@ ik 4
Y’V T#, =0, (42) - ESikaj'y \ 47)
n’V,T#, = 0. (43)

du[v=glpun* + y* )] = Jy(aK'S;; — J;D'a),

The first, second, and third equations are the continuity, (48)

Euler, and energy equations, respectively. In the following,

the equations are described for general coordinate systems where we use

since the hydrodynamic equations are solved in the cylin-

drical coordinates as well as in the Cartesian coordinates. n#n”d;g,, = —20;Inq, 49)
The continuity equation (41) is immediately written to

1 . v — k
31ps + —=0:(pa/TIV) = 0. (44) Y058 ur = @i ;BY (50)
NG
Equations (42) and (43) are rewritten as YEY 08 = Vit (51)
V78
0, (J=8TH) = 5=Tr9;8,, =0, (45)
g 2 " Vn,=-K,,—n,D,na (52)

9, (/=8TH*,n") — /=gT*"'V n, = 0. (46)  The explicit forms of Egs. (47) and (48) are
|

1 . . @ .
G,Sj + ﬁal[\/ﬁ{Sjv’ + ae(’d’Ptoﬁj’ - WBI(B/ + MjBkuk)}:|

1 A .
= _Soajaf + SkGJ,Bk + a'€6¢[2Skk8j(b + Pmtaj lnﬁ] - EanQSSikaj;}u/lk, (53)

a

1 ) . . .
9,89 + ﬁéi[ﬁ{Sov’ + %P (v + B) — T (Bkuk)B’H =

1 N
gaeé‘bKSkk + ae??S;,AV — 5, D*a, (54)

where

Sij =58y~ PoVij (55)

In the axisymmetric case, the equations for (p., S;, S) should be written in the cylindrical coordinates (@, ¢, z) when we
adopt the Cartoon method for solving Einstein’s evolution equations [31-33]. On the other hand, in the standard Cartoon
method, Einstein’s equations are solved in the y = 0 plane for which x = @, S, = S,, S, = xS, and other similar
relations hold for vector and tensor quantities. Taking into this fact, the hydrodynamic equations in axisymmetric
spacetimes may be written using the Cartesian coordinates replacing (@, ¢) by (x, y). Then,

1
dps + = 0(pv'x) + 9, (p.v7) =0, (56)
X

1 . )
9,5, +—c')x|:x{SAvx +ae® P8 ,* —ZLW)B"(BA + uAB’u,-)H + az|:SAvZ + et P8 ,4° — %BZ(BA + MAB’MI'):|
x w?e w?e

P a

1 A ) S, v i
ot o x ~i ! .
204" |8y | 25 - B (Bt B o, 57)

=—Syda+S,0,8%+ ae6¢[25kkaA¢ +

1 a . a :
atSy + xzﬂx[xz{Syv - WB (3), + M},B Mi)}i| + az|:SyUz - WBZ(B} + MyB l/ti)i| = O, (58)
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1 1o ) o .
9,80 + ;ax[x{Sovx + %P (v* + BY) — 5@ B’uinH + 8Z|:SovZ + %P (v + B7) — 5@ fB’uiBz:|
1 R

= §a66¢KSkk + aez‘f’SijA’/ — S D¥a, 59)

where A denotes x or z, while i, j, k, - - - are x or y or z. au(n'/2BF) = 0, (66)
After evolving p., S;, and S, together with B’ (see next

subsection for the equations), we have to determine the . 1 L2 i k o
primitive variables such as p, €, u;, and u’ (or w = au’). 9, B = mai[n (B'v* — B*v')] (67)

For this procedure, we make an equation from the defini-
tion of §; as
S2 = p;z)/’jS,-Sj
= (h+ B?w 1)2(w? — 1) — D*(hw)"2(B* + 2hw),
(60)

where B2 and D? are determined from the evolved varia-
bles (p., S;, B, ¢) as

B2 BiS;)?
Bz=—6¢ and D2=(3613>’
px«€ pPx€

(61)

and for getting Eq. (60), we use the relation S;,B' =
p+hBiu;. Equation (60) is regarded as a function of &
and w for given data sets of s>, B2, and D?. From the
definition of S, we also make a function of /& and w as
So _ hw — r + B? — %(32 + D2h72). (62)
P pw 2w
Here, P/p may be regarded as a function of 4 and w for
given data sets of p, and S,. This is indeed the case for
frequently used equations of state such as I'-law equations
of state P = (I' — 1)pe where I is an adiabatic constant
and hybrid equations of state for which P is written in the
form P(p, h) (see e.g., [7,13]). Thus, Egs. (60) and (62)
constitute simultaneous equations for 4 and w for given
values of p., S;, So, Bi and geometric variables. The
solutions for # and w are numerically computed by the
Newton-Raphson method very simply. Typically, a conver-
gent solution is obtained with four iterations according to
our numerical experiments.

D. Maxwell equations

The Maxwell equations are

V, R = —dmj, (63)

In the ideal MHD, Eq. (63) is not necessary, and only
Eq. (64) has to be solved. Using the dual tensor, Eq. (64)
is rewritten to

V. F* =0 (65)

This immediately leads to

Equation (66) is the no-monopoles constraint, and Eq. (67)
is the induction equation. The constraint Eq. (66) is solved
in giving initial conditions, and the induction equation is
solved for the evolution.

In the axisymmetric case, these equations in the y = 0
plane are written as

Lo.xBY) + 0.8 =0, 68)

x
9,B* = —9.(B*v* — BvY), (69)
9,B* = %ax[x(iBJ‘vZ — BvY)], (70)

9, B" = 0,(B v’ — Bv') + 9. (Bv’ — Bv?). (71)

Equations (69)—(71) together with Egs. (56)—(59) consti-
tute basic equations for ideal MHD in the axisymmetric
case.

E. Definition of global quantities

In numerical simulations for self-gravitating system, in
addition to the total baryon rest-mass M., we refer to the
ADM mass and the angular momentum of the system,
which are given by

1
M = _—f all/del
2 r—00

5
- 5¢+€¢(Agij_%;(2_1§k 46y |43
PR T Tom it T 3 ke ©

(72)
J=1 ©'AJe0?dS
87T r—0o0 ! J
- 66 S N U PN I S sy
= [ e?| Sie "‘8—77 Aldje —EAijQD (%%
2 .
+2 0 jKﬂd%c, (73)

where dS; = r?d;rd(cost)de, ¢ = —y(9,) + x(9,),
and = e®. In this paper, simulations are performed in
axial symmetry, and hence, J is conserved. M is approxi-
mately conserved since the emission of gravitational waves
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is negligible. Thus, conservation of these quantities is
checked during numerical simulations.

The violation of the Hamiltonian constraint is locally
measured by the equation as

~ ~ 5 ~ ~a
f¢ = IAlﬂ - %Rkk + 277'le//5 + %(A”Al] - §K2>

X l|:|5¢’| + ‘lgkkk +2mpuy?l
o 2 N\
+—(A;;AY + =K . 74
¢ (1627 +56) ] (74)
Following [31], we define and monitor a global quantity as
1
H=ar f pufydx. (75)

Hereafter, this quantity will be referred to as the averaged
violation of the Hamiltonian constraint.

II1. NUMERICAL SCHEME FOR SOLVING
GRMHD EQUATIONS

A. GRMHD equations

As described in Sec. II C, we write the GRMHD equa-
tions in the conservative form. In this case, roughly speak-
ing, there are two options for numerically handling the
transport terms [36]. One is to use the Godunov-type,
approximate Riemann solver [37,38], and the other is to
use the high-resolution central (HRC) scheme [18,39]. We
adopt a HRC scheme proposed by Kurganov and Tadmor
[40] and very recently used in special relativistic simula-
tions by Lucas-Sarrano et al. [41]. Thus our numerical
scheme for a solution of GRMHD equations is slightly
different from that in [10], in which the HLL scheme [42]
is basically adopted.

The basic equations can be schematically written as

OF" dln .
E + —+ ﬁF’ =S, (76)
Jat ax! ax!

where

F/ = (p.v/, Siv/ + ae® P8,/ — 787, Syv/
+ e8P (v + B)) — 7B ), Biv/ — Bivi), (78)

and S denotes the terms associated with the gravitational
force. Here, 78 / » denotes a magnetic stress defined by

i = G BIB (Bl (19)
. a .
B, = —3 (Bfu,)B/. (80)

In addition to U, we define a set of variables as
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P = (p., i, &, B'). (81)

i1; and & are computed at each time step from Eqgs. (60) and
(62). We use P for the reconstruction of F at cell interfaces.
In standard method, one often uses a set of primitive
variables (p, v, &, B’) instead of P for reconstruction of
F. We have found in the test problems that even using p.
and #; instead of p and v/, it is possible to guarantee the
similar accuracy and stability.

To evaluate F, we use a HRC scheme [41]. The fluxes
are defined at cell faces. A piecewise parabolic interpola-
tion from the cell centers gives P and P;, the primitive
variables at the right- and left-hand side of each cell inter-
face, as

d(rf DA D(r)A;
0, — 0, + QUEDAL  PODA o
6 3
O(rf)A; OO )A

3 6 '
Here, Q denotes a componentof Pand A;,; = Q11 — O;.
@ denotes a limiter function defined by

Or = Qiv1 —

(83)

®(r) = minmod(1, br)

(84)
(1=b=4 for TVD condition),
where TVD is total variation diminishing, r;” = A;;/A;,
and
1 ifx>1
minmod(l,x) ={x if1>x>0 (85)
0 if x<O.

For the simulations presented in Secs. V and VI, we choose
b = 2 unless otherwise stated. We have found that the
dissipation is relatively large for » = 1 with which it is
difficult to evolve isolated neutron stars for a long time
scale accurately. On the other hand, for b = 3, the dissi-
pation is so small that instabilities often occur around
strong discontinuities, and around the region for which
Py > P.

From P; and Py, we calculate the maximum wave speed
¢ and cg, and the fluxes F; and Fy at the right- and left-
hand sides of each cell interface. Then, we define
Cmax = Max(cy, cg), and the flux

1
F = E[FL + Fr = cmax(Ug — Up)] (86)

In adopting the central schemes, the eigen vectors for the
Jacobi matrix dF/dU are not required in contrast to the
case with the Godunov-type scheme [36,43]. However, the
eigen values for each direction are still necessary to evalu-
ate characteristic wave speeds c; and cp. The equation for
the seven eigen values A is derived by Anile and Pennisi
[44]: Three of the seven solutions for A in x’ direction are
described by
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A ; b' + u'\/ph + b?
= v ) )
b' = u'\/ph + b*

and the other four are given by the solutions for the
following fourth-order equation

, (b= Ab")?
' ph+ b?

(87)

(WA — vl — ) + [ WP\ — v

3 T4+ A
% (7,” _B - )4 =0 (no summation for i).
(88)

Here, ¢, the sound velocity c,, and the Alfvén velocity v,
are defined, respectively, by

=]+t —vic, (89)
1ToP P oP
e P P
b2
Vi i ob

In the central schemes, we only need the maximum char-
acteristic speed, and thus, only the solutions for Eq. (88),
which contain the fast mode, are relevant. The solutions for
the fourth-order equation are determined either analyti-
cally or by standard numerical methods. However, for
simplicity and for saving computational time, we use the
prescription proposed by Gammie et al. [18], who have
found it convenient to replace the fourth-order equation
approximately by a second-order one:

t i _ _ ii_Bi—i—A —
R e

92)
(no summation for i).

The solution of Eq. (92) for an arbitrary direction x' is
written as

i 1 P21 — 2\ — Rif(2 — 2
N = | P - 0 - Bt - v
* a\/fx/(az - VAOly(@* - V) - (1 - g)vivf}}
(no summation for i), (93)

where Vi = v/ + B/ and V? = v,;V'VJ. This is equivalent
to that obtained by replacing ¢, by +/Z in the solution for
the pure hydrodynamic case [31,45,46].

B. Induction equation

The induction equation may be solved using the same
scheme as in solving the hydrodynamic equations de-
scribed above. However, with such a scheme, the violation
of the constraint Eq. (66) is often accumulated with time,
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resulting in a nonreliable solution. Thus, we adopt a con-
straint transport scheme [47]. Namely, we put the compo-
nents of the magnetic field at the cell-face centers. Here,
we specifically consider the axisymmetric case with the
cylindrical coordinates (x, ¢,z) (@ is replaced by x).
Extension to the nonaxisymmetric case is straightforward,
and the description below can be used with slight
modification.

In the axisymmetric case with the cylindrical coordi-
nates, the numerical computation is performed in a dis-
cretized cell for (x, z). Here, we denote the cell center for
(x, z) by (i, j). Then, we put B* at (i + 1/2, j), and B~ at
(i, j + 1/2) while components of the gravitational field and
fluid variables as well as B> = xB? are put at the cell
center (i, j). In this case, the induction equations for B* and
B? are solved in a constraint transport scheme [47], while
that for B is solved in the same method as that for the
continuity equation of p..

Computing the flux at cell edges for the induction equa-
tion is different from that for the fluid equation. This is
because numerical fluxes have to be defined so that the
constraint Eq. (66) is satisfied. For example, for the x
component of the induction equation, the flux in the z
direction is written as v*B* — v¥B* = F,. On the other
hand, for the z component of the induction equation, the
flux in the x direction is written as v*B* — v*B* = F,.
Both F| and F, have to be defined at cell edges (i +
1/2, j + 1/2), and for the constraint Eq. (66) to be satis-
fied, we have to require F; = —F, = F at each cell edge.
In addition, an upwind scheme should be adopted for
numerical stability: For the induction equation of B*, the
upwind prescription should be applied for the z component
of the flux. On the other hand, for the induction equation of
‘B%, the upwind prescription should be applied for the x
component of the flux. F has to be determined taking into
account these requirements.

We here adopt a scheme proposed by Del Zanna et al.
[39], which satisfies such requirements. In this scheme, the
flux is written as

F = %(FLL + FLR + FRL + FRR) _ %[(BX)R
— (B + I [(B — (B)] ©4)

where, e.g., FLR is the flux defined at the left-hand side in
the x direction and at right-hand side in the z direction.
These fluxes are computed by a piecewise parabolic inter-
polation. ci,,, is the characteristic speed for the prescrip-
tion of an upwind flux-construction and calculated at cell
edges using the interpolated variables. For simplicity, we
set chax = max(vj, vy) and ¢k, = max(vy, v).

For solving other equations, it is necessary to define the
magnetic field at the cell center. Since the x and z compo-
nents of the magnetic field are defined at the cell-face
centers [i.e., B* at (i +1/2,j) and B at (i, j + 1/2)],
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this is done by a simple averaging as

1
Bi,j = E(BHI/Z/ + Bi*l/z,j)’ 95)
B = ! B? + B 96
i 5( ij+1/2 i,j—1/2)' (96)

Also, v’ at the cell-face center is necessary for computing
Crax and cg.. To compute them, we also use a simple

. . . k k
averaging. For the definition of vy, , . and v;, ., we

have also tried the Roe-type averaging in terms of pi/ ?, but
any significant modification in the results has not been
found.

Before closing this section, we note that our scheme for
the induction equation is different from that adopted in
[10], in which a Téth’s method is used [48].

IV. INITIAL VALUE PROBLEM

In the fully general relativistic and dynamical simula-
tions, we have to solve the constraint equations of general
relativity for preparing the initial condition. One solid
method is to give an equilibrium state. For rigidly rotating
stars of poloidal magnetic fields in axial symmetry, such
equilibrium has been computed already [49]. However, for
differentially rotating stars or nonaxisymmetric cases, the
method has not been established. Thus, we here present a
simple method for preparing an initial condition which is
similar to that in [50]. In the following, we assume that
axisymmetric matter fields p., é = hw — P/pw, h, and
il; = hu; are a priori given (e.g., those for rotating stars of
no magnetic field in equilibrium are given). Although we
assume the axial symmetry, the same method can be ap-
plied for the nonaxisymmetric case.

Initial conditions for magnetic fields have to satisfy
Eq. (66). A solution of Eq. (66) is written as

Bk = ekiigA, ©7)

where A; is an arbitrary vector potential and ¢*¥ is a Levi-
Civita tensor of flat three-space. If we choose

A, =A, =0, and A, #0, (98)

the magnetic fields are poloidal. Here, we assume to use
the cylindrical coordinates (x, ¢, z) (@ is replaced by x).

In the axisymmetric case, we can choose also pure
toroidal magnetic fields as

B*=B=0, and B? #0, (99)

where B¢ may be an arbitrary function. In the following,
we give a nonzero function either for A, or for B¢.

Initial conditions also have to satisfy Egs. (28) and (29).
In the following, we assume that ¥;; and K are given
functions in these equations. Remind that py and J; are
written as

PHYSICAL REVIEW D 72, 044014 (2005)
B + (Biu,)?

= p.e O+ 12( B2 —
pu = p:eY ¥ < T2

>, (100)

1 4
w2 (Bu; = BB/uy),

where  denotes the conformal factor (= e?), and w =

J1+ ¢ % uu;. Thus, if p., &, h, 4;, A,, B¢, K, and ¥;;

are given, the remaining unknown functions are ¢ and A; it
This implies that the constraint equations are solved for
these variables using the technique developed by York
[51].

First, we decompose the tracefree part of the extrinsic
curvature as

Ji= pudip™® +

(101)

A A ~ 2 -
y°Ai; = DW; + D;W; - g?’ijDka + KT

ij ?
(102)

where W, is a three vector, and KiTjT is a transverse-
tracefree tensor which satisfies

D'KIT =0 =KITy. (103)

K?,»T would be composed mainly of gravitational waves.
Hereafter, we set K;" = 0 for simplicity. Using Eq. (102),
Eq. (29) is rewritten to

~ 1~ ~ .~ 2
(104)

This equation can be solved for an initial trial function of
. Then, Ai j 1s computed from Eq. (102). Substituting A,- i
the Hamiltonian constraint (28) is solved in the next step.
Then we solve the momentum constraint again, and repeat
these procedures until a sufficient convergence is achieved.

V. SPECIAL RELATIVISTIC TESTS

In this section, we present numerical results for a num-
ber of special relativistic tests. In the tests, we adopt the
I'-law equations of state as

P=(T - 1)pe, (105)

with I' = 4/3 or 5/3. Simulations are always performed
using the uniform grid in all the axis directions.

A. One-dimensional tests

Any numerical implementation of the MHD equations
has to be checked if it can produce the basic waves such as
shock and rarefaction waves accurately. Komissarov [37]
has proposed a suite of one-dimensional test problems in
special relativity: Propagation of fast and slow shocks, fast
and slow rarefaction waves, Alfvén waves, compound
waves, shock-tube tests, and collision of two flows. We
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have performed all the tests except for the compound wave
following [10]. Our implementation can integrate each of
the remaining eight tests although in some cases we have to
reduce the Courant number significantly to avoid numeri-
cal instabilities as reported by Gammie [18]. On the other
hand, we adopt the same limiter, b = 2, for all the simu-
lations. Numerical results are shown in Figs. 1-5. Grid size
N and spacing Ax we adopt for each of the test simulations
are approximately the same as those by Komissarov and
described in the figure captions.

Figure 1 shows the results for fast and slow shocks. In
these problems, the system is stationary with respect to the
frame comoving with the shock front. The velocity of the
shocks is 0.2 and 0.5 for the fast and slow shocks, respec-
tively. As the previous works illustrate [10,18,19,37], the
fast shock can be computed accurately with a relatively
large grid spacing. On the other hand, in the numerical
solution of the slow shock, a spurious modulation is found
for p in the region of 1 =< x < 1.3 as in the previous works
[10,18,19,37]. This is always generated soon after the onset
of the simulation irrespective of grid resolutions. Thus, it is
impossible to avoid such small error in our implementa-
tion. Although the modulation is always present, its wave-
length and amplitude gradually decrease with improving
the grid resolution. We computed an L1 norm defined for
the difference between the numerical and exact solutions,
and found that it decreases as the grid spacing is smaller. In
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this case, the convergence is achieved at first order since
discontinuities are present, around which the transport
terms of hydrodynamic equations are computed with the
first-order accuracy.

Figure 2 shows the results for switch-off and switch-on
rarefaction waves. Although we have not compared the
results precisely with those by other authors [10,18,19,37],
the accuracy of our results is similar to that reported by
others. For the switch-off waves, a spurious bump is found
at x ~ —0.6 as in the previous works [10,18,19,37]. As in
the slow shock problem, this bump is generated at t = 0
irrespective of grid resolutions, and with improving the
grid resolution, the magnitude of the L.1 norm decreases at
first order. On the other hand, the numerical solution for the
switch-on waves, spurious bumps are not present, and with
Ax = 0.005, a good convergent result appears to be ob-
tained with our implementation.

Figure 3(a) shows the results for an Alfvén wave test,
demonstrating that the Alfvén wave can be computed
accurately with our implementation as in [10,37]. In this
problem, the density and pressure should be unchanged. In
our results, this is achieved within ~1% error for Ax =
0.0025. Since there are no discontinuities present in this
problem, the convergence of the numerical solution to the
exact one should be achieved approximately at second
order [10]. To check if this is the case, we compute a L1
norm defined by the difference between the numerical and

I Y I

—-0.9 0

(a) Propagation of a fast shock. The snapshot at t = 2.5 is shown. Numerical simulation is performed with N = 100 and

Ax = 0.02. (b) Propagation of a slow shock. The snapshot at = 2 is shown. The numerical simulation is performed with N = 400
and Ax = 0.005. Only one fourth of data points are plotted except for [0.92, 1.08] in which all the data points are plotted. For both
cases, the initial discontinuities were located at x = 0, and the shock fronts move with a constant velocity u where u = 0.2 and 0.5 for

the fast and slow shocks, respectively.

044014-10



MAGNETOHYDRODYNAMICS IN FULL GENERAL ... PHYSICAL REVIEW D 72, 044014 (2005)

©
o

COo0o

OO O — N WA

L

-1 -0.9

FIG. 2. (a) Propagation of a fast switch-off rarefaction wave. The snapshot at + = 1.0 is shown. (b) Propagation of a slow switch-on
rarefaction wave. The snapshot at r = 2 is shown. For both cases, the initial discontinuities were located at x = 0, and the numerical
simulations are performed with N = 400 and Ax = 0.005. Only half of all the data are plotted for both figures.

exact solutions for p and P. The results are shown in In Fig. 4, numerical results for shock-tube problems are
Fig. 3(b), which illustrates that the convergence is achieved = presented. For the problem of Fig. 4(a), shocks are very
approximately at second order (slightly better than second  strong since the ratio of the pressure in the left- and right-

order). hand sides at ¢t = 0 is 10°. However, since the magnetic
1.1:HNWHHHHHIWHH: | B T T
1.05 ? (a) é - (b) . .
= 3 0.1 & 0. —
0.95 & = = E
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FIG. 3. (a) Propagation of a strong continuous Alfvén wave. The snapshot at ¢ = 2 is shown. The initial configurations of the analytic
solution at ¢ = 2 are shown by the dashed curves. The numerical simulation is performed with N = 500 and Ax = 0.005. Only 1/4 of
all the data are plotted. (b) L1 norm of the error for p (circles) and P (triangles) as a function of Ax. These variables should be constant
in this problem, and the deviation from the stationary values is due to a numerical error. The dotted line denotes the slope expected for
second-order convergence.
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FIG. 4. (a) Shock-tube problem with the initial discontinuities at x = 0 normal to the magnetic field. The numerical simulation is

performed with N = 500 and Ax = 0.005. We note that a large bump at x ~ 0.9 for u* is due to a numerical error associated with the
limiter (b = 2) of a weak dissipation. The height of this bump is decreased if we use a more dissipative limiter (e.g., the Minmod
Limiter with b = 1). (b) Shock-tube problem with the initial discontinuities at x = O parallel to the magnetic field. The numerical
simulation is performed with N = 500 and Ax = 0.005. For both cases, the snapshot at 7 = 1.0 is shown.

field lines are normal to the discontinuities, the effects of
the magnetic field for the formation and propagation of
shocks are absent. In this case, a large spurious overshoot-
ing is found around the shock for u*. This is partly due to
our limiter (b = 2) which is not very dissipative. If we use
the Minmod Limiter (b = 1), height of the overshooting
decreases although the shocks are less sharply computed.
For the problem of Fig. 4(b), shocks are not as strong as
those in 4(a). However, the magnetic fields affect the
formation and propagation of shocks since they are parallel
to the shocks. The results shown in Fig. 4(b) are very
similar to those in [10,18,19,37], and hence, are likely to
be as accurate as them. This indicates that our implemen-
tation can compute magnetized shocks as accurately as the
previous ones.

In Fig. 5, numerical results for collision of two magne-
tized flows are presented. It shows that four separate dis-
continuities generated at t = 0 are computed accurately.
As found in previous papers [10,18], a small dip spuriously
appears in p around x = 0. As in the case of the slow shock
and switch-off rarefaction wave, this is spuriously gener-
ated at ¢t = 0 irrespective of grid resolution, and with
improving the resolution, the magnitude of the error is
decreased at first order.

B. Multidimensional tests

For multidimensional tests, following Del Zanna et al.
[39], we perform simulations for (i) a cylindrical blast

explosion, (ii) a rotating cylinder in two-dimensional
Cartesian coordinates with a uniform magnetized medium,
and (iii) propagation of a jet in cylindrical coordinates in a
magnetized background. The parameters for the initial
conditions adopted here are the same as those in [39]. On
the other hand, we varied the grid spacing to see the
convergence in contrast to the previous works.

In the test (i), the Cartesian grid of (x, y) is adopted with
the range [ —0.6, 0.6] for both directions. The grid spacing
chosen is 0.004, 0.005, and 0.006. The initial condition is

(p, P, B, B') = {(1, 10%,4,0)  for &2 + 2 = 0.08
(1,1072,4,0) for yx* +y> > 0.08,

(106)

with u' = 0 and I" = 4/3. Because of the large internal
energy in the central region, the outward explosion occurs.
In this problem, the shocks generated at t = 0 are very
strong, and hence, the Minmod Limiter with b =1 is
adopted to avoid numerical instability. With the limiter of
b = 2, the computation crashes because of the appearance
of negative internal energy (or 2 < 1) irrespective of the
grid resolution. We have found that the computation first
crashes along the line of x = y and x = —y for which the
accuracy is likely to be worst.

In Fig. 6, we display the snapshot of the numerical
results at = 0.4. In Fig. 7, configurations of the density,
pressure, magnetic pressure, and Lorentz factor along x
and y axes are shown for three levels of grid resolution. The
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FIG. 5. Collision of two flows with opposite directions of the
tangential component of the magnetic field. The snapshot at r =
1.22 is shown. The numerical simulation is performed with N =
400 and Ax = 0.005.

expansion velocity of the blast wave is largest along the x
axis because of the confinement by the magnetic pressure.
The maximum value of the Lorentz factor is about 4 at t =
0.4 with the best resolved case. Along the y axis, the
magnetic field lines are squeezed yielding the highest
magnetic pressure. These features agree with those found
in [37,39]. As mentioned in [39], the total energy is com-
pletely conserved since we solve the MHD equations in the
conservative form and do not add any dissipative terms in
contrast with the treatment in [37].

One point to be mentioned is that convergence around
the density peak along the x axis is not achieved well
within the adopted resolution, although for other regions
convergence is achieved well. The likely reason is that the
discontinuities around the peak is very thin for which it is
very difficult to resolve with the chosen grid resolutions.
Thus, it is difficult to accurately derive the maximum
values of the density, pressure, and Lorentz factor which
are underestimated in this test problem.

In the test (ii), the Cartesian grid of (x, y) is also adopted
with the range [—0.6, 0.6] for both directions. The grid
spacing chosen is 0.0025, 0.003, and 0.004. The initial
condition is

2 2
(p’P,,BX’fo):{(lO, 1,1,0) fory/x>+32=0.1 (107)

(1,1,1,0) for/x>+y>>0.

with v/ = [—wy, wx] for /x> +y> = 0.1 where w =
0.995 and thus the Lorentz factor at the surface of the
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FIG. 6. Snapshot of cylindrical blast explosion [multidimen-
sional test (i)] at r = 0.4. The contour curves for the density,
pressure, and magnetic pressure Py, as well as the magnetic
field lines, are shown. The contour curves for each quantity
(denoted by Q) are drawn for Q = Q. X 10704X (j = 1-8)
(solid curves) and Q = Q. X 107990 (thick solid curves).
Here Q,,.« denotes the maximum value. The results with Ax =
0.004 are presented.

rotating cylinder is initially about 10. I' is chosen to be
5/3 following [39].

In Fig. 8, we display the snapshot of the numerical
results at = 0.4. In Fig. 9, configurations of the density,
pressure, magnetic pressure, and Lorentz factor along x
and y axes are shown for three levels of grid resolution. In
this problem, the magnetic field lines keep winding-up, and
at t = 0.4, the central field lines are rotated by an angle of
~90°. Because of magnetic braking, the rotational speed is
decreased monotonically, and at ¢ = 0.4 the maximum
Lorentz factor is decreased to ~1.7. Because of the out-
ward explosion induced by the rotation, the density in the
central region becomes an uniformly low value of ~0.44
while an ellipsoidal density peak is formed around the
central region. As in the test (i), it is difficult to obtain a
convergent value for the peak density with the chosen grid
resolutions. The likely reason is that the thickness of the
density peak is so small that the grid resolutions are not
sufficient. However, for the other region, convergent re-
sults are obtained.

In the test (iii), the cylindrical grid of (x, z) is adopted
with the range [0, 8] and [0, 20], respectively. The grid
spacing is 0.06, 0.08, and 0.1. The initial condition is
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FIG. 7. Configuration of various quantities in cylindrical blast explosion along x and y axes at t = 0.4 with different grid resolutions
(A is the grid spacing).

(10,1072,0.99,0.1) for0=x=<1 and 0=z=1

(0.1,1072,0,0.1) otherwise, (108)

(p, P,v*, B?) = {

with v¥ = 0, B* = 0, and I' = 5/3. The region with 0 =< x =< 1 and 0 =< z =< 1 is defined to be a jet-inlet zone, and the
stationary condition is artificially imposed. In the simulation, the regularity condition is imposed along the symmetric axis
x = 0. For the boundary conditions at z = 0, extrapolation is assumed following [39]. In this test, we adopt the Minmod
Limiter with » = 1 since with » = 2, the computation soon crashes irrespective of the grid resolutions.
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In Fig. 10, we show the snapshot of the density contour
curves and magnetic field lines at ¢ = 15 and 30 with Ax =
0.06. The contour curves and field lines are similar to those
in [39]. The maximum Lorentz factor at t = 0is ~7.09. At
the head of the jet, the density becomes maximum and
shocks are formed, inducing back flows at the shocks.
These flows make a cocoon which is to expand in the
direction of the cylindrical radius, squeezing the magnetic
field lines. A part of the matter is backscattered toward the
z = 0 plane dragging the magnetic field lines together. As
a result, the magnetic field lines are highly deformed. The
deformation is computed more accurately with finer grid
resolutions.

However, we found that precise computation for the
deformation of the magnetic field lines increases the risk
for crash of the computation. For Ax = 0.1 and 0.08,
computations can be continued until the shock front of
the jets reaches the outer boundary. However, for Ax =
0.06, the computation crashes at ¢ ~ 35 in spite of the fact
that the motion of the jet head is still stably computed. If
we adopt a better resolution with Ax < 0.05, the compu-
tation crashes before ¢ reaches 30. The instabilities always
occur near the boundary region of the jet-inlet zone around
which the magnetic field configuration is deformed to be
highly complicated. This seems to be due to the fact that
we impose the stationary condition inside the jet-inlet
zone. This artificial handling makes the field configuration
near the boundary of the jet-inlet zone nonsmooth (i.e., the
derivative of the magnetic field variables can be artificially
larger for better grid resolutions). Here, we note that this
problem happens only in the presence of magnetic fields.

0.5-0.5 0 0.5
X X

FIG. 8. The same as Fig. 6 but for an explosion of a rotating
cylinder [multidimensional test (ii)] at ¢+ = 0.4. The grid spacing
for the corresponding simulation is 0.0025.
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Thus, for continuing the computation for a longer time,
probably, it is necessary to include a resistivity for inducing
reconnections of magnetic fields near the jet-inlet zone for
stabilization. The other method is to change the stationary
condition we adopt here to other appropriate boundary
conditions near the jet-inlet zone [52].

VI. GENERAL RELATIVISTIC TESTS

A. Relativistic Bondi accretion

As the first test for general relativistic implementation,
we perform a simulation for spherical accretion onto the
fixed background of a Schwarzschild black hole. The
relativistic Bondi solution is known to describe a stationary
flow, and thus, by comparing the numerical solution with
the analytical one, it is possible to check the suitability of
the numerical implementation for general relativistic hy-
drodynamics problems [53,54]. Furthermore, it has been
shown that the relativistic Bondi solution is unchanged
even in the presence of a divergence-free pure radial mag-
netic field [19]. Thus, it can be used also for checking the
GRMHD implementations. The advantage of this test is
that the exact solution can be obtained very easily while it
involves strong gravitational fields, relativistic flows, and
strong magnetic fields all together.

Following previous authors [10,18], we write the metric
in Kerr-Schild coordinates in which all the variables are
well behaved at the event horizon (r = 2M; where r and M
are the radial coordinate and the mass of the black hole).
Nevertheless, the hydrostatic equations for the stationary
flow are the same forms as those in the Schwarzschild
coordinates, and thus, the stationary solution is determined
from an algebraic equation which can be solved easily by
standard numerical methods [55].

For this test, we adopt the same solution used in
[10,18,19,53]. Namely, the sonic radius is set at r = 8M,
the accretion rate M = 47pr?u’ is set to be —1, and the
adiabatic index for the equation of state is 4/3. The simu-
lation is performed in an axisymmetric implementation
with the cylindrical coordinates (x, z). The computational
domain is set to be [0, 18M] for x and z, and the radius of
r = 1.9M is chosen as the excision radius. The uniform
grid is adopted. At the excision radius and outer bounda-
ries, we impose the condition that the system is stationary.
The (semi)analytic solution for the stationary Bondi flow is
put as the initial condition, and we evolve for 100M
following previous authors [10,18,19].

The simulations are performed changing the grid spac-
ing Ax. Irrespective of the grid resolution, the system
relaxes to a stationary state long before 100M. When
evolved with a finite-difference implementation, discreti-
zation errors will cause small deviations in the flow from
the exact stationary configuration. These deviations should
converge to zero at second order with improving the grid
resolution. To diagnose the behavior of our numerical
solution, we measure an L1 norm for p, — p$** where

044014-15



MASARU SHIBATA AND YU-ICHIROU SEKIGUCHI

o
o v oA O

P
O U~ W

1

-0.6 -04-02 O
y

0.2 04 0.6

PHYSICAL REVIEW D 72, 044014 (2005)

III‘III‘III‘III

— A=0.01/4
,,,,,,,, A=0.01/3
-~ A=0.01/2

P
O = N W s

o
-06-04-02 O 0.2 04 0.6
y
%IIIIII‘III‘III‘IIIIIIA
.6 — 7A:O.01/4 —]

4
2
1
.8
2
A
1 E .
9:lll‘lll‘lll‘lll‘lll‘lll:

~0.6-04-02 0
y

02 04 0.6

FIG. 9. Configuration of various quantities in an explosion of a rotating cylinder at t = 0.4 with different grid resolutions (A denotes

the grid spacing).

psXt denotes the exact stationary value of p.. Specifically,
the L1 norm is here defined by

| o prtdid
r=2M

For the convergence test, the grid spacing is changed from
0.06M to 0.4M.

The radial magnetic field strength is also changed for a
wide range. Following [10,18], we denote the magnetic
field strength by

pzxact d3 x.
r=2M

(109)

A b?

B="om (110)
p

We note that the ratio of the magnetic pressure to the gas

pressure b2/2P is =~ 3.8583 at r = 2M for the solution

chosen in this test problem.

In Fig. 11, we show the L1 norm as a function of the grid
spacing for 0 = B = 63. Irrespective of the magnetic field
strength, the numerical solution converges approximately
at second order to the exact solution for Ax — 0. The L1
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FIG. 10. The density contour curves and velocity vectors (left panel) and the magnetic field lines (right panel) at # = 15 and ¢t = 30
for an axisymmetric jet. The grid spacing for the corresponding simulation is 0.06. The density contour curves are drawn by the same

method as in Fig. 6.

norm is larger for the stronger magnetic fields, implying
that the relaxed state deviates more from the true stationary
solution for the larger value of [3 . Specifically, the velocity
field configuration deviates significantly from the exact

solution with increasing the value of [;’, although the
deviation for the density configuration is not very
outstanding.

In this test simulation, we have found several interesting
behaviors of the numerical solutions. First, for a given
value of the grid spacing with Ax < 0.1M, there is the
maximum allowed value of B above which the computa-
tion crashes. The maximum value is larger for better grid
resolution; e.g. for Ax = 0.1M, 0.2M, and 0.3M, the
maximum allowed values of [3’ are = 45, 25, and 10,
respectively. For Ax < 0.1M, on the other hand, the maxi-
mum allowed value is B8 ~ 70 irrespective of the grid
resolution. The limitation is due to the well-known weak
point in the conservative scheme that the small error in the
magnetic energy density in the magnetically dominated
region with ,@ > 1 leads to fractionally large errors in
other components of the total energy density, by which
the computation crashes (typically, the internal energy
density becomes negative). For the poorer grid resolutions,
the numerical error is larger, and hence, the computation
crashes for the smaller value of the magnetic field. Second,

the maximum allowed value of 3 found here (~70) is by
about 1 order of magnitude smaller than that found in [18].
This is probably due to the difference of the coordinate
system adopted; we use the cylindrical coordinates while
the authors in [18] use the spherical polar coordinates

0.01
5  0.001 |+ .~ ]
c -
r
0.0001 1
0.1
Grid spacing (M)
FIG. 11. L1 norm for the error of density p. as a function of

the grid spacing in units of M for the magnetized Bondi flow.
The nume{ical numbers attached for each curve denote the
values of S [see Eq. (110) for its definition].
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which obviously have advantage for handling the spheri-
cally symmetric problem. However, we note that even in
the cylindrical coordinates, it is possible to handle the flow
with a very high value of B ~ 60 if a sufficient grid
resolution is guaranteed. In [10], the authors suggest that
in the cylindrical coordinates, the maximum allowed value
of B is at most ~10. We have not found such severe
limitation in our numerical experiment. Their failure for
simulating the flow with high values of 3 is probably due
to the fact that they use an excision boundary which may be
applicable for more general problems (e.g., for simulation
of dynamical spacetimes). Even in the cylindrical coordi-
nates, a high value of 8 will be achieved if an appropriate
inner boundary condition is imposed.

B. Long-term evolution for system of a rotating star and
a disk with no magnetic field

Next, we illustrate that with our implementation (for
axisymmetric systems), self-gravitating objects can be si-
mulated accurately. In a previous paper [56], we have
already illustrated that our implementation with a HRC
scheme can simulate rapidly rotating compact neutron stars
for more than 20 rotational periods accurately. Thus, we
here choose a more complicated system; an equilibrium
system composed of a rapidly rotating neutron star and a
massive disk. By this test, it is possible to check that our
implementation is applicable to a long-term evolution not
only for an isolated rotating star but also for a self-
gravitating disk rotating around a compact object.

The equilibrium configuration is determined by solving
equations for the gravitational field and hydrostatic equa-
tions self consistently. For simplicity, we here adopt a
conformally flat formalism for the spatial metric [S57]. As
shown in [58], a good approximate solution for axisym-
metric rotating stars can be obtained even in this approxi-
mation. Thus, the initial condition presented here can be
regarded as a slightly perturbed equilibrium state. At the
start of the simulations, we further add a slight perturbation
by reducing the pressure by 0.1% to investigate if a quasir-
adial oscillation is followed stably and accurately. The
magnitude of the perturbation in association with the con-
formally flat approximation is much smaller than this
pressure perturbation.

The Euler equation for axisymmetric stars in equilib-
rium can be integrated to give the first integral, which is
written as

lnﬁr + [u’mpdﬂ = C, (111)
u
or
h !/
2+ [ huga0 =, (112)
u

where C and C' are integral constants. Equation (111) is a
well-known form [59]. However, here we adopt Eq. (112)

PHYSICAL REVIEW D 72, 044014 (2005)

and set that the specific angular momentum hu,, is constant
(= j) for the disk and ) = const for the central star.

A hybrid, parametric equation of state is used in this
simulation following previous papers [8,13,24]. In this
equation of state, one assumes that the pressure consists

of the sum of polytropic and thermal parts as
P = Pp+ Py, (113)

The polytropic part, which denotes the cold part of the
equations of state, is given by

K, ph
Pp =110
P {szl‘z’

p = pnuc’

p = pnuc: (114)

where K| and K, are polytropic constants. p,,. denotes the
nuclear density and is set to be 2 X 10'* g/cm?. In this
paper, we choose I'; = 4/3 and I', = 2.5. Since Pp should
be continuous, the relation K, = K, p£¢; LT required.
Here, the value of K, is chosen to be 2.5534 X 10'* in
the cgs unit. With this value, the maximum Arnowitt-
Deser-Misner canonical formalism (ADM) (baryon rest)
mass for the cold and spherical neutron star becomes about
1.84M, (2.05M ) which is close to that derived in realistic
equations of state [60].

Since the specific internal energy should be also con-
tinuous at p = p,,c, the polytropic specific internal energy
ep is defined as
F]Kil ph

K -1 + (FZ_F])KIPEI}C_I
-1 T—DIL,-1

Ep =

The thermal part of the pressure Py, plays an important role
in the case that shocks are generated. Py, is related to the
thermal energy density €5, = € — €p as

Py = (Fth - 1)P8th-

For simplicity, the value of I'y, which determines the
strength of shocks, is chosen to be equal to I';. For com-
puting initial equilibria, we set € = gp and P = Pp.

For the simulation, we choose a sufficiently deformed
star with the axial ratio of the minor axis to major axis
~0.6. The ADM mass is 1.888M,, total baryon rest mass
2.074M,, the central density 1.3 X 105 g/cm?, the cir-
cumferential radius at equator 16.2 km, the rotational
period P, = 0.841 ms, and J/M? = 0.545. Thus, the neu-
tron star considered is massive and rapidly rotating. The
baryon rest mass of the disk is much smaller than the
central star as 4.9 X 107°M with the maximum density
~ 2 X 10'° g/cm3. Since it is of low density, the disk is
composed of I' =4/3 polytropic equation of state.
Orbital radius of inner edges of the disk is ~20 km,
and thus, the uniform specific angular momentum is as
small as j = 3.45M, which is very close to the value for a
particle orbiting an innermost stable circular orbit. The
rotational periods of the disk at the inner and outer
edges in the equatorial plane are 1.03 ms(= 1.2P.) and

(116)
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2.58 ms(= 3.1P,), respectively. The simulations are per-
formed in axial symmetry with (241, 241), (193, 193), and
(161, 161) grid sizes for which the grid spacing is 0.165,
0.202, and 0.248 km, respectively. The reflection symmetry
with respect to the equatorial plane is assumed. The outer
boundaries along each axis are located at 39.6 km.

An atmosphere of small density p = 2 X 10* g/cm? is
added uniformly outside the neutron star and disk at r = 0,
since the vacuum is not allowed in grid-based hydrody-
namics implementations. We note that the density of at-
mosphere can be chosen to be much smaller than the
nuclear density p,,.. This is the advantage of HRC
schemes in which such low density can be handled in
contrast with high-resolution shock-capturing schemes
[56]. Since the atmosphere is added as well as a small
pressure perturbation is imposed, the Hamiltonian and
momentum constraints are enforced at + = 0 using the
method described in Sec. IV.

In Fig. 12(a), we show the evolution of the central
density of the neutron star, and mass and angular momen-
tum of the disk which are defined by

M ik E[ p.dx, (117)
X=X

(118)

= 3
Jaisk = / Spd’x,
XEXin

where x;, denotes the initial coordinate radius of the inner

10
t / P,

FIG. 12.
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edges of the disk. The figure shows that our implementa-
tion keeps the equilibrium system to be in equilibrium for
more than 20P,. With the grid of size (241, 241), increase
of the density, which is perhaps associated with the out-
ward transport of the angular momentum, is at most ~1%
at t = 20P.. The change in the baryon rest mass and
angular momentum of the disk, which is caused spuriously
by the mass transfer from the central star and mass accre-
tion to the central star due to a numerical error, is smaller
than ~0.1%. Also, the numerical results converge at better
than second order with improving the grid resolution.

In Fig. 12(b), we also show the evolution of the ADM
mass, angular momentum, and averaged violation of the
Hamiltonian constraint. It is found that the ADM mass is
conserved within ~1% error for t = 20P, with (241, 241)
grid resolution. An outstanding feature is that the angular
momentum is conserved with much better accuracy than
the ADM mass. This is a feature when a HRC scheme is
adopted [56]. The averaged violation of the Hamiltonian
constraint also remains to be a small magnitude for ¢ =
20P. and converges at better than second order. All these
results illustrate that our implementation can compute self-
gravitating equilibrium systems accurately.

C. winding-up of magnetic field lines in a disk around a
neutron star

Next, we add magnetic fields confined only in the disk
around the neutron star. For this test, we use the same
system of a neutron star and a disk which is described in

1.04 = ]
= 1.02

1
101 E T 17 17T { T T T { T T T { T4
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0.995 £ =
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(a) Evolution of the central density of a neutron star and mass and angular momentum of a disk around the neutron star.

(b) Evolution of the ADM mass, angular momentum, and averaged violation of the Hamiltonian constraint. The ADM mass and
angular momentum are shown in units of their initial values. The solid, dashed, and long-dashed curves show the results with (241,

241), (193, 193), and (161, 161) grid sizes, respectively.
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Sec. VIB. Similar tests in a fixed background spacetime of
a black hole have been performed in [18,19]. Here, we
perform the test in full general relativity replacing the
black hole by a neutron star. The purpose of this subsection
is to illustrate that our implementation can follow the
growth of magnetic fields by winding-up due to differential
rotation of the disk. Subsequent papers will focus on de-
tailed scientific aspect of this issue [61].

Following [18,19], the ¢ component of the vector po-
tential A, is chosen as

A = {A(p — po) for p = py,
[

0 for p < py, (119)

where A is a constant which determines the magnetic field
strength. Then the magnetic fields are given by B¢ =
x19,A, and B* = —x"'9,A,. This choice of A, pro-
duces poloidal field loops that coincide with isodensity
contours. Here, py is chosen as 0.3p,.c.qisk Where
Pmax-disk 1S the maximum density inside the disk. In the
following, all the simulations are performed in axial sym-
metry with (301, 301) grid size and with the grid spacing of
0.165 km. The reflection symmetry with respect to the
equatorial plane is assumed. We note that the boundary
condition for the magnetic field is B* = B’ = 0 and
d.B* = 0 at the equatorial plane (in contrast to those for
velocity fields v’ and u; for which, e.g., v =090 =0
and v® = 0 at the equatorial plane). Outer boundary con-
ditions are not necessary for the magnetic field in the
present simulations since the location of the outer bound-
ary is far enough from the center that the magnetic field
lines do not reach the outer boundaries. The Hamiltonian
and momentum constraints are enforced at ¢+ = 0 using the
method described in Sec. IV. Since the magnetic field
strength we choose is very weak initially, the obtained
initial condition is approximately the same as that of no
magnetic fields presented in Sec. VIB.

Simulations are performed for various values of A which
are chosen so that the magnetic pressure is initially much
smaller than the gas pressure. In the following we specify
the model in terms of the initial ratio of the energy of
magnetic fields to the internal energy of the disk (hereafter
Rjp) instead of A. Here, the energy of magnetic fields and
the internal energy of the disk is simply defined by

Unag = ﬁ ” b*d3x, (120)

Ugse = f poed's, (121)
disk

and thus, Rp = Upye/Ugik at t = 0. We note that the
precise definition of the magnetic energy is unknown in
general relativity, but the present definition is likely to give

a guideline for the magnitude within an error of a factor of
~2-3.
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In Fig. 13, we show the evolution of U, for three
values of Rp. Here, the magnetic energy is plotted in units
of the initial value of U (hereafter U o) which is about
1.8 X 107 *M 4. It is found that Unag grows monotoni-
cally until the growth is saturated irrespective of the value
of Rp. The growth rate is in proportion to R}g/ % in the early
phase before the saturation is reached. This indicates that
differential rotation winds up the magnetic field lines for
amplifying the field strength [62,63]. After the saturation
occurs, Umag/ Ugiso relaxes to ~0.02-0.2. These values
indicate that the magnetic 8 parameter often referred in
[19] is of order ~10. These relaxed values are in good
agreement with previous results obtained in the simulation
with a fixed background [19]. The magnetic energy
reached after the saturation depends on Rp, indicating
that not only the winding-up of the field lines but also other
mechanisms (which may be MRI or other instabilities
associated with the magnetic fields) are likely to determine
the final value.

To check that the growth of the magnetic fields occurs
irrespective of grid resolution, we performed additional
simulations for Rz = 5 X 107> with grid sizes of (241,
241) and (201, 201) without changing the location of the
outer boundaries. In the inset of Fig. 13, evolution of the
magnetic energy for these cases as well as for (301, 301)
grid size is displayed. It is shown that the growth rate
depends very weakly on the grid resolution. This confirms
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FIG. 13 (color online).  Evolution of Uy, in units of initial
internal energy of Uggo for Rz = 1.3 X 1073 (long-dashed
curve), 5 X 1073 (solid curve), and 2 X 10~* (dashed curve).
In the smaller panel, we display evolution of Uy, /Ulisko for
Rg = 5 X 1073 with three levels of grid resolutions with sizes
(301, 301) (solid curve), (241, 241) (dashed curve), and (201,
201) (long-dashed curve). Three curves approximately agree.
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FIG. 14 (color online).

Snapshots of the density profile of a neutron and a disk in x — z plane at ¢ = 0, 9.78, and 19.40 ms for

Rz =2X107% For p > 10'° g/cm? (and for atmosphere), the density is denoted by the same dark color, and for 10'° g/cm?® =

p = 107 g/cm?, the color is changed (from dark to light).

that our simulation can follow the winding-up of the mag-
netic field lines well. On the other hand, it should be
mentioned that the fastest growing mode of the MRI
cannot be resolved in the present computational setting
since the characteristic wavelength for this mode
~27v,/ ), where v, denotes the characteristic Alfvén
speed, is approximately as small as the grid spacing (for
Rg =5X 1073, 27v,4/Q = Ax) in the current setting. To
resolve the fastest growing mode, the grid spacing should
be at least one tenth of the present one. Performing such a
simulation of high resolution is beyond scope of this paper
and an issue for the next step.

In Fig. 14, snapshots of the density profile of disks are
displayed for which Rz = 2 X 10™*. It shows that with the
growth of magnetic fields due to winding-up of the field
lines, a wind is induced to blow the matter in the outer part
of the disk off. Also, the matter in the inner part of the disk
gradually falls into the neutron star because of the angular
momentum transport by the magnetic fields from the inner
to the outer parts (see Fig. 15). After the nonlinear develop-
ment of the turbulence, the disk settles down to a quasi-
stationary state. As explained in [19,64], this is probably
due to the imposition of axial symmetry which precludes
the development of the azimuthal unstable modes. Also, in
the present numerical simulation, MRI which could induce
turbulence is not well resolved. This may be also a reason.

In Fig. 15, we show the evolution of mass and angular
momentum of the disk. It shows that after the saturation of
the nonlinear growth of the magnetic fields, these quanti-
ties decrease. Decreased rates of the mass and angular
momentum take maximum values soon after the growth
of the magnetic pressure is saturated (e.g., at t = 5P, for
Ry = 2 X 107%; cf. the dashed curves). Then, the mass and
angular momentum relax to approximately constants (cf.
the dashed curves). This indicates that the disk settles down
to a quasistationary state. An interesting feature is that J
is approximately proportional to M g throughout the evo-

lution. This is reasonable because the specific angular
momentum j is constant in the disk at + = 0, and approxi-
mately so is the matter fallen to the neutron star as long as
the magnetic pressure is much smaller than the gas pres-
sure. However, in the case of Ry = 2 X 1074, at t ~ 20P,
for which growth of the magnetic field has already satu-
rated enough, Jgig /Mg slightly deviates from the initial
value. This indicates that angular momentum is transported
by the effect of magnetic fields.

We also performed a simulation for a toroidal magnetic
field B¢. For B¥, we gave
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FIG. 15. Evolution of Mgy and Jgy for Rz =0 (dotted
curves), 1.3 X 1075 (long-dashed curves), 5 X 107> (solid
curves), and 2 X 10™* (dashed curves).
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Be — {(C)T(p — po)z/(z +z9) for p = p, (122)

for p < py,

where pg = 0.3« -dgisk and zg is a constant much smaller
than the scale height of the disk. We note that B¢ has to be
zero in the equatorial plane because we impose a reflection
symmetry for the matter field with respect to this plane. In
this simulation, magnetic energy decreases monotonically
due to a small expansion of the disk induced by the
magnetic pressure. In this case, no instability sets in.
This is a natural consequence since the field lines are
parallel to the rotational motion, and hence, they are not
wound by the differential rotation. Obviously, the assump-
tion of the axial symmetry prohibits deformation of the
magnetic field lines and plays a crucial role for stabiliza-
tion. If a nonaxisymmetric simulation is performed, MRI
could set in [21,64,65].

VII. SUMMARY AND DISCUSSION

In this paper, we describe our new implementation for
ideal GRMHD simulations. In this implementation,
Einstein’s evolution equations are evolved by a latest ver-
sion of BSSN formalism, the MHD equations by a HRC
scheme, and the induction equation by a constraint trans-
port method. We performed a number of simulations for
standard test problems in relativistic MHD including spe-
cial relativistic magnetized shocks, general relativistic
magnetized Bondi flow in the stationary spacetime, and
fully general relativistic simulation for a self-gravitating
system composed of a neutron star and a disk. Our imple-
mentation yields accurate and convergent results for all
these test problems. In addition, we performed simulations
for a magnetized accretion disk around a neutron star in
full general relativity. It is shown that magnetic fields in the
differentially rotating disk are wound, and as a result, the
magnetic field strength increases monotonically until a
saturation is achieved. This illustrates that our implemen-
tation can be applied for investigation of growth of mag-
netic fields in self-gravitating systems.

In the future, we will perform a wide variety of simula-
tions including magnetized stellar core collapse, MRI for
self-gravitating neutron stars and disks, magnetic braking
of differentially rotating neutron stars, and merger of bi-
nary magnetized neutron stars. Currently, we consider that
the primary target is stellar core collapse of a strongly
magnetized star to a black hole and a neutron star which
could be a central engine of gamma-ray bursts. Recently,
simulations aiming at clarifying these high energy phe-
nomena have been performed [66,67]. In such simulations,
however, one neglects self-gravity and also assumes the
configuration of the disks around the central compact
object and magnetic fields without physical reasons. On
the other hand, Newtonian MHD simulations consistently
including self-gravity recently have been performed in
[68]. However, stellar core collapse to a black hole and
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gamma-ray bursts are relativistic phenomena. For a self
consistent study, it is obviously necessary to perform a
general relativistic simulation from the onset of stellar
core collapse throughout formation of a neutron star or a
black hole with surrounding disks. Subsequent phenomena
such as ejection of jets and onset of MRI of disks should be
investigated using the output of the collapse simulation. In
previous papers [9,24], we performed fully general relativ-
istic simulations of stellar core collapse to formation of a
neutron star and a black hole in the absence of magnetic
fields. As an extension of the previous work, simulation for
stellar core collapse with a strongly magnetized massive
star should be a natural next target.

It is also important and interesting to clarify how MRI
sets in and how long the time scale for the angular mo-
mentum transport after the onset of the MRI is in differ-
entially rotating neutron stars. Recent numerical
simulations for merger of binary neutron stars in full
general relativity [6,7] have clarified that if the total mass
of the system is smaller than a critical value, the outcome
after the merger will be a hypermassive neutron star for
which the self-gravity is supported by strong centrifugal
force generated by rapid and differential rotation.
Furthermore, the latest simulations have clarified that the
hypermassive neutron star is likely to have an ellipsoidal
shape with a large ellipticity [7], implying that it can be a
strong emitter of high-frequency gravitational waves
which may be detected by advanced laser interferometric
gravitational wave detectors [69]. In our estimation of
amplitude of gravitational waves [69], we assume that
there is no magnetic field in the neutron stars. However,
the neutron stars in nature are magnetized, and hence, the
hypermassive neutron stars should be also. If the differen-
tial rotation of the hypermassive neutron stars amplifies the
seed magnetic field via winding-up of magnetic fields or
MRI very rapidly, the angular momentum may be redis-
tributed and hence the structure of the hypermassive neu-
tron stars may be significantly changed. In [7], we evaluate
the emission time scale of gravitational waves for the
hypermassive neutron stars is typically ~50-100 ms for
the mass M ~ 2.4-2.7M assuming the absence of the
magnetic effects. Here, the time scale of ~50-100 ms is
an approximate dissipation time scale of angular momen-
tum via gravitational radiation, and hence in this case, after
~50-100 ms, the hypermassive neutron stars collapse to a
black hole because the centrifugal force is weakened.
Thus, it is interesting to ask if the dissipation and/or
transport time scale of angular momentum by magnetic
fields is shorter than ~50—-100 ms so that they can turn on
before collapsing to a black hole. Rotational periods of the
hypermassive neutron stars are 0.5-1 ms. Thus, if the
magnetic fields grow in the dynamical time scale associ-
ated with the rotational motion via MRI, the amplitude and
frequency of gravitational waves may be significantly af-
fected. According to a theory of MRI [28], the wavelength
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of the fastest growing mode is ~10(B/10'? gauss) X
(p/10% g/cm®)~Y2(P/1 ms) cm where B, p, and P
denote a typical magnetic field strength, density, and
rotational period, respectively. This indicates that a turbu-
lence composed of small eddies (for which the typical scale
is much smaller than the stellar radius) will set in.
Subsequently, it will contribute to a secular angular mo-
mentum transport for which the time scale is likely to
be longer than the growth time scale of MRI ~ a few ms
although it is not clear if it is longer than ~100 ms. On the
other hand, if the transport time scale is not as short
as ~100 ms, other effects associated with magnetic fields
will not affect the evolution of the hypermassive neutron
stars. Indeed, Ref. [62] indicates that the typical time scale
associated with magnetic braking (winding-up of magnetic
field lines) depends on the initial strength of the magnetic
fields, and it is much longer than the dynamical time scale
as ~100(10'> gauss/B) s. In this case, the hypermassive
neutron stars can be strong emitters of gravitational waves

PHYSICAL REVIEW D 72, 044014 (2005)

as indicated in [69]. As is clear from this discussion, it is
important to clarify the growth time scale of magnetic
fields in differentially rotating neutron stars. This is also
the subject in our subsequent papers [61].
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