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Close-limit analysis for head-on collision of two black holes in higher dimensions:
Brill-Lindquist initial data
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Motivated by the TeV-scale gravity scenarios, we study gravitational radiation in the head-on collision
of two black holes in higher-dimensional spacetimes using a close-limit approximation. We prepare time-
symmetric initial data sets for two black holes (the so-called Brill-Lindquist initial data) and numerically
evolve the spacetime in terms of a gauge-invariant formulation for the perturbation around the higher-
dimensional Schwarzschild black holes. The waveform and radiated energy of gravitational waves emitted
in the head-on collision are clarified. Also, the complex frequencies of fundamental quasinormal modes of
higher-dimensional Schwarzschild black holes, which have not been accurately derived so far, are
determined.
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I. INTRODUCTION

Clarifying the nature of black holes in higher-
dimensional spacetimes has become an important issue
since the possibility of the black-hole production in accel-
erators was pointed out. If our space is the 3-brane in large
[1] or warped [2] extra dimensions, the Planck energy
could be of O�TeV� that is accessible with the planned
accelerators. If the number of dimension D of our space-
time is actually larger than 4, a black hole of very small
mass will be produced artificially in particle experiments
and the evidence may be detected.

The possible phenomenology of the black holes which
may be produced in accelerators was first discussed in [3]
(see [4] for reviews). During the high-energy particle col-
lision of a sufficiently small impact parameter in a higher-
dimensional spacetime, two particles will form a distorted
black hole of small mass. Subsequently, it settles down to a
stationary state after emission of gravitational waves. The
stationary black hole will soon be evaporated by the
Hawking radiation, indicating that the quantum gravity
effects will be important. The evaporation and quantum
gravity effects [5,6] have been studied for yielding a plau-
sible scenario (cf. [7] for related issues). On the other hand,
the analyses for formation of the black hole and for the
subsequent evolution by gravitational radiation are still in
an early stage. These phases are described well in the
context of general relativity [8] (see also [9]), but due to
its highly nonlinear nature, the detailed process has not
been well understood.

More specifically, two issues should be clarified for
these phases. One is the condition (i.e., the impact parame-
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ter) for formation of a black hole and the other is the fate of
the formed black hole after emission of gravitational
waves, which can be used as the initial condition of the
Hawking radiation phase.

Extensive effort has been made in the past five years for
the first issue. The popular method is to approximate the
high-energy particle of no charge or spin by the
Aichelburg-Sexl shock-wave metric [10]. The merit of
this approximation is that superimposing two Aichelburg-
Sexl metrics, a metric of two particles moving with the
speed of light can be derived for a spacetime region in
which causal connection between two particles is absent.
Although this solution can form a naked singularity at the
collision and it is not clear what happens after the collision,
it is still possible to determine the condition for the for-
mation of an apparent horizon for a spacelike hypersurface
of the known solution. Formation of the apparent horizon
is a sufficient condition for formation of a black hole
for which the event horizon is outside the apparent hori-
zon. Thus, the lower bound of the impact parameter can
be estimated. Such study was first done by Eardley
and Giddings [11] in a four-dimensional case and it was
extended to D-dimensional cases by Yoshino and Nambu
[12]. Recently these studies were improved by Yoshino
and Rychkov [13] by analyzing the apparent horizon
in a different spacelike hypersurface from the one in
[11,12].

The second issue is to clarify the final state of a black
hole formed after collision of two particles, which will be a
Kerr black hole in higher dimensions, perhaps those de-
scribed by Myers and Perry [14]. Here, the stationary Kerr
black holes of no electric charge are described by the mass
and angular momentum. Namely, the goal is to derive a
formula of the final mass Mfinal and angular momentum
Jfinal as functions of the initial impact parameter and initial
energy of two particles. For this issue, a couple of prelimi-
-1 © 2005 The American Physical Society
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nary analyses have been carried out so far (see Ref. [15] for
a review).

One is the work by Yoshino and Rychkov [13], who
constrained the allowed region of the mass and angular
momentum by finding the apparent horizon for spacetimes
of two Aichelburg-Sexl particles and subsequently em-
ploying the area theorem. However, the allowed region
cannot be pinpointed with this approach, implying that
the analysis of gravitational waves emitted during the
collision is inevitable.

The gravitational radiation from two particles with the
speed of light in a head-on collision was first computed by
D’Eath and Payne [16] (summarized in [17]). They ana-
lyzed a spacetime of two Aichelburg-Sexl particles in the
D � 4 case, paying attention only to a region far from the
particles and using a perturbative theory. By this analysis,
the radiation near the symmetric axis can be calculated.
Assuming the axisymmetric angular pattern of the radia-
tion, they estimated the total radiated energyErad as 16% of
the total energy of the system.

Recently, Cardoso et al. [18] studied gravitational radia-
tion in the linear perturbation theory of the higher-
dimensional flat spacetime. They found again that about
16% of the total energy will be emitted in the head-on
collision for D � 4, which is consistent with the results by
D’Eath and Payne. They also found that the efficiency is
highly suppressed for a larger value of D, e.g., about
0.001% for D � 10.

The black-hole perturbation theory has also been used
recently. Cardoso et al. [19] computed gravitational waves
from a particle of energy � with a speed close to the light
speed falling straightforwardly into a Schwarzschild black
hole of mass M� � for D � 4. Berti et al. [20] extend
their work for D> 4 (see [21] for further generalizations).
Extrapolating the results for�! M=2, they found that the
radiation efficiency is � 13% for D � 4 and decreases by
increasing the value of D, e.g., 8% for D � 10.

Although these approximate studies could give an ap-
proximate value of the radiation efficiency, it is natural to
consider that the error in the estimate is still a factor of 2 or
more. To derive the exact numerical value, it is necessary
to carry out a more strict analysis. One promising approach
is to employ numerical simulation in full general relativity.
In the D � 4 case, simulation for black-hole collision is
feasible [22], producing certain scientific results. However,
these works have been done for the case that the velocity of
each black hole is much smaller than the speed of light.
Formulation and numerical technique for black-hole colli-
sion with a very large Lorentz factor �� 1 have not been
developed yet.

In this paper, we adopt the so-called close-limit method
for computing gravitational radiation, which was originally
developed by Price and Pullin [23]. In this method, we
prepare two black holes of a small separation as the initial
condition. If the separation is small enough to form a
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common horizon, the spacetime can be well approximated
by a perturbed black-hole spacetime. As a result, the
gravitational radiation during the collision can be analyzed
in the context of the black-hole perturbation theory. This
method has been applied for two black holes initially at rest
[24,25], initially approaching with linear momentum [26],
and many other two-black-hole systems [27]. The robust-
ness of this method is established by confirming that the
results by this method agree with those in numerical rela-
tivity. This fact motivates us to adopt the close-limit ap-
proximation for high-velocity collision of two black holes
in higher-dimensional spacetimes.

As a first step toward the series of study for more
plausible cases, in this paper, we focus on head-on collision
with time-symmetric initial data of two equal-mass black
holes. For simplicity, we choose the Brill and Lindquist
initial data [28] that describes a spacelike hypersurface in a
spacetime composed of three sheets connected by two
Einstein-Rosen bridges. We will show the successful nu-
merical results and indicate that extension of the analyses
with more general initial data is straightforward.

This paper is organized as follows. In the Sec. II, we
introduce the Brill-Lindquist initial data and analyze the
apparent horizons for D � 4. In Sec. III, we derive the
close-limit form of the initial data and briefly review the
master equation for the perturbation of the higher-
dimensional Schwarzschild black hole [29]. We also ex-
plain our numerical methods. Numerical results are shown
in Sec. IV, paying attention to the radiated energy and
gravitational waveforms. Section V is devoted to a sum-
mary. In Appendix A, the gauge-invariant perturbation
formalism as well as a method for preparing an initial
master variable from the Brill-Lindquist initial data are
presented. Appendix B describes a formula for computing
the radiated energy of gravitational waves from the master
variable.
II. THE BRILL-LINDQUIST INITIAL DATA

A. The Brill-Lindquist two-black-hole solution

Let ��; hab; Kab� denote a �D� 1�-dimensional space-
like hypersurface � with the metric hab and the extrinsic
curvature Kab in a D-dimensional spacetime. The equa-
tions of the Hamiltonian and momentum constraints are

�n�1�R� habhcdKacKbd � K2 � 0; (1)

ra�Kab � habK� � 0; (2)

where �n�1�R is the Ricci scalar of �, ra is the covariant
derivative with respect to hab, and n � D� 2. Assuming
the time symmetry (i.e., Kab � 0), Eq. (2) is satisfied
trivially. Assuming further the conformal flatness hab �
�4=�n�1��ab, the Hamiltonian constraint equation is written
to the Laplace equation for the conformal factor
-2
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FIG. 1. The relation between z0=z
�crit�
0 and the trapped energy

MAH=M at the initial state for D � 4–11. The plot range of the
vertical axis is 0:9 � MAH=M � 1.
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r2
f� � 0; (3)

where r2
f is the flat-space Laplacian.

We introduce the cylindrical coordinates ��; z� in which
the flat-space metric is given by ds2

f � dz2 � d�2 �
�2d�2

n�1 with the metric d�2
n�1 on the �n�

1�-dimensional unit sphere. Among an infinite number of
solutions for Eq. (3) that denote spacetimes of two black
holes, we choose the following one composed of two point
sources located at z � 	z0 along the z axis as

� � 1�
1

8

rh�M��n�1

�
1

Rn�1
�

�
1

Rn�1
�

�
; (4)

where R	 �
������������������������������
�z z0�

2 � �2
p

, M is the total gravitational
mass of the system, and rh�M� is the gravitational radius
defined by

rh�M� �
�

16�GM
n�n

�
1=�n�1�

: (5)

Here, �n � 2��n�1�=2=���n� 1�=2� is the n-dimensional
area of a unit sphere. Hereafter, we adopt rh�M� as the unit
of the length. The solution (4) provides the system of three
sheets connected by two Einstein-Rosen bridges. r	 � 0
and r! 1 correspond to spatial infinities of each sheet as
found by Brill and Lindquist [28] for D � 4.

B. Analysis for apparent horizon

The close-limit approximation holds for the system
sufficiently close to a stationary one-black-hole spacetime.
Thus, this method can be applied only for the case that a
common apparent horizon surrounding two black holes is
present. Because of this reason, it is necessary to clarify the
range of z0 for which a common apparent horizon exists.
Also, by obtaining the area of the common apparent hori-
zon, we can estimate the lower bound of the final mass as
well as the upper bound of the energy radiated away by
gravitational waves, using the area theorem of black holes.

The common apparent horizon is determined by a nu-
merical method developed by Yoshino and Nambu [30].
Since the system is axisymmetric, it is easily determined
by a simple shooting method. The shape of the common
apparent horizon changes from a sphere at z0 � 0 to a
spheroid for z0 > 0, increasing the ellipticity. At a critical
value, z�crit�

0 , it disappears. The values of z�crit�
0 are summa-

rized in Table I.
In the presence of the common apparent horizon, the

mass of the apparent horizon is defined by
TABLE I. The critical values of z�crit�
0 for formation of a

common apparent horizon for 4 � D � 11.

D 4 5 6 7 8 9 10 11

z�crit�
0 =rh�M� 0.192 0.393 0.510 0.586 0.641 0.683 0.715 0.742
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MAH �
n�n

16�G

�
AAH

�n

�
�n�1�=n

; (6)

where AAH denotes the n-dimensional area of the apparent
horizon. In the Brill-Lindquist initial data, MAH coincides
with the Hawking quasilocal mass [31] evaluated on the
horizon and indicates the trapped energy at the initial state.
MAH provides us with the lower bound of the final mass
Mfinal � M� Erad where Erad is the radiated energy of
gravitational waves. Equivalently M�MAH gives the
upper bound of Erad. Figure 1 shows the relation between
z0=z

�crit�
0 and MAH=M. In the D � 4 case, about 99% of the

total energy is trapped inside the apparent horizon at the
initial state. On the other hand, the trapped energyMAH=M
becomes smaller for larger values of D.
III. THE CLOSE-LIMIT ANALYSIS

A. The close-limit of the Brill-Lindquist initial data

In this paper, the spacetime of two black holes is evolved
using the close-limit approximation, in which the evolution
of the field variables are carried out by a gauge-invariant
perturbation technique. For this analysis, it is necessary to
derive an initial condition for the linear theory in the
Schwarzschild background. To do so, the Brill-Lindquist
metric is rewritten to

ds2 � �4=�n�1�
dR2 � R2�d�2 � sin2�d�2
n�1��; (7)

� � 1�
1

4Rn�1 �
1

4Rn�1

X
l�2;4;���

�
z0

R

�
l
C
�n�1�=2�
l �cos��;

(8)

where R �
����������������
z2 � �2

p
, � � tan�1��=z�, and C
��l denotes

the Gegenbauer polynomials which are defined by the
generating function
-3
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�1� 2xt� t2��� �
X1
l�0

C
��l �x�t
l: (9)

Here, we assume z0 � rh�M� � 1. If z0 � 0, the metric
provides the space component of the Schwarzschild metric
in the isotropic coordinate.

We introduce a new coordinate r through the ordinary
relation between the Schwarzschild coordinate r and the
isotropic coordinate R:

r � R�2=�n�1�
0 ; �0 � 1� 1=4Rn�1; (10)

or equivalently

R �
��
r�n�1�=2 �

�������������������
rn�1 � 1

p �
=2
�

2=�n�1�
: (11)

Then the metric becomes

ds2 �

�
�
�0

�
4=�n�1�

�
dr2

1� 1=rn�1 � r
2�d�2

� sin2�d�2
n�1�

�
; (12)

�
�0
� 1�

1=4Rn�1

1� 1=4Rn�1

X
l�2;4;���

�
z0

R

�
l
C
�n�1�=2�
l �cos��:

(13)

Here, the metric in the square brackets of Eq. (12) denotes
the space part of the Schwarzschild metric. The difference
of�=�0 from unity is ofO�	2�where 	 � z0=R. Since the
region of r � 1 corresponds to R � Rh � 4�1=�n�1�, the
system can be regarded as the Schwarzschild black hole
plus its perturbation for a sufficiently small value of z0 (or
	).

The first-order perturbation includes the mode l �
2; 4; . . . whose order isO�	l�. We only consider the leading
O�	2� correction which is the l � 2 mode. Then we find the
prefactor ��=�0�

4=�n�1� of Eq. (12) becomes
�
�
�0

�
4=�n�1�

’ 1�
1=�n� 1�Rn�1

1� 1=4Rn�1

�
z0

R

�
2
C
�n�1�=2�

2 �cos��:

(14)

This provides the major parts of the initial data for the
linear perturbation theory in the close-limit approximation.

B. Master equations and initial master variables

In order to analyze the time evolution of the perturba-
tion, we use a gauge-invariant formulation of the higher-
dimensional Schwarzschild perturbation [29]. The master
equation for the three types of perturbation variables, i.e.,
the scalar, vector, and tensor variables, was derived in
Ref. [29]. Since the Brill-Lindquist initial data is axisym-
metric with no rotation, we only need to evolve one master
variable of the scalar mode.
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In the scalar-mode perturbation, the master variable �
that is related to the gauge-invariant quantities obeys the
master equation

@2�

@t2
�
@2�

@r2
�

� VS� � 0; (15)

where

VS�r� �
f�r�Q�r�

16r2H2�r�
; (16)

f�r� � 1� x; H�r� � m� �1=2�n�n� 1�x; (17)

m � k2 � n; k2 � l�l� n� 1�; x � 1=rn�1;

(18)

Q�r� � n4�n� 1�2x3 � n�n� 1�
4�2n2 � 3n� 4�m

� n�n� 2��n� 4��n� 1��x2 � 12n
�n� 4�m

� n�n� 1��n� 2��mx� 16m3 � 4n�n� 2�m2:

(19)

r� denotes the tortoise coordinate defined by

r� �
Z
dr=f: (20)

More explicitly,

r� � r�
2

n� 1

Xn=2�1

m�1

sin
2m�
n� 1

�
arctan

�
� cot

2m�
n� 1

� r csc
2m�
n� 1

�
� �=2

�
�

1

n� 1

�
log�r� 1�

�
Xn=2�1

m�1

cos
2m�
n� 1

log
�
1� r2 � 2r cos

2m�
n� 1

��
;

(21)

for even n and

r� � r�
2

n� 1

X�n�3�=2

m�1

sin
2m�
n� 1

�
arctan

�
� cot

2m�
n� 1

� r csc
2m�
n� 1

�
� �=2

�
�

1

n� 1

�
log

�
r� 1

r� 1

�

�
X�n�3�=2

m�1

cos
2m�
n� 1

log
�
1� r2 � 2r cos

2m�
n� 1

��
;

(22)

for odd n.
The initial condition for the master variable � in gauge-

invariant perturbation theory is calculated from the metric
(12) and (14) numerically (see Appendix A for details).
The initial values of �=z2

0 for D � 4, 6, 8, and 10 are
shown in Fig. 2. �=z2

0 asymptotes to a nonzero value for
-4
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FIG. 2. The initial condition for the master variable �=z2
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r� ! �1 and to zero for r� ! 1. It rapidly changes
around r� � 0.

C. Numerical methods and numerical error

In the numerical computation for Eq. (15), we used the
Lax-Wendroff scheme which is second-order accurate in
time and space. To validate our code, the following con-
vergence test was carried out: We evolved the Gaussian
wave packet using the initial condition as h�0; r�� �
exp��r2

�=100� with various grid resolution. Denoting the
grid spacings of r� and t by dx and dt, respectively, there
are four free parameters in our numerical code: dx, � �
dt=dx, and the locations of the inner and outer boundaries
r�in�� and r�out�

� . First we computed the fiducial solution
ĥN � �=z2

0 (N denotes the step size of the t direction) at
r� � 100 for 0 � t � 250 in the D � 4 case, choosing
dx � 10�3, � � 0:2, r�in�� � �200, and r�out�

� � 200.
Then, we repeated the computation choosing the larger
values of dx while fixing the other parameters, and esti-
mated the error by

Err �

P
N
jhN � ĥNjP
N
jĥNj

(23)

for each value of dx. Figure 3 shows the relation between
log10dx and log10Err. All points are located on a straight
line of which slope is two. This illustrates the second-order
accuracy of our code.

Then we analyzed the time evolution of the Brill-
Lindquist initial data by solving the master variable �=z2

0
starting with the initial values shown in Fig. 2 for 4 � D �
11. We used dx � 0:01 for D � 4–7 and dx � 0:005 for
D � 8–11. For the larger values of D, we choose the
smaller grid spacing since the error increases with increas-
ing D. We chose the other parameters to be � � 0:2,
r�out�
� � 1000, and r�in�� � �200. Comparing the results
084020
with those computed in poorer resolutions, we found that
the numerical error is within 0.02% for all values of D.
IV. NUMERICAL RESULTS

A. Waveform and radiated energy

Figure 4 shows the behavior of �=z2
0 for D � 4–11

observed at r� � 100. The quasinormal mode ringing is
seen for all values of D. The power-law tail is also com-
puted well for D � 4 and odd D. The reason that the tail
cannot be seen for even values of D � 6 is that the tail
decays more rapidly than that of odd values of D, as
clarified in [32].

The total radiated energy Erad is calculated by

Erad

M
�
X
l

k2�n� 1��k2 � n�

2n2�n

Z
_�2dt; (24)

(see Appendix B for a sketch of the derivation). Since � is
proportional to z2

0 for the l � 2 mode, Erad is written as

Erad=M ’ Ê2�z0�
4: (25)

Table II shows the values of Ê2. In the D � 4 case, Ê2

has already been obtained by Abrahams and Price [24] as
Ê2 � 0:0251. This agrees well with our numerical result.

To compare the radiation efficiency Erad=M among the
different values ofD, one has to specify the values of z0. In
Table II, we summarize the values at the critical values
z0 � z�crit�

0 for formation of the common apparent horizon.
It is found that Erad�z

�crit�
0 � increases by increasing the value

of D. However we also should mention that the higher-
order correction might be large for z0 � z�crit�

0 . As we can
see from Eq. (14), the characteristic value of the first-order
perturbation is ��=�0�

4=�n�1� � 1, which becomes maxi-
mal at the pole on the horizon. Such a maximal value is
quite large, e.g., �1 for D � 4 and �6 for D � 10.
Although the close-limit method gives a fairly good ap-
-5



TABLE II. The values of Ê2 � Erad=z
4
0 and Erad at z � z�crit�

0 for D � 4–11.

D 4 5 6 7 8 9 10 11

Ê2 0.0252 0.0245 0.0290 0.0288 0.0258 0.0224 0.0195 0.0172
Erad�z

�crit�
0 � (%) 0.0034 0.059 0.20 0.34 0.44 0.49 0.51 0.52
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FIG. 4. Time evolution of the master variable �=z2
0 observed at r� � 100.
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FIG. 5. The energy spectrum of gravitational waves. The unit
of the vertical axis is Mz4

0. The location of the peak shifts to the
right-hand side as the value of D increases.
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proximation beyond the regime of the perturbation in the
four-dimensional case [23], further investigations such as
the second-order analysis or the full numerical simulation
are necessary to clarify this point in higher-dimensional
cases.

Figure 5 shows the energy spectrum of gravitational
waves. The value of ! at the peak becomes larger as the
value of D increases. This reflects the fact that the real part
of the fundamental quasinormal mode frequency increases
with D (see Sec. IV C for the quasinormal mode
frequencies).

The angular dependence of the radiated energy is given
by
084020-6
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FIG. 6. The angular dependence ���� of the radiated energy.
There is a peak at � � �=2 and ���=2� becomes larger as D
increases.
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1

E

dE
d�

:� ���� �
���n� 5�=2�����
�
p

��2� n=2�
sinn�3� (26)
(see Appendix B for a derivation). Figure 6 shows the
behavior of the function ���� for D � 4; . . . ; 11.
Gravitational waves are mainly emitted around the equa-
torial plane and this tendency is enhanced for larger D.
This reflects the fact that there are more directions trans-
verse to the symmetry axis for larger values of D.

B. Relation between Erad and MAH

As already mentioned, M�MAH provides the upper
bound of Erad. Hence the ratio of Erad to M�MAH
0.02 0.04 0.06 0.08
1- MAH M

0.0005

0.001

0.0015
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0.0035

E rad M
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D=5

D=6

D=7

E

FIG. 7. The relation between M�MAH and Erad for D � 4; . . . ; 7
MAH� are much smaller than unity. This is consistent with the area

TABLE III. The values of 
D evaluated at z0 � 1 for D �
4; . . . ; 11.

D 4 5 6 7 8 9 10 11


D 0.0034 0.016 0.024 0.024 0.021 0.017 0.014 0.011

084020

D �
Erad

M�MAH
(27)

should be smaller than unity and it provides one consis-
tency check of our calculation. For small value of z0, both
Erad and M�MAH are proportional to z4

0, and 
D take
nonzero values. The values of 
D are summarized in
Table III and then we confirm that 
D is less than unity.
The values of
D in higher dimensions are larger compared
to 
4 for four dimensions. The relation between M�MAH

and Erad for 0 � z0 � z�crit�
0 is also depicted in Fig. 7.


D � 1 also holds for this parameter range.

C. Quasinormal modes

From the ring-down phase seen in Fig. 4, it is possible to
derive the complex frequencies of the fundamental quasi-
normal modes !QN. By comparing them with previous
studies, we check the reliability of part of our results. In
addition, the values of !QN that have not been accurately
computed for large values of D so far are derived from our
numerical results.

The values of !QN are evaluated in the following man-
ner: The imaginary part Im�!QN� is derived from the slope
of the peaks of log��t� shown in Fig. 4. The real part is
estimated by averaging the intervals of zeros of ��t�, and
consistency is checked by identifying the Fourier peak of
��t� � exp��Im�!QN�t�. ForD � 9, 10, and 11, we found
that two modes are mixed and searched two values of !QN

so that the numerical data of ��t� is well fitted. By com-
paring the results derived by using the several ranges of t,
we estimate the error to be & 1% for 4 � D � 8 and�5%
for 9 � D � 11. We summarize the values of!QN forD �
4–11 in Table IV and compare the fitted data and ��t� for
D � 9, 10, and 11 in Fig. 8.

The part of the derived results can be compared with
previous ones. For D � 4, Leaver [33] gives very accurate
values of !QN (see [34] for a review). For the higher-
dimensional Schwarzschild black holes, Konoplya [35]
evaluated the values of !QN for l � 2 and 3 using the
0.02 0.04 0.06 0.08 0.1
1- MAH M

0.001

0.002

0.003

0.004

0.005

0.006

rad M
D=7

D=8
D=9

D=10D=11

(left) and for D � 7; . . . ; 11 (right). The values of Erad=�M�
theorem.
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TABLE V. The same as Table IV but for l � 4.

D Our estimate Leaver’s method WKB

4 1:618� 0:188i 1:6184� 0:1883i 1:618� 0:188i
5 2:193� 0:328i 2:1924� 0:3293i � � �

6 2:623� 0:439i � � � 2:622� 0:438i
7 3:012� 0:534i � � � � � �

8 3:389� 0:631i � � � 3:401� 0:645i
9 3:779� 0:734i � � � � � �

10 4:176� 0:838i � � � 4:223� 0:841i
11 4:595� 0:950i � � � � � �

TABLE VI. The same as Table IV but for l � 6.

D Our estimate Leaver’s method WKB

4 2:455� 0:192i � � � 2:424� 0:191i
5 3:286� 0:344i � � � � � �

6 3:913� 0:470i � � � 3:911� 0:467i
7 4:610� 0:574i � � � � � �

8 4:924� 0:674i � � � 4:923� 0:675i
9 5:388� 0:769i � � � � � �

10 5:834� 0:859i � � � 5:848� 0:865i
11 6:292� 0:955i � � � � � �

TABLE IV. The fundamental quasinormal mode of the scalar
gravitational perturbation in the Schwarzschild black hole for
l � 2 and 4 � D � 11. Results by our method, by Leaver’s
method, and by the WKB method are shown.

D Our estimate Leaver’s method WKB

4 0:747� 0:177i 0:7473� 0:1779i 0:746� 0:178i
5 0:947� 0:256i 0:9477� 0:2561i � � �

6 1:139� 0:305i � � � 1:131� 0:386i
7 1:339� 0:400i � � � � � �

8 1:537� 0:587i � � � [1:778� 0:571i]

9
�

1:19� 0:95i
1:98� 0:90i

� � � � � �

10
�

1:25� 0:94i
2:47� 0:99i

� � � [2:513� 0:744i]

11
�

1:20� 0:98i
2:91� 1:11i

� � � � � �
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WKB method and they were extended to l � 4 in [20]. The
Leaver’s method was applied to the scalar mode of the
gravitational perturbation for D � 5 [36]. The values of
!QN derived with these methods are summarized in
Table IV. In the cases D � 4 and 5, our results agree
well with those in the previous studies. On the other
hand, for D � 6, 8, and 10, our results disagree with the
previous ones. As stated in [20,35], the WKB method is not
expected to work well forD � 8 and 10 since the potential
VS has a negative peak. Our results indicate that the WKB
method might not be good even for D � 6.

Our methods can be applied to arbitrary values of l. To
estimate !QN, we evolved appropriate initial data for l � 4
and 6. For these cases, only one quasinormal frequency
appears in the ring-down phase and the error of !QN is &

1% for all values of D. Our results together with those in
the previous studies are summarized in Tables V and VI.
They agree well within the difference & 1%. This implies
that evolving appropriate initial data by the master equa-
tion is an effective method for computation of the complex
frequencies of the fundamental quasinormal modes.
104 106 108 110 112 114
t

- 6

- 5

- 4

- 3

- 2

- 1

log10Φ z0
2

D=9

105 1

- 10

- 8
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- 2

log10Φ z0
2

FIG. 8. The behavior of log10��t�=z2
0 in the ringing phase (the b

Table IV (the gray line) for D � 9, 10, and 11.
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V. SUMMARY

In this paper, we have studied gravitational waves emit-
ted during head-on collision of two black holes in higher
dimensions using the close-limit approximation. We
evolved the Brill-Lindquist initial data perturbatively, us-
ing a gauge-invariant technique in a Schwarzschild black
hole and calculated the waveform and radiated energy Erad.
Erad is given by the formula (25) and the values of Ê2 are
summarized in Table II. At the critical separation for the
presence of the common apparent horizon z0 � z�crit�

0 , our
analysis of the first-order perturbation predicts that Erad=M
becomes larger with larger values of D. There is a possi-
10 115 120 125
t

D=10

102 104 106 108 110 112 114 116
t

- 8

- 7

- 6

- 5

- 4

- 3

- 2

- 1

log10Φ z0
2

D=11

lack line) and the fitted data with two values of !QN listed in
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bility that the higher-order correction is large for z0 � z�crit�
0

in the higher-dimensional cases and to clarify the higher-
order effect is left as a remaining problem. We also eval-
uated the values of 
D � Erad=�M�MAH� at z0 � 1 and
found that 
D (5 � D � 11) is larger than 
4. These
results indicate that more energy could be radiated away
in higher-dimensional spacetimes than in the four-
dimensional one during head-on collision with the ap-
proaching velocity much smaller than the speed of light.

It has also been illustrated that the fundamental quasi-
normal mode frequencies for the scalar-mode perturbation
in the Schwarzschild black holes can be computed in our
analysis. We derived the complex frequencies for various
values of D, which have not been accurately computed so
far.

As we mentioned in the Introduction, the close-limit
analysis for head-on collision of the black holes performed
in this paper is the first step toward more general studies of
the black-hole collision in higher dimensions. As the next
step, we plan to analyze the evolution of two initially
moving black holes using the close-slow approximation.
Both the head-on collisions and the grazing collisions
should be studied. As the momentum of each black hole
increases, dependence of the emissivity of gravitational
waves on the value ofD would be changed from the results
in this paper. By observing such behaviors, we will be able
to discuss the dependence of gravitational radiation in the
collision process on the value of D in a different way from
the previous studies.
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APPENDIX A: DETERMINING THE INITIAL
MASTER VARIABLE

In this section, we explain how to match the initial
master variable � to the initial data. We begin by briefly
reviewing the gauge-invariant formulation of the perturba-
tion in the Schwarzschild black-hole spacetime [29]. The
background metric is given by

ds2 � gabdy
adyb � r2�y��ijdz

idzj; (A1)

where gabdyadyb � �fdt2 � f�1dr2 and �ijdzidzj de-
notes the metric on a unit sphere. The perturbed metric is
written as

ds2 � �gab � hab�dyadyb � �hai � hia�dyadzi

� �r2�ij � hij�dzidzj: (A2)

The perturbation variables hab, hai, and hij can be sepa-
rated into scalar, vector, and tensor modes. Each mode is
084020
further expanded into the modes of different angular quan-
tum number l � 0; 1; . . . using the hyperspherical harmon-
ics S, which is the solution of the following equation:

�D̂iD̂
i � k2�S � 0: (A3)

Here D̂i denotes the covariant derivative on the unit sphere
and the definition of k2 is given in Eq. (18). The variables
of the scalar-mode perturbation are given by

hab � fabS; (A4)

hai � rfaSi; (A5)

hij � 2r2�HL�ijS�HTSij�; (A6)

where

S i � �
1

k
D̂iS; (A7)

S ij �
1

k2 D̂iD̂jS�
1

n
�ijS: (A8)

In the axisymmetric case the metric of a unit sphere is
written as

�ijdzidzj � d�2 � sin2�d�2
n�1; (A9)

and then

S � S
n�l � K
n�l C

�n�1�=2�
l �cos��; (A10)

K
n�l �
�

4��n�1�=2��n� l� 1�

�n� 2l� 1���l� 1����n� 1�=2���n� 1�

�
�1=2

:

(A11)

K
n�l is the normalization factor that is chosen so that

Z
S
n�l S


n�
l0 d�n � �ll0 (A12)

is satisfied. For the gauge transformation generated by the
following vector fields,

�a � TaS; �i � rLSi; (A13)

the gauge-invariant quantities of the perturbation are given
by

F � HL � �1=n�HT � �1=r�DarXa; (A14)

Fab � fab �DaXb �DbXa; (A15)

where

Xa �
r
k

�
fa �

r
k
DaHT

�
: (A16)

The master variable � is related to the gauge-invariant
quantities as follows:
-9
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X � rn�2�Ftt � 2F�

� rn=2�2

�
�
r2

f
@2
t��

PX
16H2 ��

QX

4H
r@r�

�
; (A17)

Y � rn�2�Frr � 2F�

� rn=2�2

�
r2

f
@2
t��

PY
16H2 ��

QY

4H
r@r�

�
; (A18)

Z � rn�2Frt � rn=2�1

�
�
PZ
4H

@t�� fr@r@t�
�
; (A19)

where

PX�r� � n3�n� 1�3x3 � 2n�n� 1�
2�n2 � n� 2�m

� n�n� 2��n� 1��x2 � 4n
�n� 11�m

� n�n� 1��n� 3��mx� 16m3 � 8m2n2; (A20)

QX�r��n�n�1�2x2�2
�3n�1�m�n�n�1��x�4nm;

(A21)

PY�r��n
3�n�1��n�1�2x3�2n�n2�1�
4m�n�n�2�

��n�1��x2�4n�n�1�
3m�n�n�1��mx;(A22)

QY�r� � n�n� 1��n� 1�x2 � 2�n� 1�
m� n�n� 1��x;

(A23)

PZ�r� � 
�n2�n� 1�x� 2�n� 2�m�y� n�n� 1�x2

� 
2�2n� 1�m� n�n� 1��n� 2��x� 2nm:

(A24)

Here, the definition of x is given in Eq. (18).
Now we turn our attention to the method for determining

the initial master variable � from full nonlinear time-
symmetric initial data. We denote fab and fa as

fab �
fH0 H1

H1 f�1H2

� �
; rfa � �h0; h1�: (A25)

Because of the time symmetry of the initial condition,

_H 0 � _H2 � _h1 � _HL � _HT � 0; (A26)

H1 � h0 � 0: (A27)

By the comparison with Eqs. (12) and (14), we find

H2 � 2HL � ��r� �
1=�n� 1�Rn�1

1� 1=4Rn�1

�
z0

R

�
l
�K
n�l �

�1;

(A28)

h1 � HT � 0: (A29)

Then the gauge-invariant quantity is found to be
084020
F � HL; Ftr � 0; (A30)

and thus

X� Y � �nrn�2��r�; (A31)

where we have used one of Einstein’s equation Faa �
�2�n� 2�F. On the other hand, X� Y is given in terms
of � as follows:

X� Y � rn=2�2

�
�
PX � PY

16H2 ��
QX �QY

4H
r@r�

�
:

(A32)

Hence we find the following equation for the initial master
variable �,

d�

dr�
�

f
r�QX �QY�

�
PX � PY

4H
�� 4nrn=2H��r�

�
:

(A33)

We also find _� � 0 from the condition Z � 0.
Taking the limit r� ! �1 of Eq. (A33), we find

� �
2 � 4l=�n�1�nzl0

�n� 1��n�m�K
n�l
: (A34)

This gives us the boundary condition at r� � �1. We
solve Eq. (A33) using the fourth-order Runge-Kutta
method with the boundary condition (A34).

APPENDIX B: FORMULA OF RADIATED ENERGY

In this section, we sketch the derivation of Eq. (24). The
similar calculation for the energy spectrum is found in
Ref. [20].

In the region far from the source, outgoing waves are
well approximated by the spherical ones in the transverse-
traceless (TT). Then, the perturbation is written as

hTT
ij ’ 2r2HTSij; (B1)

HT ’
A

rn=2
h�t� r�: (B2)

The radiated energy flux is given by

dE
dSdt

�
1

32�G
_hTT
ij

_hTTij �
1

8�G
_H2
TSijS

ij; (B3)

which is the same form as in the four-dimensional case.
Using the formula [20]

SijS
ij �

1

k4 D̂i
D̂jSD̂
iD̂jS� �k2 � n� 1�SDiS�

�
�k2 � n��n� 1�

k2n
S2; (B4)

we find

dE
dt
� rn

_H2
T

8�G
�n� 1��k2 � n�

nk2 : (B5)
-10
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Next we rewrite the formula (B5) in terms of the master
variable �. In a region far from the source, the gauge-
invariant quantities become

F �
1

n
HT �

f
r
Xr; Fab � DaXb �DbXa; (B6)

Xa �
r2

k2 @aHT: (B7)

If we calculate F, Ftt, Frr, and Frt keeping only the leading
order O�r2�n=2� and the subleading order O�r1�n=2�, we
find

Y � Z � n
rn�1

k2
_HT; (B8)

where Eq. (B2) was also used. On the other hand, calculat-
ing Y � Z in terms of � and using the fact that �� � �@r _�
holds for the outgoing wave, we obtain

_H T �
k2

2
r�n=2 _�: (B9)
084020
Substituting this equation into Eq. (B5), we find

Erad �
X
l

k2�n� 1��k2 � n�
32�nG

Z
_�2dt: (B10)

This formula is equivalent to Eq. (24) in the unit rh�M� �
1.

Using Eqs. (B3), (B9), and (B10), we find

1

E

dE
d�n

�
1

k2�k2 � n��n� 1�2
�nS;�� � k2S�2: (B11)

In the case of l � 2, it becomes

1

E

dE
d�n

�
2���n�1�=2���n� 5�=2�

n�n� 2�
sin4�; (B12)

which reduces to Eq. (26) using d�n � �n�1sinn�1�d�.
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