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Robustness of a high-resolution central scheme for hydrodynamic simulations
in full general relativity
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A recent paper by Lucas-Serrano et al. [A. Lucas-Serrano, J. A. Font, J. M. Ibánez, and J. M. Martı́,
Astron. Astrophys. 428, 703 (2004)] indicates that a high-resolution central (HRC) scheme is robust
enough to yield accurate hydrodynamical simulations of special relativistic flows in the presence of
ultrarelativistic speeds and strong shock waves. In this paper we apply this scheme in full general relativity
(involving dynamical spacetimes), and assess its suitability by performing test simulations for oscillations
of rapidly rotating neutron stars and merger of binary neutron stars. It is demonstrated that this HRC
scheme can yield results as accurate as those by the so-called high-resolution shock-capturing (HRSC)
schemes based upon Riemann solvers. Furthermore, the adopted HRC scheme has increased computa-
tional efficiency as it avoids the costly solution of Riemann problems and has practical advantages in the
modeling of neutron star spacetimes. Namely, it allows simulations with stiff equations of state by
successfully dealing with very low-density unphysical atmospheres. These facts not only suggest that such
a HRC scheme may be a desirable tool for hydrodynamical simulations in general relativity, but also open
the possibility to perform accurate magnetohydrodynamical simulations in curved dynamic spacetimes.
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Hydrodynamics simulation in general relativity (GR) is
the best theoretical approach for investigating dynamical
phenomena in relativistic astrophysics such as stellar core
collapse to a neutron star and a black hole, and the merger
of binary neutron stars. In the past several years this field
has witnessed major development, to the stage that it is
now feasible to perform accurate simulations for such
general relativistic phenomena (see e.g. [1–5]).
Currently, the most favored approach to hydrodynamics
simulations in full GR combines the use of the so-called
BSSN formalism to solve Einstein’s field equations [6] and
upwind high-resolution shock-capturing (HRSC) schemes
to solve the hydrodynamics equations [7] in conservation
form. Hereafter, HRSC schemes are referred to as those in
which the hydrodynamics equations are solved by means
of (either exact or approximate) Riemann solvers [7,8] (i.e.
Godunov-type schemes).

Regarding the solution of the hydrodynamics equations
it has been shown in a few recent papers [9,10] that high-
resolution central symmetric schemes (HRC scheme here-
after) yield numerical solutions as accurate as those by
HRSC schemes for special relativistic flows (see e.g. [11]
for a general introduction to HRSC and HRC schemes).
The main conclusion of those works highlights the impor-
tance of the conservation form of the adopted scheme
(either upwind or central) in conjunction with high-order
cell-reconstruction procedures (to compute the numerical
hydrodynamical fluxes at cell interfaces) to gain accuracy
while reducing as much as possible the inherent diffusion
of central schemes at discontinuities. It is well-known that
if a numerical scheme written in conservation form con-
verges, it automatically guarantees the correct Rankine-
Hugoniot (jump) conditions across discontinuities. This
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shock-capturing property is hence shared by both upwind
and symmetric schemes. For practical reasons the most
appealing feature of HRC schemes is the fact that, contrary
to upwind HRSC schemes, they entirely sidestep the use of
Riemann solvers, which results in a great simplification for
their numerical implementation as well as in enhanced
computational efficiency. However, it has not yet been
clarified whether HRC schemes can also yield numerical
results as accurate as those of HRSC schemes for simula-
tions in full GR involving dynamical spacetimes.

The aim of this paper is to demonstrate the robustness of
a particular HRC scheme proposed by [12], and first used
in special relativistic hydrodynamics by [9], for problems
in full GR. As we have done in previous papers (e.g.
[1,2,13]), test simulations in both axisymmetry (rotating
neutron stars) and full three-dimension (binary neutron star
mergers) are performed to assess this fact.

The numerical simulations are carried out using the
same mathematical formulation as in [4], to which the
interested reader is addressed for details about the basic
equations, the gauge conditions, and the computational
method. Einstein’s evolution equations are solved using
the so-called BSSN formalism [6], adopting a slight varia-
tion of the original form of the equations, which is reported
in [4]. The hydrodynamics equations are written in con-
servation form and solved using both a Roe-type HRSC
scheme [13] and a HRC scheme [9], with either the PPM
third-order cell-reconstruction or the MC slope limiter.
Violations of the Hamiltonian constraint and conservation
of ADM mass and angular momentum are monitored to
check the accuracy of the simulations.

We use a fixed uniform grid for both the axisymmetric
and the three-dimensional (3D) simulations. The former
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FIG. 1 (color online). Evolution of the central density in units
of the initial value for the two rotating neutron star models
considered. Time is shown in units of the rotational period of
the neutron stars P. The dotted-dashed, dashed, dotted, and solid
curves denote the results with (121 121), (181 181), (241 241),
and (361 361) grid resolutions, respectively.
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are carried out in cylindrical coordinates ($; z) assuming
equatorial plane symmetry. Computational grids of size
�N � 1; N � 1� with N � 90, 120, 180, 240, and 360 are
used, with which convergence is shown. The 3D simula-
tions are performed in Cartesian coordinates assuming
equatorial plane symmetry as well. In this case the grid
adopted in the present test simulations consists of
(377 377 189) zones for �x; y; z� respectively.

In the axisymmetric simulations of isolated rotating
neutron stars a �-law equation of state (EOS) is used, i.e.
P � ��� 1�	". Here, P is the pressure, 	 the rest-mass
density, " the specific internal energy, and � the adiabatic
constant for which we choose the values 2 and 2.5. The
initial conditions for the equilibrium models are built using
a polytropic EOS P � K	�, where K is the polytropic
constant.

Correspondingly, for the 3D simulations of binary neu-
tron star merger a hybrid EOS is adopted, as described in
[5]. In this EOS, the pressure and the specific internal
energy are written in the form P � Pcold�	� � Pth and " �
"cold�	� � "th where Pcold and "cold are the cold (zero-
temperature) parts, and are functions of 	 only. On the
other hand Pth and "th are the thermal (finite-temperature)
parts. During the simulation, 	 and " are evolved, and thus
"th is determined by "� "cold. For Pth, we simply set Pth �
��th � 1�	"th with �th � 2. For the cold part of the hybrid
EOS we use realistic EOS for zero-temperature nuclear
matter, more precisely the SLy EOS [14].

As customary in grid-based hydrodynamics codes an
artificial low-density atmosphere needs to be used in those
regions outside the star representing vacuum. The density
has to be low enough so that its presence does not affect the
actual dynamics of the star. In previous simulations using a
Roe-type HRSC scheme, a uniform density atmosphere as
low as 	atm � 10�6	max was used, where 	max is the
maximum density. (For soft EOS this value can be much
smaller; e.g., 	atm � 10�12	max for � � 4=3.) Lower val-
ues for the density could result in numerical instabilities
developing around the stellar surface. However, we have
found that when using the HRC scheme the threshold
density in the atmosphere can be much smaller. The results
presented next for the HRC scheme correspond to 	atm �
10�10	max, irrespective of the EOS used.

We start discussing axisymmetric simulations of oscil-
lations of rotating neutron stars. For these simulations we
build rapidly rotating neutron stars with uniform angular
velocity. This velocity is chosen so that it reaches the
Kepler (mass-shedding) limit at the equatorial stellar
surface.

Two rotating neutron star models are considered. In one
case � � 2 and the baryon rest mass M� is 90% of the
maximum allowed value for uniformly rotating neutron
stars of identical EOS. This model is the same as model
R2 in Ref. [13], which allows for a direct comparison. The
other model corresponds to � � 2:5 and M� is 95% of the
maximum allowed mass. This is a very compact model,
since the compactness parameter, defined as GM=Rc2
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where M and R are the ADM mass and circumferential
radius around the equatorial surface, is 0.214. For both
models, the axis ratio of polar radius to equatorial radius
is about 0.6. The ratio of the coordinate radius of the outer
boundary of the computational grid to the stellar coordi-
nate radius at the equator is 3. The simulations are started
by reducing the pressure by 1% uniformly.

Figure 1 shows the time-evolution of the central density
for these two models obtained using the HRC scheme for
the hydrodynamics equations. Each curve corresponds to a
different grid resolution as explained in the caption. It is
found that the HRC scheme succeeds in keeping the stars
in equilibrium in such a dynamical spacetime. The neutron
star oscillations can be followed accurately for more than
20 rotation periods. With small grid sizes (dotted and
dashed lines), the density experiences a secular drift, de-
creasing with time gradually. The reason is that the angular
momentum of the star is transported outward by numerical
diffusion. However, this drift decreases with improved grid
resolution, and with the highest resolution the average
value of the central density is kept approximately constant.
Second-order convergence is also achieved.

It is worth to emphasize that despite the use of an
artificial atmosphere of tiny density, the HRC scheme
makes it possible to follow the evolution of compact
neutron stars with stiff EOS with � � 2:5 and to compute
their fundamental oscillation frequency. Such simulation
has not yet been accurately performed with HRSC
schemes.

In Fig. 2, we show the evolution of the ADM mass,
angular momentum, and the averaged violation of the
Hamiltonian constraint (in which the baryon rest-mass
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density is used for the weight; see [4] for definition) for
� � 2:5. (Similar results are obtained for � � 2.) The
figure shows that the conserved quantities remain con-
served to high accuracy, particularly for the finest grid,
and that the violation of the Hamiltonian constraint re-
mains small. The outstanding feature is that the departure
from angular momentum conservation with the HRC
scheme is much smaller than with the HRSC scheme (see
e.g. Fig. 5 in [13]). In the previous implementation the
angular momentum gradually increases with time mainly
due to the numerical error generated around the stellar
surface and in the low-density atmosphere for which an
artificial friction term was added to stabilize the computa-
tion. With the HRC scheme, such a drift in the angular
momentum conservation is suppressed within 0:1% error
after 20 rotation periods for grid resolutions with N � 180,
probably due to less numerical inaccuracies around the
stellar surface. These results indicate that the HRC scheme
used is a robust scheme for the simulation of isolated
neutron stars.

We now turn to present the results of numerical simula-
tions of binary neutron star mergers. In the present test we
choose binaries of equal mass with 1.3–1.3M	 and 1.4–
1.4M	. As found in [5] using a HRSC scheme, a massive
neutron star and a black hole are formed for the former and
latter cases, respectively.

In Fig. 3, we show the time-evolution of the central value
of the lapse function, �c, and the maximum value of the
density, 	max, for these two models. The solid and dashed
curves indicate the results obtained with the HRC and
HRSC schemes, respectively. In the smaller mass case, a
massive neutron star is formed after the merger, and hence,
FIG. 2 (color online). Evolution of the ADM mass (top),
angular momentum (middle), and violation of the Hamiltonian
constraint (bottom) for � � 2:5. Time is shown in units of the
rotational period of the neutron stars. The dashed, dotted, and
solid curves denote the results with (91,91), (121 121), and
(181 181) grid resolutions, respectively.
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�c and 	max show a series of small-amplitude oscillations
until they eventually relax to quasistationary values. For
both hydrodynamical schemes the amplitude and the fre-
quency of the resulting neutron star oscillations agree well
with each other. On the other hand, the outcome of the
merger of the 1.4–1.4M	 binary is a black hole, as can be
directly inferred from the rapid collapse of the central lapse
and the rapid growth of the maximum density (from
t
 2 ms onwards). Black hole formation is signaled by
the appearance of an apparent horizon, which is detected in
both implementations. In particular the time of formation
of the apparent horizon agrees approximately for both
schemes, with a time difference of about 0.07 ms. For the
two binary mergers considered, a small time lag in the
evolution of �c and 	max is observed between the two
results computed by the different schemes. Its origin is
likely the difference in the magnitude of the friction term
around the stellar surface already discussed before which
could generate an error in the angular momentum conser-
vation. As mentioned above, this error is smaller with the
HRC scheme.

In Fig. 4, we show the evolution of the ADM mass,
angular momentum, and averaged violation of the
Hamiltonian constraint for the 1.3–1:3M	 binary merger.
In this case, the ADM mass and angular momentum of the
system show a gradual decrease due to the emission of
gravitational waves [5]. Again, it is found that the two
results agree well with each other within 
0:5%. The
averaged violation of the Hamiltonian constraint remains
approximately of identical magnitude, 
0:02, which in-
dicates that the accuracy of the results of the two hydro-
dynamical schemes is approximately identical.
FIG. 3 (color online). Evolution of the maximum value of 	
and the central value of � for the merger of equal-mass binary
neutron stars, 1.3–1.3M	 and 1.4–1.4M	. In the former and
latter cases, a massive neutron star and a black hole are the end-
products of the merger, respectively.
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FIG. 4 (color online). Evolution of the ADM mass (top),
angular momentum (middle), and violation of the Hamiltonian
constraint (bottom) for the merger of binary neutron stars with
masses 1.3–1.3M	. The solid and dashed curves in all panels
indicate the results obtained with the HRC scheme and with the
HRSC scheme, respectively.
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To summarize, it has been shown through simulations of
pulsating and rotating neutron stars, and binary neutron
star mergers, that the results produced by the HRC scheme
proposed by [12] agree well with those obtained with a
Roe-type HRSC scheme. The accuracy measured by the
evolution of the ADM mass, angular momentum, and
violation of the Hamiltonian constraint in the HRC scheme
are as good as or even better than those obtained for the
HRSC scheme. In addition, the HRC scheme has a number
047501
of advantages to the HRSC scheme: (i) it is straightforward
to implement since the solution of Riemann problems is
avoided; hence one does not need to compute the
complicated sets of eigenvectors of the Jacobian matrices
associated with the fluxes (transport terms) of the hydro-
dynamics equations; (ii) for this reason the computational
costs of the HRC scheme are much less expensive, as the
characteristic information required in HRSC schemes is
not necessary. In the tests reported in this paper we have
found that in our fully general relativisitc implementation,
the computational time is saved by about 20%; (iii) the
density of the unphysical atmosphere one needs to build
around isolated stars when adopting the conservative form
of the hydrodynamics equations can be several orders of
magnitude smaller than that in HRSC schemes. Associated
with this advantage the code can be applied for neutron
stars with a large adiabatic index � � 2:5.

These facts illustrate that HRC schemes can be useful
and robust tools for hydrodynamical simulations in full GR
involving dynamical spacetimes. In addition, their suitabil-
ity over HRSC schemes becomes further apparent when
the wave structure of the hyperbolic system to solve is
unknown, as it is partially the case in general relativistic
magnetohydrodynamics (GRMHD). Hence, HRC schemes
can help the achievement of GRMHD simulations in which
the equations to solve are more complicated than those of
purely hydrodynamical flows [15].

The numerical simulations were performed on the
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of NAOJ. This work was in part supported by
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[3] M. Shibata and K. Uryū, Phys. Rev. D 61, 064001 (2000);

Prog. Theor. Phys. 107, 265 (2002); M. Miller,
P. Gressman, and W.-M. Suen, Phys. Rev. D 69, 064026
(2004); M. D. Duez, P. Marronetti, T. W. Baumgarte, and
S. L. Shapiro, Phys. Rev. D 67, 024004 (2003); L. Baiotti
et al., Phys. Rev. D 71, 024035 (2005 ).

[4] M. Shibata, K. Taniguchi, and K. Uryū, Phys. Rev. D 68,
084020 (2003).

[5] M. Shibata, K. Taniguchi, and K. Uryū, Phys. Rev. D 71,
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